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Abstract—This paper proposes a computationally efficient and
traceable way to synthesize finite horizon linear time-varying
(LTV) output feedback controllers. It is based on a separate ob-
server and state feedback synthesis with guaranteed performance
in a mixed sensitivity setting. The approach avoids a grid-wise
evaluation of coupled synthesis conditions that limits existing
output feedback syntheses and instead uses two subsequent steps.
However, it guarantees the same performance as the original
output feedback problem. A trajectory tracking controller for an
ascending space launcher in the earth’s atmosphere demonstrates
the feasibility of the approach.

Index Terms—Observers for Linear systems, Robust control,
Time-varying systems

I. INTRODUCTION

Tracking a predefined trajectory is a fundamental control
problem. Typical examples include space launchers in at-
mospheric ascent [1], industrial robots [2], aircraft in final
approach [3], self-steering cars [4], and systems with moving
loads such as telescopes or gearing wheels [5]. For a spe-
cific trajectory, the system dynamics are strictly time-varying.
Hence, a linearization with respect to the predefined trajectory
results in a finite horizon linear time-varying (LTV) system.
Ideally, the control system should make use of the known time
dependence.

Existing robust LTV output feedback synthesis approaches
originate from the time-invariant finite horizon H∞ problem
([6], [7]). Based on the min-max-principle, [8] proposes the
solution of two coupled Riccati Differential Equations (RDEs),
but without providing a computational approach. Another
approach is provided in [9]. It proposes the solution of two
coupled Riccati differential equations (RDEs) which is closely
related to the classical linear quadratic Gaussian control. Here,
the analysis condition only holds over an infinite horizon,
limiting its applicability. In [10], a game-theoretic approach
proposes the solution of two decoupled RDEs and the point-
wise evaluation of a spectral radius condition. A generalization
of this approach is applied to an LTV mixed sensitivity design
problem in [11]. Most recently, a controller synthesis for
uncertain LTV systems was proposed in [12]. It uses a classical
analysis / controller synthesis (“D-K”) iteration to extend the
results for uncertain linear time-invariant (LTI) [13] and linear
parameter-varying (LPV) [14] systems to the finite horizon
LTV case. The nominal controller calculation step applies a

particular case of the results in [7] and [10]. An alternative
approach uses lifting methods for uncertain LTV systems [15].

The present paper proposes a novel and highly structured
finite horizon LTV output feedback controller synthesis. It
uses two separate synthesis steps for observer and state
feedback gain that were recently proposed in [16] for linear
parameter-varying control. In the LTV case, these two steps
translate to solving a filter RDE and a state feedback RDE.
These RDEs are unidirectionally coupled and, thus, can be
solved consecutively. Section III establishes that this procedure
achieves the same closed-loop performance as the original
mixed sensitivity output feedback problem. This guarantee is
provided using a specific input weight in the mixed sensitivity
formulation based on a normalized coprime factorization [17].
Incorporating this weight in the interconnection resembles the
coprime factorization approach to the parameterization of all
stabilizing controllers [18]; the synthesis can be thought of
as optimizing over this set. The approach also bears resem-
blance with partial pole placement methods in H∞ design
[19]; the poles of the observer appear in the closed-loop.
Thus, the state feedback synthesis explicitly acknowledges the
existence of an observer in the loop and the robustness issues
associated with conventional observer-based state feedback
control [20] are avoided. The consecutive synthesis provides
a highly structured controller, e. g., allowing for an easy
incorporation of anti-windup compensation [21]. Furthermore,
the proposed approach requires only one RDE to be calculated
repeatedly and another RDE to be calculated once. Hence, it
is computationally more efficient than state of the art synthesis
methods requiring the repeated solution of two RDEs coupled
by a spectral radius condition. The latter can also only be
evaluated point-wise on a grid. Section IV covers the practical
implementation and evaluation of the synthesis method using
an industry-inspired example of a pitch tracker for a space
launcher in atmospheric ascent.

II. BACKGROUND

A finite horizon continuous LTV system P is defined as[
ẋ(t)

y(t)

]
=

[
A(t) B(t)

C(t) D(t)

] [
x(t)

u(t)

]
(1)



where x(t) ∈ Rnx denotes the state vector, u(t) ∈ Rnu the
input vector, and y(t) ∈ Rny the output vector. Its system
matrices are locally bounded continuous functions of time t
and compatible size-wise to the corresponding vectors, e.g.,
A(t) ∈ Rnx×nx . The explicit time dependence will be omitted
regularly to shorten the notation. The size of signals in this
paper is measured by the L2[0, T ] norm

‖u‖2[0,T ] =

[ ∫ T

0

u(t)Tu(t) dt

] 1
2

. (2)

In the course of the paper, the notation y = Pu is used to state
the input-output map defined by the state space representation
(1) for zero initial conditions.

The performance of such a finite horizon LTV input-output
map can be quantified by its finite horizon induced L2[0, T ]
norm

‖P‖[0,T ] := sup
u∈L2[0,T ],u 6=0,x(0)=0

‖y‖2[0,T ]

‖u‖2[0,T ]

, (3)

where u ∈ L2[0, T ] implies y ∈ L2[0, T ]. An upper bound on
‖P‖[0,T ] is provided by a generalization of the Bounded Real
Lemma (BRL) as stated in the following theorem.

Theorem 1 ([22]). Let P be an LTV system defined by (1).
Given x(0)=0, if there exists a continuous differentiable, sym-
metric positive semi-definite matrix function Q(t), t ∈ [0, T ]
such that Q(T ) = 0 and

Q̇ =−QA−ATQ+ CTC

− (QB + CTD)(DTD − γ2I)−1(DTC +QTQ),
(4)

then γ is an upper bound on the induced L2[0, T ] gain of P.

Proof. The proof is given in [22].

A. Induced L2[0, T ] Finite Horizon Synthesis

Based on Theorem 1, induced L2[0, T ] controller syntheses
were proposed in [7], [8], [10]. Consider an open-loop finite
horizon LTV system G with the state space representation

ẋ

z1

z2

e

 =


A B11 B12 B2

C11 D1111 D1112 0

C12 0 0 I

C2 0 I 0




x

w1

w2

u

 (5)

and an LTV output feedback controller K with the state space
representation:[

ξ̇

u

]
=

[
AK(t) BK(t)

CK(t) DK(t)

] [
ξ

e

]
. (6)

The signal e = r − y denotes the measured error fed to the
controller, u the control variable, and the input-output map
from [w1

w2
] to [ z1z2 ] specifies the performance requirements. The

special structure of the plant (5) is not restrictive and can be
achieved through loop-shifting and scalings, see, e.g., [11] for
an LTV generalization of the LTI results in [23] or [24]. The
synthesis objective is to provide a controller that minimizes

the induced L2[0, T ]-norm of the closed-loop interconnection
obtained by connecting the open-loop generalized plant (5)
with the controller (6). This connection is given by the lower
linear fractional transformation F(G,K) such that the syn-
thesis objective can be formulated as minK ‖F(G,K)‖2[0,T ].
The solution to the induced L2[0, T ]-norm controller synthesis
problem is stated in the next theorem.

Theorem 2 (Output Feedback Synthesis [10], [11]). Consider
an LTV system (5). There exists an output feedback controller
K as in (6) such that ‖F(G,K)‖2[0,T ] ≤ γ, with γ > 0 iff
the following three conditions hold.

1) There exists a continuously differentiable, symmetric
positive semi-definite matrix function X(t), t ∈ [0, T ]
such that X(T ) = 0 and

Ẋ =− (ÂT − CT11D111•SB
T
1 )TX

−X(Â−B1SD111•C11)

−X
[

1

γ2
B1SB

T
1 +B2B

T
2

]
X

− CT11(I −D111•SD
T
111•)C11,

(7)

where Â := A−B2C12, D111• := [D1111 D1112], and
S := (DT

111•D111• − γ2).
2) There exists a continuously differentiable, symmetric

positive semi-definite matrix function Y , t ∈ [0, T ] such
that Y (0) = 0 and

Ẏ = + (ÃT −BT11D
T
11•1S̃C̃)TY

+ Y (Ã− C̃T S̃DT
11•1B

T
11)

+ Y

[
1

γ2
C̃T S̃C̃ + C2C

T
2

]
Y

+B11(I −DT
11•1S̃D11•1)BT11,

(8)

where Ã := A − B12C2, D11•1 :=
[
D1111

0

]
, C̃ :=[

C11

C12

]
−
[
D1112

0

]
C2, and S̃ := (D11•1D

T
11•1 − γ2I)

3) X and Y satisfy the point-wise in time spectral radius
condition

ρ(X(t)Y (t)) < γ2 ∀t ∈ [0, T ]. (9)

Proof: The proof is provided in [10] and [11].
For a given positive γ, the RDEs associated with X and

Y are integrated backward and forward in time, respectively.
Both RDEs are coupled implicitly by the spectral radius
condition (9), which must hold for all times. However, it can
only be evaluated after the integration and violation renders
the RDE solutions obsolete. Only if all three conditions are
satisfied, a controller that achieves a closed-loop performance
of γ can be constructed in closed form from the solutions
and the plant matrices. The smallest feasible value of γ for
which all three conditions hold is calculated via bisection.
However, an unknown amount of computationally expensive
RDE solutions violating (9) are calculated in the process.
These do not provide a feasible controller and, thus, introduce
only computational overhead.



When the complete state vector is available for feedback,
the synthesis problem simplifies significantly. The following
Theorem presents a special case of the synthesis condition
stated in [7] and [25].

Theorem 3 (State-Feedback Synthesis). Consider an LTV
system (5) with e = x. There exists a controller F such
that ‖F(G,F)‖ ≤ γ iff there exists a (unique) symmetric
positive semi-definite matrix function X(t), t ∈ [0, T ] such
that X(T) = 0 and

Ẋ =− (ÂT − CT11D111•SB
T
1 )TX

−X(Â−B1SD111•C11)

−X
[

1

γ2
BT1 SB

T
1 +B2B

T
2

]
X

− CT11(I −D111•SD
T
111•)C11,

(10)

where Â = A − B2C12, D111• := [D1111 D1112], and
S = (DT

111•D111• − γ2I). The time-dependent state feedback
gain F can be calculated from the open-loop plant matrices
and the solution X as

F = −BT2 X − C12. (11)

Proof: The proof is provided in [7] and [25].
In contrast to the output feedback synthesis problem, the

controller only depends on the solution of a single RDE.
Furthermore, no undesirable auxiliary condition must be eval-
uated.

B. Coprime Factoriztion

The normalized LTV coprime factorization [17] plays a key
role for the results derived in this paper. It is defined in the
following Theorem 4.

Theorem 4 (Normalized Coprime Factorization [17]). Con-
sider an LTV system (1). There exists a normalized left coprime
factorization P = M−1N if there exists a continuously
differentiable, symmetric positive semi-definite matrix function
Z(t) , t ∈ [0, T ] such that Z(0) = 0 and

Ż =ĀZ + ZĀT − ZCSTCTZ +BSBT , (12)

with Ā = (A − BS−1DTC), and S = I + DTD. A state
space realization for [M N] is:[

µ̇

ν

]
=

[
A+LC L B + LD

R−0.5C R−0.5 R−0.5D

]  µ

y

−u

 , (13)

with
L = −(BDT + ZCT )R−1. (14)

and R = I +DDT .

Proof: The proof is provided in [17].
The normalized left coprime factorization P = M−1 N

provides a kernel representation of all stable input-output pairs
of a system P and has the property that C = [M N] is
co-isometric, see [17]. This property implies ‖GC‖2[0,T ] =

‖G‖2[0,T ] for any finite time LTV system G. In other words,
interconnecting a dynamic system G in series with a co-
isometric dynamic system C does not change its induced
L2[0, T ]-norm. Note that this does also imply ‖C‖2[0,T ] = 1.

III. OBSERVER-BASED MIXED SENSITIVITY CONTROL

Let [Pd Pu] denote a finite horizon LTV model of a plant
with control input u and disturbance input d and a state space
realization[

ẋ

y

]
=

[
A(t) Bd(t) Bu(t)

C(t) 0 0

]  x

d

u

 . (15)

The assumption that the plant model (15) is strictly proper
is only made to simplify the notation and the following
results can be generalized to non-strictly proper plants at the
cost of more complicated expressions. An unweighted mixed
sensitivity four-block formulation for the plant model (15) is
pictured in Fig. 1. The performance outputs corresponding
to the generalized plant (5) are thus z1 = e and z2 = u.
The performance inputs are w1 = d and w2 = r. The

[Pd Pu]
K

r de u

−

Fig. 1: four-block mixed sensitivity problem.

corresponding closed-loop input-output map is[
e

u

]
=

[
−SPd S

−KSPd KS

] [
d

r

]
. (16)

In (16), S = (I + PuK)−1 denotes the output sensitivity
function [25]. Removing the controller K from the intercon-
nection in Fig. 1 results in an open-loop generalized plant
with a structure equal to (5). This structure allows for the
synthesis of a dynamic output feedback LTV controller as
described in Theorem 2. However, it comes with a significant
computational overhead due to “unnecessary” solutions of
RDE (7) and (8) which violate the coupling condition (9).
The remainder of this section deals with the derivation of an
equivalent synthesis procedure that avoids the spectral radius
condition.

Consider an observer-based controller K with state space
representation[

ξ̇

ξ

]
=

[
A+ LC L Bu

I 0 0

]  ξ

e

u

 (17a)

u = F (t) ξ. (17b)

Equation (17a) represents the observer O with the output
injection gain L(t). Equation (17b) represents the state feed-
back controller F with the state feedback gain F (t). For this



controller structure, [16] provides an equivalent representation
of the mixed sensitivity problem (16) based on the identity[

−SPd S

−KSPd KS

]
︸ ︷︷ ︸

Fig. 1

=

[
S

KS

]
M−1

︸ ︷︷ ︸
Fig. 2b

[
−Nd M

]
︸ ︷︷ ︸

Fig. 2a

(18)

where [M Nd] is a left coprime factorization of Pd. The
identity (18) divides the mixed sensitivity problem from Fig. 1
into separate observer and state feedback synthesis problems
as pictured in Fig. 2.

[Pd Pu]

[M Nu]

FO
ξe u

r d
y

−

ê

(a) Observer design problem (independent of F)

M−1
ê

PuFO
ξ

e u

δ
−

(b) State feedback design problem (with given observer O)

Fig. 2: Rearranged mixed sensitivity four-block problem with
observer / state feedback separation.

Specifically, [16] shows that the observer design problem of
Fig. 2a is independent of the choice of F. In fact, obtaining
a controller only requires the calculation of a normalized
coprime factorization in accordance with Theorem 4. While
the observer design affects the achievable closed-loop perfor-
mance γ, obtaining the observer is independent of γ. As such,
the observer synthesis only requires solving a single RDE
once. Reference [16] further shows that there is a one-on-one
correspondence between the normalized coprime factorization
and the observer as they are both completely parameterized by
the same output injection gain L. Consequently, O is known
in Fig. 2b and the available feedback signal is the state vector
of the observer. The observer state is further shown to be
identical to the complete state vector of the generalized plant,
see [16]. As such, the design problem pictured in Fig. 2b can
be solved as a state feedback synthesis in accordance with
Theorem 3. Doing so requires the solution of a second RDE
which depends on the solution of the first RDE. Thus, both
problems are only coupled in one direction and can be solved
in sequence. Therefore, the bisection over γ only requires
the iterative solution of one RDE. Furthermore, each fully
solved RDE provides a feasible controller. This renders the
proposed output feedback synthesis numerically more efficient
than state-of-the-art finite horizon synthesis approaches relying
on derivatives of Theorem 2 ( [4], [7], [10]).

From the co-isometric property of the LTV left coprime
factorization [Nd M] it further follows that∥∥∥∥∥

[
S

KS

]
M−1

[
−Nd M

]∥∥∥∥∥ =

∥∥∥∥∥
[

S

KS

]
M−1

∥∥∥∥∥ . (19)

Hence, the L2[0, T ] norm of the state feedback problem with
the given observer (Fig. 2b) is equal to the L2[0, T ] norm of
the original four block problem (Fig. 1). In other words, the
sequential synthesis achieves the exact same guaranteed mixed
sensitivity performance as the conventional output feedback
synthesis. The following Theorem 5 formalizes this result.

Theorem 5 (Observer-Based Controller Synthesis). Consider
an LTV system (5). There exists an observer-based controller
K defined by (17a) and (17b) such that ‖F(G,K)‖ ≤ γ iff
the following two conditions hold.

1) There exists a continuously differentiable, symmetric
positive semi-definite matrix function Z(t), t ∈ [0, T ]
such that Z(0) = 0 and

Ż = AZ + ZAT − ZCTCZ +BdB
T
d . (20)

2) There exists a continuously differentiable, symmetric
positive semi-definite matrix function X(t), t ∈ [0, T ]
such that X(T ) = 0 and

Ẋ = −ĀTX −XĀ+XT̄X + CT ŪC, (21)

with Ā = A− 1
1−γ2ZC

T , T̄ = 1
1−γ2ZC

TCZ+BuB
T
u ,

and Ū = γ2

1−γ2C
TC.

Proof. Limited space only allows a sketch of the proof. In
essence, solvability of the RDE (20) establishes the existence
of a normalized left coprime factorization as given in The-
orem 4 and yields the output injection gain L = −Z CT .
Similarly, solvability of the RDE (21) establishes the existence
of a state feedback gain F = −BTu X for the generalized
plant shown in Fig. 2b. As previously stated, this generalized
plant includes the observer and represents the exact same
performance specifications as Fig. 1. Finally, the co-isometric
property of the LTV coprime factorization guarantees that both
synthesis problems yield the exact same induced L2[0, T ]-
norms.

The line of argument is identical to the proof in [16] for
LPV systems and the reader is referred there for a discussion of
the general case, including weights. The noteworthy difference
is that no normalized coprime factorization exists for LPV
systems. Instead, a contractive coprime factorization needs to
be used and only an upper bound on the mixed sensitivity
problem can be guaranteed. On the contrary, the equality
condition in (19) establishes a stronger result for LTV systems
than the previous results for LPV systems.

IV. CONTROL DESIGN EXAMPLE: SPACE LAUNCHER

The control design for a space launcher in atmospheric
ascent demonstrates the effectiveness of the approach. A
representative LTV model for this scenario is taken from [26].



It represents the first stage rigid body pitch dynamics of the
Vanguard space launcher along a gravity turn trajectory. To
include the effects of external wind disturbances, the model
is extended with an additional input δα̇ representing the
additional wind-induced angle of attack. The corresponding
LTV model isα̇θ̇

q̇

=


Zα
mV

−g sin Θ
V 1

0 0 1
Mα

Jyy
0

Mq

Jyy


αθ
q

+


T
mV 1

0 0
Tξ
Jyy

0


[
δµ

δα̇

]
(22)

The states, which are also the system’s output, are the angle of
attack α, the pitch angle θ and the pitch rate q. They represent
deviation values from the time-varying reference trajectory.
The input δµ is the corrective gimbal input rotating the thrust
vector for attitude control. The functions Zα, Mα and Mq

denote the aerodynamic stability derivatives. Their values
along the trajectory are provided in [26] together with explicit
expressions for mass m and pitch inertia Jyy in dependence on
t. The variables V and Θ represent the reference velocity and
pitch angle of the launcher along the trajectory. The values
are given in [26] for the time interval t ∈ [11.35, 146.35]
with a step size of 2.7 s. The thrust T , the distance ξ of the
center of gravity from the gimbal, as well as the gravitational
acceleration g are constants. However, all coefficients in (22)
are time-varying. The control design considers a time horizon
from 15 s to 100 s after lift-off; the start and end point of
the gravity turn maneuver. Fig. 3 shows the reference pitch
angle value Θ along this trajectory segment as well as the
value µα = Mα

Jyy
. The magnitude of µα is a measure for pitch

stability. Larger values of µ indicate faster unstable dynamics
and, thus, a more difficult control problem.
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0
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α
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Θ
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eg
]

Fig. 3: Reference pitch angle Θ and pitch stiffness µα along
the trajectory.

For the mixed sensitivity control design, a weighting struc-
ture is required to impose meaningful closed loop require-
ments, such as tracking and limited control authority. A
suitable weighting structure is provided in [27]. It is depicted
in Fig. 4 and uses weights We, Wu, Ve, Vu, and Vd. It
represents the weighted closed loop[

z1

z2

]
=

[
WeV

−1
e 0

0 WuV
−1
u

][
−SPd S

−KSPd KS

][
Vd 0

0 Ve

][
w1

w2

]
(23)

[Pd Pu]

WuV
−1
u

K

WeV
−1
eVe Vd

w2 w1z1 z2

e u
−

Fig. 4: Weighted four-block mixed sensitivity problem.

or equivalently in a separated form (18) becomes[
z1

z2

]
=

[
WeV

−1
e 0

0 WuV
−1
u

][
S

KS

]
VeM

−1

︸ ︷︷ ︸
state feedback

[
−Nd M

]
︸ ︷︷ ︸

observer

[
w1

w2

]
, (24)

where M−1Nd = V −1
e PdVd. A detailed derivation is pro-

vided in [16].
Guidelines for the selection of the weights are formulated

in [27]. The weight We determines the requirements on the
sensitivity S and disturbance sensitivity SPd. To achieve
tracking in θ at a closed-loop bandwidth sufficiently above the
frequency of the unstable dynamics (1.14 rad/s at 50 s into the
ascent), We is selected with integral behavior in the θ channel
up to 10 rad/s. Further, a magnitude of 0.5 is selected at high
frequencies in the θ channel and at all frequencies in the α and
q channels to limit the peak sensitivity for good robustness.
The weighting filter Wu determines requirements on the
control sensitivity KS, corresponding to actuator limitations,
noise rejection, and robustness. The actuator for the launcher is
a gimbal whose dynamics can be approximated by a first order
lag with corner frequency 50 rad/s. To keep actuator activity
sufficiently below this frequency, Wu is selected with unit
magnitude up to 25 rad/s and differentiating behavior above
25 rad/s. The static weight Ve balances the three output errors.
It is chosen as 0.5 deg for θ, 0.5 deg/s for q, and 1 deg for α. To
specify the available control effort for the previously selected
errors, the weight Vu is used. Based on typical deflection
limits of thrust vector control systems, its value is chosen
as 5 deg. The ratio Ve/Vd determines the trade-off between
tracking performance and disturbance rejection. A value of
Vd = 0.2 deg/s is chosen for the current example.

Using these weights, the observer synthesis and calculation
of the output injection gain L can be performed. It requires
to solve a scaled version of the RDE (20), which can be
readily derived following the explanations in [16]. The RDE is
solved using the Matlab solver ODE15s [28], suitable for stiff
differential equations. The solution takes 0.09 s on a standard
desktop PC.

Next, the state feedback synthesis is conducted, where L
from the second step defines the input weight M−1. The
calculated feedback gain minimizes the L2[0, T ] norm of
the state feedback problem in (23) and, thus, for the output
feedback problem as a whole. Again, ODE15s in Matlab is
used to solve the RDE. A bisection calculates the minimal



feasible γ as γ = 2.77 and takes 4.31 s. Thus, the complete
controller synthesis requires approximately 4.4 s.

Finally, the finite horizon LTV controller is formed from the
feasible solutions of the RDEs, the plant state space matrices
and the weighting filters as described in [16].

An LTV simulation of the resulting closed loop model
including the gimbal dynamics is conducted in Matlab. The
closed loop is exited by an external wind disturbance. The
wind disturbance consists of a white Gaussian noise signal,
with a sampling time of 0.5 s and variance 1, and a static mean
value. It induces an α disturbance on the launcher shown in
Fig. 6. The control signal counteracts the disturbance keeping
the deviation θ close to zero for the whole ascent. The required
gimbal deflection remains below the saturation limit. Thus,
the controller displays excellent disturbance rejection keeping
the θ disturbance close to zero along the complete trajectory.
It is particularly noteworthy that no variation in performance
is visible, although the unstable dynamics of the launcher
vary significantly over time (see Fig. 3). In conclusion, the
proposed control design approach proofs suitable for a highly
time-varying problem.
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Fig. 5: Results of the LTV simulation: α disturbance ( ),
θ deviation ( ), control signal ( ).

V. CONCLUSION

The paper presents a novel observer-based output feedback
synthesis approach for finite horizon linear time-varying sys-
tems. It separates the synthesis into a sequential observer
synthesis and state feedback synthesis step. Thus,the additional
coupling conidition present in state-of-the-art approaches is
avoided, reducing the computational overhead. Furthermore,
only one of the corresponding RDEs depends on the perfor-
mance index γ which significantly reduces RDE evaluations
and saves computational effort. The feasibility of the synthesis
machinery is demonstrated using a pitch tracker design for a
space launcher.

REFERENCES
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