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Abstract— This paper presents a novel approach to ro-
bustness analysis based on quadratic performance metrics of
uncertain time-varying systems. The considered time-varying
systems are assumed to be linear and defined over a finite time
horizon. The uncertainties are described in the form of real-
valued random variables with a known probability distribution.
The quadratic performance problem for this class of systems
can be posed as a parametric Riccati differential equation
(RDE). A new approach based on polynomial chaos expansion is
proposed that can approximately solve the resulting parametric
RDE and, thus, provide an approximation of the quadratic
performance. Moreover, it is shown that for a zeroth order
expansion this approximation is in fact a lower bound to the
actual quadratic performance. The effectiveness of the approach
is demonstrated on the example of a worst-case performance
analysis of a space launcher during its atmospheric ascent.

I. INTRODUCTION

The present paper develops a theoretical and computa-
tional approach for the performance analysis of parametric
uncertain linear time-varying (LTV) systems over a finite
horizon. A wide range of engineering applications where
the primary incentive is tracking of a predefined trajectory
fall in this category, e.g., robotic systems [1], space launch
vehicles [2], or aircraft [3]. Of common interest to assess
the performance of such systems are quadratic metrics, e.g.,
in form of the finite-horizon induced L2-norm. In a nominal
setting, i.e., without uncertainties, these metrics have well-
defined solutions based on Riccati differential equations
(RDEs), see Section II.

For uncertain time-varying systems the nominal results
can be extended resulting in performance conditions based
on the solution of parametric RDEs, i.e., RDEs that explic-
itly depend on the uncertainty. Existing solutions to tackle
this problem are mostly based on finding upper bounds
on the quadratic performance with roots in the integral
quadratic constraint framework, see [4], [5]. These methods
are computationally expensive either relying on a nonlinear
optimization [4] or an iterative solving of a RDE and a
gridded differential linear matrix inequality [5]. In addition,
they only provide upper bounds with unknown conservatism
and can only deal with deterministic uncertainties.

If the nature of the uncertainty affecting the system is
probabilistic, as in this paper, techniques exploiting concepts
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from probability theory become inevitable. Early results in
the field of probabilistic robust control focused on Monte
Carlo (MC) sampling techniques [6]. More recently, the
theory of polynomial chaos has attracted a significant amount
of interest. Originating from the work of Norbert Wiener
[7], polynomial chaos is built on mathematics similar to
Fourier series expansions for periodic time signals of finite
energy. Example applications within the field of probabilistic
robustness include linear quadratic regulation [8], [9], linear
parameter-varying [10] and time-varying systems [11], or
model predictive control [12].

The main contribution of this paper is to apply the theory
of polynomial chaos expansions (PCEs) in order to quantify
the quadratic performance of uncertain LTV systems. This
is achieved by approximately solving the random parameter-
dependent RDE via Galerkin projection on polynomial basis
functions in Section IV. The approach allows computa-
tionally efficient performance analysis of stochastic uncer-
tain finite-horizon LTV systems, as is demonstrated on a
worst-case analysis of an uncertain space launcher during
atmospheric ascent in Section VI. A second contribution
is the study of the zeroth order PCE as a special case of
the proposed approach. It can be shown that by using a
zeroth order expansion, the method not only approximates
the parameter-dependent RDE but in fact provides a lower
bound on the quadratic performance metric, see Section V.

II. QUADRATIC PERFORMANCE

A. Nominal LTV Systems

Consider a nominal (certain) LTV system G defined on
t ∈ [0, T ]

ẋ(t) = A(t)x(t) +B(t)w(t)

y(t) = C(t)x(t) +D(t)w(t)
(1)

with state vector x(t) ∈ Rnx , input w(t) ∈ Rnw , output
y(t) ∈ Rny , and finite horizon T < ∞. Each A(t), B(t),
C(t), and D(t) are piecewise-continuous, real-valued, and
bounded matrix functions of time and appropriate dimension.
It is assumed that all signals in (1) lie in the Hilbert space
L2[0, T ] defined by

L2[0, T ] :=
{
f : [0,T ] 7→Rn

∣∣f measurable and ‖f‖[0,T ]<∞
}

(2)
with inner product 〈f, g〉[0,T ] =

∫ T
0
fT (t)g(t) dt and induced

norm ‖f‖[0,T ] =
√
〈f, f〉[0,T ]. Hereinafter, function argu-

ments will be omitted for notational convenience, when clear
from the context.



Among the various system theoretic criteria available for
measuring the nominal performance of (1), this paper focuses
on the quadratic index J : L2[0, T ] 7→ R

J(w) = xT (T )Fx(T )+

∫ T

0

[
x(t)
w(t)

]T[
Q(t) S(t)
ST (t) R(t)

][
x(t)
w(t)

]
dt

(3)
subject to (1) with x(0) = 0. Therein, Q = QT : [0, T ] 7→
Rnx×nx , R = RT : [0, T ] 7→ Rnw×nw , S : [0, T ] 7→
Rnx×nw are piecewise-continuous (bounded) matrix func-
tions and F = FT ∈ Rnx×nx . For instance, setting Q(t) =
CT (t)C(t), S(t) = CT (t)D(t), R(t) = DT (t)D(t) −
γ2Inw , and F = 0, the finite-horizon induced L2-gain of G

‖G‖[0,T ] =sup

{ ‖y‖[0,T ]

‖w‖[0,T ]

∣∣∣∣ w∈L2[0, T ]\{0}, x(0)=0

}
(4)

can be bounded by ‖G‖[0,T ] ≤ γ if and only if J(w) ≤ 0
∀w ∈ L2[0, T ], see [5].

As in many robust and optimal control problems, eval-
uating the worst-case J(w) essentially breaks down to the
solution of a Riccati differential equation. The relationship
between quadratic performance (3) and RDEs is stated in the
following theorem, taken from [5].

Theorem 1 (Bounded Real Lemma [5]). Let the quadratic
cost J(w) be parametrized by given Q(t), S(t), R(t), and
F ; with R(t) ≺ 0 ∀t ∈ [0, T ]. The solution X(t) of the RDE

Ẋ=−ATX−XA−Q+(XB+S)R−1(XB+S)T

X(T ) = F
(5)

exists on [0, T ] if and only if ∃ε > 0 : J(w) ≤ −ε‖w‖2[0,T ]

∀w ∈ L2[0, T ].

B. Uncertain LTV Systems

This paper focuses on uncertain LTV systems, i.e., systems
where the state-space matrices A, B, C, and D not only
depend on time t but also on parametric uncertainty δ. The
considered system has the following form

ẋ(t, δ) = A(t, δ)x(t, δ) +B(t, δ)w(t)

y(t, δ) = C(t, δ)x(t, δ) +D(t, δ)w(t)
(6)

where δ is a Rnδ -valued random vector containing nδ inde-
pendent random variables with sample space Ωnδ = Ω1×...×
Ωnδ and bounded variance. This type of uncertainty arises
frequently in the modeling of various physical processes.
Assuming deterministic w(t) ∈ L2[0, T ], this paper views
the system response as a stochastic process, i.e., functions
x : [0, T ] × Ωnδ 7→ Rnx and y : [0, T ] × Ωnδ 7→ Rny , such
that for any t ∈ [0, T ] each x(t, ·) and y(t, ·) are random
vectors.

For each realization of δ, the quadratic performance of an
uncertain LTV system can be measured by generalizing (3)
to J : L2[0, T ]× Ωnδ 7→ R

J(w, δ) = xT (T, δ)F (δ)x(T, δ) +∫ T

0

[
x(t, δ)
w(t)

]T [
Q(t, δ) S(t, δ)
ST (t, δ) R(t, δ)

] [
x(t, δ)
w(t)

]
dt

(7)

subject to (6) with x(0) = 0. Therein, Q, S, R, and F are
mappings from [0, T ]×Ωnδ to a real matrix of corresponding
dimension, e.g., S : [0, T ]×Ωnδ 7→ Rnx×nw . Define E(t, δ)
by

E :=

[
Q− SR−1ST AT − SR−1BT

A−BR−1ST −BR−1BT

]
(8)

where, generally, all matrix functions have the same argu-
ments. This allows stating a robust analog of Theorem 1.

Theorem 2 (Robust Bounded Real Lemma). Let the generic
quadratic cost J(w, δ) be specified by Q(t, δ), S(t, δ),
R(t, δ), and F (δ); with R(t, δ) ≺ 0 for all [0, T ] × Ωnδ .
There exists an ε > 0 such that J(w, δ) ≤ −ε‖w‖2[0,T ] for
all w ∈ L2[0, T ] and realizations of δ if and only if the
solution of the random parameter-dependent RDE

Ẋ(t, δ) = −
[
Inx

X(t, δ)

]T
E(t, δ)

[
Inx

X(t, δ)

]
X(T, δ) = F (δ)

(9)

exists for t ∈ [0, T ] and all realizations of δ.

Generally, nominal quadratic performance according to
Theorem 1 is straightforward to evaluate by numerical in-
tegration of the RDE (5). However, certifying robust per-
formance as in Theorem 2 is computationally much more
challenging, since existence of the solution to (9) needs
to be checked for all values of δ. To the best of the
authors’ knowledge, only approximate techniques exist to
solve this problem. Typical analysis conditions within robust
control theory often involve some conservatism, e.g., due
to overbounding of the uncertainty by integral quadratic
constraints [4], [5]. The chief idea within this paper is to
apply the theory of polynomial chaos to the random RDE
(9), in order to approximate the quadratic performance of
uncertain LTV systems.

III. MATHEMATICAL BACKGROUND

A. Polynomial Chaos Expansions

In this paper, each entry of δ is considered as a R-
valued random variable, i.e., a measurable function f with
probability density function (pdf) ρ and sample space Ω.
Herein, f is supposed to be square integrable, i.e., belong to
the Hilbert function space

L2
ρ(Ω):=

{
f :Ω 7→R

∣∣∣ f measurable and ‖f‖L2
ρ
<∞

}
(10)

with inner product

〈f, g〉L2
ρ

=

∫
Ω

f(ω)g(ω)ρ(ω) dω = Eρ[fg] (11)

and induced norm ‖f‖L2
ρ

=
√
〈f, f〉L2

ρ
. In order to highlight

the association with orthogonality, the expectation Eρ[·] w.r.t.
ρ is written as 〈·〉 when appropriate, e.g., 〈f, g〉L2

ρ
= 〈fg〉.

We shall further consider the Sobolev space

Hk
ρ (Ω) :=

{
f ∈ L2

ρ(Ω)
∣∣∣ ∂jf
∂ωj

∈ L2
ρ(Ω) ∀j = 0, ..., k

}
(12)



equipped with inner product 〈f, g〉Hkρ =
∑k
j=0〈

∂jf
∂ωj ,

∂jg
∂ωj 〉L2

ρ

and norm ‖f‖Hkρ =
√
〈f, f〉Hkρ .

The idea of generalized polynomial chaos (gPC) expan-
sions [13] is grounded in the observation that any random
process f ∈ L2

ρ(Ω) can be developed as an orthogonal
generalized Fourier series

f(ω) =

∞∑
α=0

fαψα(ω) (13)

with deterministic expansion coefficients

fα =
〈f, ψα〉
〈ψα, ψα〉

=

∫
Ω
f(ω)ψα(ω)ρ(ω) dω∫
Ω
ψ2
α(ω)ρ(ω) dω

. (14)

Assuming ρ(ω) is continuous, suitable orthogonal basis poly-
nomials {ψα}∞α=0 of L2

ρ(Ω) can be constructed for arbitrary
distributions of δ [14]. Henceforth, Greek characters are used
in order to index within the basis for L2

ρ(Ω), whereas Latin
characters are used as spatial indices, e.g., for the entries of
matrices or vectors. The orthogonal basis polynomials ψα
fulfill

ψ0 = 1

〈ψα, ψβ〉 = δαβEρ[ψ2
α] ∀α, β ∈ N0

(15)

where δαβ is the Kronecker delta.
This paper studies δ as a Rnδ -valued random vector

containing nδ independent random variables with joint pdf
ρ(ω) =

∏nδ
i=1 ρi(ωi) and sample space Ωnδ = Ω1×...×Ωnδ .

In this multivariate setting, an orthogonal basis for L2
ρ(Ω

nδ)
is obtained simply by taking products of the respective
univariate orthogonal polynomials [15], [16]

Pnδd = span
{
ψα(ω) =

nδ∏
i=1

ψαi(ωi)
∣∣∣ |α| = nδ∑

i=1

αi ≤ d
}
.

(16)
Therein, α is a nδ-dimensional multi-index α ∈ Nnδ0 . For
simplicity, the space of polynomials Pnδd with maximum
total degree d is considered. It is remarked that it is also
possible to construct a polynomial basis with different poly-
nomial degrees, both spatially and w.r.t. δi(ωi) [14].

According to the Cameron-Martin theorem [17], the con-
vergence of (13) holds in the mean-square sense, i.e., w.r.t.
‖·‖L2

ρ
. Theoretically, polynomial chaos expansions can show

superior convergence compared to Monte Carlo based meth-
ods [18]. The related conditions and issues are discussed
briefly in the subsequent section.

B. Spectral Convergence

An important property of expansions by orthogonal poly-
nomials is that the quality of the function approximation
improves exponentially as the stochastic regularity (i.e.
smoothness) of the random process to be approximated
increases [16]. This property, widely referred to as spectral
convergence, is stated formally in the next theorem. It is
shown here for the family of Legendre polynomials, i.e., the
orthogonal polynomials for the uniform measure. A similar
result can be proven for classical orthogonal polynomials,

i.e., for the beta, gamma, and Gaussian distribution, see e.g.
[15] or [16].

Theorem 3 (Spectral convergence of Legendre polynomial
expansions). For all f ∈ Hk

ρ (Ωnδ) depending on nδ inde-
pendent uniformly distributed random variables, there exists
a constant Cπ ≥ 0 such that

‖f−Πnδ
d f‖L2

ρ
:=
∥∥∥f−∑

|α|≤d

〈f, ψα〉
〈ψ2
α〉

ψα

∥∥∥
L2
ρ

≤Cπnδd−k‖f‖Hkρ .

(17)

Thus, the smoother the random process, the better the
convergence rate of the PCE in mean square. However,
discontinuities and poor regularity may result in convergence
issues. A classical example is Gibbs’ Phenomenon [16].
Luckily, within the scope of this paper, solutions of Riccati
differential equations exhibit rather appealing smoothness
and monotonicity properties w.r.t. the initial data and co-
efficients.

C. Riccati Differential Equations

Solutions of Riccati differential equations depend mono-
tonically on the initial condition and the coefficient ma-
trix (8). For details, see e.g., the comparison theorem proven
in [19], Chapter 4. The comparison theorem can be used to
prove in an elegant manner existence conditions for hermitian
Riccati differential equations and also for generalized, per-
turbed, and coupled RDEs, see [19]. We will use a similar
idea in Section V. In addition to monotonicity properties,
solutions of RDEs are also smooth differentiable functions
of the data, see [20]. These smoothness and monotonicity
properties of solutions of RDEs provide optimism for the ap-
plication of polynomial chaos expansions to approximate (9).

IV. STOCHASTIC GALERKIN PROJECTION OF RANDOM
RDES

Assume a unique solution X(t, δ) to the random
parameter-dependent RDE (9) exists for all realizations of
δ and t ∈ [0, T ]. Stochastic Galerkin projection (SGP) ap-
proximates the solution X(t, δ) by projecting the parameter-
dependent RDE on a finite number of polynomial basis
functions ψα. Thus, for a given maximum total polyno-
mial degree d, the solution is sought for within the finite-
dimensional space (16)

∀ψα ∈ Pnδd :

〈Ẏ (t, ·), ψα〉 = −
〈[

Inx
Y (t, ·)

]T
E(t, ·)

[
Inx
Y (t, ·)

]
, ψα

〉
〈Y (T, ·), ψα〉 = 〈F, ψα〉.

(18)

where the inner product 〈·, ·〉L2
ρ

defined via the expectation
(11) is evaluated component-wise. For every fixed time
instant t ∈ [0, T ], the solution is developed by a finite version
of (13), i.e., the truncated series expansion

Y (t, δ) =
∑
|α|≤d

Yα(t)ψα(δ). (19)



Due to orthogonality of the basis, see (15), plugging (19)
into (18) yields

∀|α| ≤ d :

Ẏα(t)=− 1

〈ψ2
α〉

〈
ψα,

[
Inx∑

|β|≤dYβψβ

]T
E(t, ·)

[
Inx∑
|ξ|≤dYξψξ

]〉
Yα(T ) =

〈F,ψα〉
〈ψ2
α〉

.

(20)

Denoting the number of basis polynomials spanning Pnδd
by nψ + 1, notice that (20) is a coupled system of nψ +
1 deterministic RDEs. This system has the same form as
the original differential equation (9) evaluated for specific
realizations of δ. To see this, denote by Eij , i, j = 1, 2, the
Rnx,nx -valued blocks of E given in (8), i.e.,

E =

[
E11 E12

E21 E22

]
. (21)

Define further the symmetric R(nψ+2)nx×(nψ+2)nx -valued
matrix E(t, δ) by

E(t, δ) :=


E11 E12ψ0 . . . E12ψnψ
E21ψ0 E22ψ0ψ0 . . . E22ψ0ψnψ

...
...

. . .
...

E21ψnψ E22ψnψψ0 . . . E22ψnψψnψ

 .
(22)

Denoting the Hilbert space projection of (22) on ψα by

Eα(t) =
1

〈ψ2
α〉
〈ψα, E(t, ·)〉 (23)

enables to write Ẏα(t) in (20) as

Ẏα(t) = −


Inx
Y0(t)

...
Ynψ (t)


T

Eα(t)


Inx
Y0(t)

...
Ynψ (t)

 ∀|α| ≤ d. (24)

Thus, the computationally intractable, infinite-dimensional
RDE (9) is reduced to nψ + 1 coupled RDEs (24). The
approximate solution Y (t, δ) can then be obtained simply
by numerical integration.

Note that the expansion (19) assumes independence of
the deterministic and stochastic function spaces L2[0, T ] and
L2
ρ(Ω

nδ). This implies that the same deterministic space is
valid for all realizations of δ [18], i.e., existence of a unique
solution to the RDE for all t ∈ [0, T ].

Often, analyzing robust quadratic performance of an un-
certain system is converted to finding the smallest perfor-
mance index γ such that the solution of the RDE (9) exists.
An example is the upper bound calculation of the finite-
horizon induced L2-norm as stated in (4). Typically, this
involves a bisection over γ, where for small enough γ the
RDE (9) exhibits finite escape time, i.e., the solution ceases
to exist for some t < T and realization of δ. It has to
be emphasized that the Galerkin approximation may still
provide a bounded solution when the exact solution actually
grows unbounded. Intuitively, the Galerkin projection can

be interpreted as a method of mean weighted residuals [16],
implying that the solution to (9) need only exist on the finite-
dimensional test space Pnδd . Consequently, the presented
Galerkin approximation approach can underestimate the ac-
tual robust performance index γ of the uncertain system.

V. ZEROTH ORDER POLYNOMIAL CHAOS EXPANSION

Within this section, it is proven that existence of the
solution to (9) for all t ∈ [0, T ] and realizations of δ
implies existence of the d = 0 Galerkin projection (20).
This has important implications for the computation of the
performance index γ. Since an existence of a finite exact
performance index also implies the existence of a finite
approximate d = 0 index but not conversely, the γ obtained
by the zeroth order PCE is a lower bound to the exact γ. The
remainder of the section provides the proof to this statement.

For a polynomial degree d = 0, the expansion (19) consists
of only one term (such that nψ + 1 = 1). The stochastic
Galerkin projection (20) is therefore

Ẏ0(t) = −
[
Inx
Y0(t)

]T
Eρ
[
E(t, ·)

] [ Inx
Y0(t)

]
Y0(T ) = Eρ

[
F
]
.

(25)

Note that, in contrast to the scalar case, the expectation
of a vector or matrix-valued nonlinear functional A(δ) of
a random vector δ is not necessarily a realization of A.
However, the spectrum of Eρ[A] can still be bounded by
the spectrum of realizations of A(δ). This will be the main
idea for the proof of boundedness within this section. Let
spect(A) denote the spectrum of a symmetric matrix A =
AT , with minimum and maximum eigenvalue λ(A) and
λ̄(A). This allows to state the following intermediate result.

Lemma 1. For a symmetric random matrix A(δ) = AT (δ),
it holds

spect
(
Eρ[A]

)
⊂
[

min
δ
λ
(
A(δ)

)
, max

δ
λ̄
(
A(δ)

)]
. (26)

Proof. See the proof of Theorem 2 in [21].

Thus, being able to bound the spectrum of Eρ
[
E(t, ·)

]
in (25), we can prove boundedness of the d = 0 Galerkin
approximation, provided the actual solution exists.

Theorem 4. Let E(t, δ) be specified by (8), with R(t, δ) ≺ 0
for all realizations of δ and t ∈ [0, T ]. If the solution X(t, δ)
to the RDE (9) exists for all t ∈ [0, T ] and realizations of
δ, then the degree d = 0 approximation Y0(t) obtained via
SGP (25) remains bounded as well and does not blow up,
i.e., show finite escape time.

Proof. Substituting τ := T − t, define the matrix

VX(τ, δ) :=

[
Inx

X(τ, δ)

]
. (27)

The RDE (9) can thus be written backwards in time

∂

∂τ
VX(τ, δ) =

[
0

V TX (τ, δ)E(T−τ, δ)VX(τ, δ)

]
VX(0, δ) =

[
Inx
F (δ)

]
.

(28)



Similarly, with

VY (τ) :=

[
Inx
Y0(τ)

]
(29)

RDE (25) can be rewritten

∂

∂τ
VY (τ) =

[
0

V TY (τ)Eρ[E(T−τ, ·)]VY (τ)

]
VY (0) =

[
Inx

Eρ[F ]

]
.

(30)

Denote by σ̄(·) the maximum singular value of a matrix.
Note that for symmetric matrices, σi(·) = |λi(·)|. Due to
Lemma 1, σ̄(Eρ[F ]) ≤ maxδ σ̄

(
F (δ)

)
. Hence, the initial

conditions can be bounded by

σ̄
(
VY (0)

)
≤ max

δ
σ̄
(
VX(0, δ)

)
. (31)

Note further that again due to Lemma 1

σ̄
(
Eρ[E(τ, ·)]

)
≤ max

δ
σ̄
(
E(τ, δ)

)
∀τ ∈ [0, T ]. (32)

The main idea of the proof is now to adapt well-known
comparison or monotonicity results of Riccati equation so-
lutions (see e.g. [19]) to bounds based on the maximum
singular value. Using σ̄(AB) ≤ σ̄(A)σ̄(B), (30) can be
bounded at τ = 0 with (31) and (32)

σ̄
( ∂
∂τ
VY (0)

)
≤ σ̄2

(
VY (0)

)
σ̄
(
Eρ[E(T, ·)]

)
≤
[

max
δ
σ̄
(
VX(0, δ)

)]2
max
δ
σ̄
(
E(T, δ)

)
.

(33)

Now consider an infinitesimal time-instant dτ

σ̄
(
VY (dτ)

)
= σ̄

(
VY (0) + dτ

∂

∂τ
VY (0)

)
≤ σ̄

(
VY (0)

)
+ dτ σ̄

( ∂
∂τ
VY (0)

)
.

(34)

It can be concluded from (31) and (33)

σ̄
(
VY (dτ)

)
≤ max

δ
σ̄
(
VX(0, δ)

)
+ dτ

[
max
δ
σ̄
(
VX(0, δ)

)]2
max
δ
σ̄
(
E(T, δ)

)
.

(35)

At the next (equidistant) infinitesimal point in time

σ̄
(
VY (2 dτ)

)
≤ σ̄

(
VY (dτ)

)
+ dτ σ̄

( ∂
∂τ
VY (dτ)

)
≤ σ̄

(
VY (dτ)

)
+dτ σ̄2

(
VY (dτ)

)
σ̄
(
Eρ[E(T−dτ, ·)]

) (36)

using σ̄
(
∂
∂τ VY (dτ)

)
≤ σ̄2

(
VY (dτ)

)
σ̄
(
Eρ[E(T − dτ, ·)]

)
.

Together with (32) and (35) the previous steps can be
repeated, i.e., by integration, to obtain

σ̄
(
VY (t)

)
≤ max

δ
σ̄
(
VX(0, δ)

)
+∫ T−t

0

[
max
δ
σ̄
(
VX(τ, δ)

)]2
max
δ
σ̄
(
E(T−τ, δ)

)
dτ.

(37)

By assumption, the exact solution X(t, δ) exists for all t ∈
[0, T ] and realizations of δ. Therefore, the right-hand side
of (37) is finite. Consequently, Y0(t) exists for all t ∈ [0, T ]
and cannot have finite escape time.

VI. SPACE LAUNCHER EXAMPLE

Consider the robustness analysis of the Vanguard space
launcher also studied in [4], with origin [22]. Notable devia-
tions from the nominal trajectory during atmospheric ascent
are to be avoided in order to prevent a loss of the launcher.
Therefore, the goal of the analysis is to assess the influence
of external wind disturbances and parametric aerodynamic
uncertainties on the launch trajectory. The LTV formulation
of the launcher’s first-stage rigid body pitch dynamics along
a predefined gravity-turn trajectory is extended in [4] toα̇θ̇
q̇

=


Zα
mvd

−g sin θd
vd

1

0 0 1
Mα

Jyy
0

Mq

Jyy


αθ
q

+


Td
mvd

Zα
mvd

0 0
Tdξ
Jyy

Mα

Jyy

[δµδα
]
. (38)

System states are the angle of attack α, pitch angle θ,
and pitch rate q. δµ is a corrective gimbal input used for
attitude control. External disturbances attributed to wind are
simulated in form of disturbances δα in the angle of attack α.
Nominal values of the aerodynamic stability derivatives Zα,
Mα, and Mq are given in [22] as functions of time. Similarly,
the time-varying mass m and pitch inertia Jyy are provided.
Nominal values for speed vd and pitch angle θd along the
reference trajectory are given for t ∈ [11.35, 146.35] with a
step size of 2.7 s. Thrust Td, lever arm ξ of δµ w.r.t. the
center of gravity, as well as the gravitational acceleration g
are constants.

A time-invariant controller solely using pitch angle θ
feedback is given in [22]. It is a linear quadratic regulator in
conjunction with a full-order observer designed in the region
of maximum dynamic pressure. A first-order servo model
with bandwidth 50 rad/s is included in the analysis. The
closed-loop system matrix thus has a size of nx = 7.

Due to uncertainty in the modeling process, the aero-
dynamic coefficients δ = [Zα,Mα,Mq]

T are assumed to
be distributed uniformly about their nominal values δ̄i with
δi ∼ U(0.75δ̄i, 1.25δ̄i). In order to assess sensitivity of the
uncertain closed-loop system w.r.t. wind disturbances, the
finite-horizon induced L2-gain (4) from w(t) = δα(t) to
y(t) = α(t) is to be computed for t ∈ [15, 100]. This time
horizon reflects the start and end point of the gravity-turn
maneuver. For all subsequent computations, a 0.5 s grid of
the LTV model is generated via linear interpolation.

Fig. 1 shows approximations of the robust induced L2-
gain obtained by polynomial chaos expansion γ̂PCE and
Monte Carlo sampling γ̂MC . Throughout this section, the
minimal γ for which an associated RDE solution exists is
computed by a standard bisection algorithm. A reference
gain γref is computed as the worst-case out of N = 104

MC samples. The induced L2 gain of the nominal system
without uncertainty is γnom = 3.06.

Five Galerkin projections (20) of the RDE (9) are com-
puted for d ∈ {0, 1, 2, 3, 4} using the PolyChaos.jl toolbox
[23] for the Julia programming environment [24]. For each
expansion degree d, the minimal γ̂PCE for which a solution
to the RDE (20) exists is calculated. All time integrations are



Fig. 1. Approximated Robust Induced L2-Gain vs. PCE Degree d and
MC Sample Set Dimension N

performed numerically using an order 5/4 explicit Runge-
Kutta scheme with stiffness detection and automatic switch-
ing to TRBDF2 [25].

For the sake of neutral comparison, the average γ̂MC of
10 MC trials with sample size N is computed as well. As
detailed in Section IV, the Galerkin projected RDE (20)
corresponds to a system of nψ+1 coupled RDEs. Therefore,
for each PCE degree d, one MC trial is calculated as the
worst-case gain out of N = nψ + 1 samples of δ. Empirical
mean and standard deviation are displayed w.r.t. 10 trials
indicating the randomness of the MC estimator. Note that
the PCE always gives the same deterministic result.

It is clear that the gain obtained via MC simulation is a
lower bound to the exact robust induced L2-gain. As per
Theorem 4, the d = 0 case of the PCE is also a proven
lower bound. Interestingly all other cases d > 0 also lower
bound γref in this example. Moreover, as d is increasing
the approximated L2 gain is converging to the reference
gain. This observation could be reproduced in various other
benchmark examples of varying complexity but could so far
only be proven for the case d = 0.

VII. CONCLUSION

This paper proposes a polynomial chaos approximation of
the quadratic performance of uncertain LTV systems. Possi-
ble applications of the Galerkin solution approach lie within
various fields of control engineering requiring the solution
of Riccati (differential) equations where the coefficients (and
initial condition) are random. For example, characterization
of the robust L2-to-Euclidean gain [5] could be a use-case
with high potential. It is further shown that the special case of
a zeroth order polynomial expansion actually leads to a lower
bound for the true quadratic performance. Future work aims
at generalizing the lower bound result to higher order PCEs.
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