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Abstract

This paper proposes an adaptive boundary sine cosine optimizer with population
reduction. It is designed specifically to calculate an upper bound on the worst-
case gain of a known finite horizon Linear Time Varying (LTV) system and a
perturbation. The input/output behavior of the perturbation is described by a time
domain Integral Quadratic Constraint (IQC). The analysis condition is formulated
as a parametric Riccati differential equation which depends on the IQC repre-
sentation. A nonlinear optimization problem is posed that minimizes the upper
bound on the worst-case gain over the IQC parameterization. For industrial size
applications like a space launcher, the number of decision variables can grow ar-
bitrarily large depending on the number of considered perturbations as well as the
type and representation of the IQC. This is aggravated by nonlinear constraints
on the decision variables imposed by the Riccati differential equation making it
challenging to solve. Several established Meta-Heuristics (MHs) along with the
proposed algorithm are applied to an industry size worst case analysis of a space
launcher during its atmospheric ascend. Their respective performances are eval-
uated to emphasize the advantages of the developed optimizer. This work builds
the foundation of applying MHs to IQC based robustness analysis of finite horizon
LTV systems.
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Algorithm

1. Introduction

Meta-heuristic (MH) represents a general algorithmic framework with guide-
lines for the development of search algorithms. Typical algorithms designed under
the meta-heuristic paradigm are, for example, evolutionary algorithms, swarm in-
telligent algorithms, or estimation of distribution algorithms [2, 26]. Over the last
decades, these algorithms have attracted increasing attention and have been imple-
mented on complex engineering problems. In general, these methods have been
developed based on imitation of nature such as genetic evolution [18], laws of
physics [34], [58], food finding of insects or animals [43, 46, 48, 44, 68, 22, 38,
32], etc. [3, 6, 19, 68, 20]. They are classified as global optimization methods due
to the use of a population-based concepts and randomization in the search pro-
cedure. This offers the advantage of avoiding being trapped at a local optimum.
Moreover, they require no function derivatives in an optimization run. Thus, they
are easy to use and can be applied to almost any kind of functions and design
variables. However, the lack of search consistency and slow convergence are still
the main drawbacks of MHs. In this regard, numerous MHs have been devel-
oped and upgraded over the last two decades emphasizing mainly on increasing
their exploitation and exploration capabilities. For various engineering applica-
tions, the successful use of MHs has been reported in literature [15, 54, 55, 71, 72,
73, 8, 23, 56, 59, 75]. Meanwhile, novel search methods, including the gradient-
based optimizer (GBO)[3], the slime mould algorithm (SMA)[38], heap-based op-
timizer (HBO) [6], and Harris hawks optimization (HHO)[32], extended the range
of available MHs. However, a popular class of population-based MH algorithms
remains sine cosine algorithms (SCAs) first introduced by Mirjalili et al. 2016
[46]. These algorithms apply trigonometric sine and cosine functions for popula-
tion updates. As they do not require predefined/specific optimization parameters
settings, their application is user-friendly and straightforward. This led to their
employment on numerous optimization problems [26], demonstrating their effi-
ciency and robustness. Since its introduction, the original SCA has undergone sev-
eral improvements in the form of, e.g a binary algorithm [25], adaptive parameters
[24], and hybridization techniques [37, 30], with further successful applications
[7, 4, 16]. However, in contrast to, e.g. genetic algorithm (GA) [50, 17, 70], dif-
ferential evolution (DE) [14, 13], particle swarm optimization (PSO) [9, 57, 40],
or Lévy flight based pigeon-inspired optimization (LFPIO) [19], no implementa-
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tion of SCA for complex control engineering problems, such as robustness analy-
ses, exists. Also, population reduction and adaptive boundary strategies to address
large design domain problems (arising in robustness analysis) have not been im-
plemented in SCAs, motivating further investigation.

In this paper, an adaptive boundary sine cosine optimizer with population re-
duction is proposed that specifically addresses the robustness analysis problem for
finite time horizon systems [10]. A wide variety of control problems can be for-
mulated as finite horizon linear time varying (LTV) systems, i.e. systems whose
dynamics vary with time and that follow a specific predefined trajectory. Examples
of this application include robot arms [52], swarm robots [51], terminal guidance
systems [35] or the in the benchmark considered atmospheric ascend of a space
launcher [10].

Of specific interest for these applications is how they perform under pertur-
bations, e.g. uncertainties or hard nonlinearities such as saturations. Results on
the input/output gain computation of “nominal” finite time horizon LTV systems
based on the solution of a Riccati differential equation (RDE) [27] have been re-
cently leveraged to include perturbations via the framework of integral quadratic
constraints (IQC) [10, 62]. Specifically, IQCs are used to bound the input/output
characteristic of the perturbations in the system [42]. In general, IQCs are not
unique and a family of IQC parameterizations can describe the same perturbation
behavior. Effectively, the analysis results for perturbed, finite time horizon LTV
systems are still based on the solution of a Riccati differential equation (RDE)
which is now, however, parametrized by the chosen IQCs. Depending on the cho-
sen parameters, the performance analysis can give widely different bounds on the
input/output gain of the analyzed system. Hence, it is necessary to formulate the
robustness analysis in this framework as a minimization of the upper bound on
the worst-case gain as a function of the IQC parameterization. This amounts to a
highly complicated nonlinear optimization problem with a parameterized differ-
ential equation as nonlinear constraint. The number of decision variables scales
with the number of considered perturbations in the system and complexity of
the chosen IQC parameterization. In addition, the search space is not easily de-
fined, has to be assumed non-convex and non-smooth. Furthermore, it can be,
in general, arbitrary large. All these factors make the problem ideally suitable
to be tackled with a MH. Although many research works applied MHs to en-
gineering problems, none of them was applied to the LTV robustness problem
[14, 13, 15, 16, 54, 55, 73, 71, 72, 8, 23, 56, 59, 75]. Thus, an evaluation of their
comparative performance for this specific problem has yet to be investigated. In
this paper, a thorough comparison between the proposed adaptive boundary sine
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cosine optimizer and established MHs is presented in Section 4 on the example of
the analysis of a space launcher [10]. Specifically, the MHs used in this study in-
clude: differential evolution [63][38], adaptive differential evolution with optional
external archive (JADE) [74], success-history based adaptive differential evolution
(SHADE) [64], whale optimization algorithm (WOA) [47], moth-flame optimiza-
tion algorithm (MFO) [43], dragonfly algorithm (DA) [45], grey wolf optimizer
(GWO) [48], heap-based optimizer [6], Harris hawks optimization [32], particle
swarm optimization algorithm (PSO) [22], genetic algorithm (GA) [18] , and sine
cosine algorithm [46]. The considered benchmark study is of a sufficient engi-
neering complexity, so the results of the study allow drawing conclusions of the
efficiency and industrial relevance of the considered algorithm.

2. Robust Performance of Linear Time Varying Systems

Automation becomes more and more prominent in a variety of systems appli-
cations. A significant subset of these systems follow a preprogrammed trajectory
leading the system from a fixed starting point to a fixed terminal point. A typi-
cal example for trajectory based operations are industry robots, which are used
for automated assembly [12], materials and quality testing [33] or manufacturing
[36, 49]. Another example are space launchers during atmospheric ascent as de-
picted in Fig. 1. The launcher has to tightly follow a predefined trajectory starting
from the lift-off and ending with the burn-out of the first stage. Consequently, its
nonlinear equations of motion are actually time dependent. Hence, their lineariza-
tion along this specific trajectory results in a finite horizon linear time varying
system. Note that the linearization is necessary as no sufficient worst case analy-
sis condition for nonlinear systems exists. The following space launcher example
illustrates how this procedure exactly works and a general linear time varying
system can be derived from the system dynamics along the design trajectory.

Example 1.
During the atmospheric flight phase carried out by the first stage, the launcher’s

guidance is typically tracking a preprogrammed trajectory [21]. Focusing on the
vertical plane (pitch motion), the launch vehicle follows a pitch program, i.e. the
launcher tracks a pre-calculated time dependent pitch angle trajectory θd. It usu-
ally describes a so called gravity turn maneuver, i.e. the nominal angel of attack
α is zero [69]. Linearizing the nonlinear equation of the pitch dynamics, with re-
spect to the launcher fixed frame (subscript b), along the gravity turn trajectory
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Figure 1: Vega space launcher (Source: ESA)

leads to the following linearized dynamics: α̇(t)
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+

0 1
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0 0

[µ(t)

δα(t)

]
(1)

where the states are the angle of attack α, the pitch angle θb, and the pitch rate
θ̇b. The angle θb effectively describes the offset to the desired pitch angle θd. In
(1), the inputs are the TVC deflection µ used for attitude control and the wind
disturbance which is modeled as an additional exogenous angle of attack signal
δα. The disturbance δα is defined parallel to the zb-axis of the launcher fixed frame,
see Fig. 1. It is given by δα ≈ −w

V
, where V is the velocity of the space launcher.
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The variables Zα, Mα and Mq are the aerodynamic stability derivatives, see [66].
In (1), m is the total mass of the ELV, and Jy denotes the overall mass moment of
inertia with respect to the launcher’s center of gravity G. The thrust is denoted as
T . It acts at the nozzle reference point C. The geometric variables lCG is defined
as the absolute distances between C and G. The gravitational acceleration g0 is
modeled according to the WGS 84 assuming a launch at the equator. In general, all
the introduced variables are time dependent as a result of the predefined trajectory.

Consequently, the linear dynamics of the space launcher can be written more
generally as a finite horizon linear time varying system G

ẋG(t) = AG(t)xG(t) +BG(t)d(t)

e(t) = CG(t)xG(t) +DG(t)d(t),
(2)

where xG(t) ∈ Rnx , d(t) ∈ Rnd and e(t) ∈ Rne are the state, input and out-
put vector, respectively. In (2), the system matrices are piecewise continuous
bounded functions of time t of compatible size to the corresponding vectors, e.g.
AG(t) ∈ RnxG×nxG . Many other applications can be written in this general form,
e.g. aircraft in final approach, robots or spacecraft during the reentry and landing.

2.1. Uncertain Linear Time Varying Systems
Coming back to the example of the space launcher, its dynamics as described

above are inherently unstable if it does not posses aerodynamic surfaces. Hence,
the tasks of its control system are stabilization and tracking of the preprogrammed
pitch angle θd. As a diversion from the design trajectory could result in a loss of
the launcher, the pitch angle has to be tracked tightly. Therefore, the control sys-
tem must perform robustly not only under external disturbance such as wind tur-
bulence, but also in presence of uncertainty/perturbations regarding its dynamics
(1). These system perturbations have to be identified. Subsequently, the feedback
interconnection Fu(G,∆) of the nominal system G and ∆ as shown in Fig. 3 can
be written generally as

G

∆

de

wv

Figure 2: Feedback Interconnection LTV system G and uncertainty ∆
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ẋG(t) = AG(t)xG(t) +BG(t) d(t)

e(t) = CG(t)xG(t) +DG(t) d(t)

w(t) = ∆(v),

(3)

where v ∈ Rnv and w ∈ Rnw are the perturbation input and output vector, respec-
tively.

2.2. Integral Quadratic Constraints
The input/output behavior of uncertainties/perturbations ∆ in LTV systems

can be bounded by the means of IQCs. The time domain definition of an IQC is
based on a filter Ψ ∈ RHnz×(nv+nw)

∞ and a nz × nz real, symmetric matrix M
([61]) The uncertainty ∆ satisfies the IQC defined by M and Ψ if the output z of
the filter Ψ fulfills the quadratic time constraint∫ T

0

z(t)TMz(t) dt ≥ 0 (4)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ]. In this case the short
notation ∆ ∈ IQC(Ψ,M) is used.

2.3. LTV Robust Performance Analysis
Using the worst case analysis condition for nominal LTV systems presented

in [27] as well as the time domain IQC representation of the uncertainty ∆, it is
possible to propose a robust performance analysis [10, 62]. This allows for the
worst case analysis of the interconnection Fu(Gt,∆). Therefore, the IQC filter Ψ
has to be introduced in said interconnection as illustrated in Fig. 3. The dynamics

G

∆

Ψ

de

wv

z

Figure 3: Feedback Interconnection LTV system G and uncertainty ∆

of the interconnection depend on an extended LTV system Gext of the following
form:

ẋ(t) = A(t)x(t) + [ B1(t) B2(t) ]
[
w(t)
d(t)

]
[
z(t)
e(t)

]
=
[
C1(t)
C2(t)

]
x(t) +

[
D11(t) D12(t)
D21(t) D22(t)

] [
w(t)
d(t)

]
.

(5)
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In (5), x(t) ∈ Rnx represents the state vector containing the states of Gt and Ψ,
d(t) ∈ Rnd the input vector and e(t) ∈ Rne the output vector. Consequently,
the time domain inequality (4) enforced on the output z of Ψ is used to replace
the explicit representation of the uncertainty w = ∆(v). Performance metrics
for uncertain LTV systems are usually based on worst case gains, i.e. the worst
case amplification from the input signal d(t) to the performance outputs over all
∆ ∈ IQC(Ψ,M). An example is the finite horizon worst case induced L2[0, T ]
gain [10, 62]. It is defined as

‖Fu(Gt,∆)‖2[0,T ] := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(t)‖2[0,T ]

‖d(t)‖2[0,T ]

, (6)

i.e. the worst-case amplification of the finite horizon 2-norm from performance
input to performance output over all valid input signals in the Lebesgue-2 space
and ∆ ∈ IQC(Ψ,M). It is most suitable to identify the maximum (signal/energy)
amplification from a disturbance input to performance output. This is especially
interesting to evaluate the tracking performance of launch vehicles.

An upper bound γ on the worst case gain ‖F (Gt,∆)‖2[0,T ] is defined by the
strict BRL for IQCs given in [10] and [62]. The interested reader can find the
respective Theorem in Appendix A.

2.4. Worst Case Gain Optimization Problem
The exact/concrete value of the worst case gain ‖F (Gt,∆)‖2[0,T ] can not be

determined. Although, an upper bound γ on its value is defined by the strict BRL
for IQCs given in [10] and [62]. The existence of γ is directly related to the solv-
ability of the RDE

Ṗ (t) =Q(t,M, γ) + P (t)Ã(t,M, γ) + ÃT (t,M, γ)P (t)

− P (t)S(t,M, γ)P (t).
(7)

Details as well as the complete strict BRL theorem are given in Appendix A. In
other words, the input/output gain of the interconnection is bounded by γ, if for
a fixed Ψ and M the RDE (7) has a stabilizing solution. As in general an infinite
amount of valid IQCs exists to describe a given uncertainty, a common approach in
literature is to select a fixed filter Ψ and parameterize M(λ) ∈M [61, 67], where
M is a function of the decision vector λ. Hence, M(λ) is one parameterization
in the feasibility set of possible parameterization M, which imposes a certain
structure and constraints onM(λ). This procedure is emphasized by the following
example.
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Example 2.
Any norm bounded dynamic uncertainty ∆, with 0 < ‖∆‖∞ ≤ b satisfies the

IQC(Ψ,M) with

Ψ =

[
D 0

0 D

]
andM =

[
b2 0

0 −1

]
, (8)

where D represents any stable minimum phase LTI system. In general, multiple
IQCs build from valid Ψ and M exist which all individually upper bound ∆. In
[53], it was shown that ∆ also satisfies any conic combination build of these IQCs.
This means, the outputs zi of the respective IQC filters Ψi fulfill the quadratic time
constraint build by the conic combination of multipliers∫ T

0

z1(t)Tλ1Mz1(t) + ...+ zk(t)
TλkMzk(t) dt ≥ 0, ∀λi > 0, i = 1, ..., k (9)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ]. Hence, the multiplier
of the ith IQC is are parameterized with the strict positive real number λi. The
IQCs in (9) can be stacked in a single IQC defined by

Ψ =

Ψ1
...

Ψk

 andM(λ) =

λ1M
. . .

λkM

 (10)

Consequently, the design variable in this example would be λ ∈ Rk
+, i.e. a vector

consisting k strict positive real numbers arranged in form of M(λ) ∈M describ-
ing the IQC parameterization.

The choice of Ψ and M directly effects the achievable value of γ, see [53, 67].
Hence, in order to obtain the lowest upper bound γ of the worst-case input/output
gain of the uncertain interconnection an optimization over the IQC parameter-
ization M(λ) given a fixed Ψ must be performed. The nonlinear optimization
problem minimizing γ over M(λ) ∈M can be written as:

min
M(λ)∈M

γ

such that ∀t ∈ [0, T ]
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P (T ) = 0

Ṗ (t) = Q(t, γ,M(λ)) + P (t)Ã(t, γ,M(λ)) + ÃT (t, γ,M(λ))P (t)

− P (t)S(t, γ,M(λ))P (t)

R(t, γ,M(λ)) < 0.

(11)

where all matrix functions are defined as in Theorem 1 in Appendix A. In [10],
the structure of the problem is exploited to render a computationally efficient al-
gorithm to solve (11) by splitting it in an inner and outer optimization loop. In
the inner loop, a simple bisection over the scalar γ is performed for a fixed M ,
i.e. given M , γ is reduced until the RDE cannot longer be integrated over the full
horizon [0, T ]. Tight bounds for the bisection are readily available such that the
bisection can be performed quickly. In contrast, the outer loop optimization, i.e.
finding M(λ) ∈ M for which γ is a global minimum, is a hard, nonlinear opti-
mization problem. It is non-smooth and non-convex and further identifying a good
initial guess for it is hard. Hence, a MH appears well suitable to solve (11).

3. Adaptive boundary sine cosine optimiser with population reduction

Mostly, MHs have been developed to deal exclusively with bound constrained
optimizations. The optimization problem in (11) is more complicated with respect
to the design variables. In general, the elements of the design vector λ ∈ Rnλ

building the IQC parameterization M(λ) are not bounded. They are only con-
strained by the by the structure imposed by M(λ) ∈ M, which in fact renders
certain value combinations infeasible. Additionally, the optimization problem (11)
includes two nonlinear constraints. Firstly, the strict negative definiteness ofR due
to Theorem 1 in Appendix A. Secondly, the solvability of the RDE (7), which is
directly related to the existence of the optimized upper bound γ. Hence, the direct
application of an existing MH is not feasible.

Therefore, a novel adaptive boundary sine cosine algorithm with population
size reduction (Ab-SCA-PR) is introduced. It is specifically designed to deal with
the arbitrarily large space, but also to work robustly under the nonlinear con-
straints and exploit attained information on the LTV IQC analysis problem wher-
ever possible. Its basic search procedure is based on the original sine cosine al-
gorithm (SCA) introduced in [46]. Sine-based updates in the population iterations
were already proposed and demonstrated sucessfully in [20]. Similarly to most
MHs, the Ab-SCA-PR contains three main steps, namely initialization, reproduc-
tion (based on sine and cosine functions), and selection phase. It is extended with
an adaptive bound technique to deal with the large search space. Additionally, a
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population reduction is included to avoid extensive cost function evaluations late
in the search. These modifications differentiate the proposed algorithm from the
original SCA implementation in [46]. These are generally computationally ex-
pensive due to the bisection. In Algorithm 1, pseudo-code of the Ab-SCA-PR’s
implementation is presented.

Before the algorithm is executed, the user needs to provide the maximum pop-
ulation size Np,max, the maximum number of population iterations Ni,max, the
number of decision variables nλ, maximum number of unsuccessful reproduc-
tions Umax, lower and upper bound of the bisection γl and γu, the vector λu with
the initial upper bounds of the search space, the vector λmax containing the maxi-
mum upper bounds of the search space, the extended LTV system Gext containing
the fixed IQC filter Ψ , and last the nonlinear constraint of the search space M
providing the structure and properties of M(λ). Note, that good estimates for the
bisection’s lower and upper bound are available either from the nominal systems
analysis or previous optimization runs, see e.g., [10]

The main algorithm starts with generating a random initial population P . It
describes a set of l solution vectors λl ∈ Rnλ written as:

P = {λ1, λ2, ..., λNp,max}. (12)

The elements of λl build the respective IQC paramterizationM(λ). Hence, it must
be assured that M(λl) ∈ M. In case of the IQC parameterization given in Exam-
ple 2 the elements of λ need to be strict positive scalars. Hence, it is sufficient to
define the search space for each element of λl as λlk ∈ (0, λmax,k], where λmax,k is
a sufficiently high upper limit. While an initial λmax has to be specified, it will be
adapted during the search if necessary. This allows for a narrowed initial search
space, e.g. exploiting information from previous optimizations without confining
the optimization to it. More complex parameterizations as shown e.g. in [67] can
also be considered in the algorithm.

After it is assured that M(λ) ∈ M, the minimal value of γ for each λl in
the initial population γ(M(λl)) is calculated using a bisection constrained by the
solvability of the RDE (7). Note that due to numerical reasons it is possible that
for a given M(λl) no finite γ exists such that the RDE is fully solvable. In this
case, γ(M(λ)) is set to 1020. As R is a function of the bisected γ and M(λl),
the R < 0 condition is evaluated in the bisection. In case R(M(λl), γ)) ≥ 0, the
respective γ bisection step is treated similarly to a not fully solvable RDE. Note
that in most cases R < 0 is automatically fulfilled for a valid M(λ) ∈M.

Subsequently, the current best solution λbest is identified. Now, the iteration
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Algorithm 1 Adaptive boundary sine cosine optimiser with population reduction
1: Input: Np,max, Ni,max, nλ, Umax, γl, γu, λmax, λu, Gext,M
2: Output: λbest, γbest

3: Generate random initial population P and build respective M(λl) ∈M
4: Calculate γ(M(λl)) via bisection (γl/γu fixed) constrained by solvability of

the RDE over [T, 0], for P (T ) = 0, treat R ≥ 0 as failed integration
5: Find the best solution λbest and initialize U = 0
6: for Ni = 1 to Ni,max do
7: Calculate parameter r1 based on (14)
8: for l = 1 to Np do
9: for k = 1 to Nλ do

10: Randomly generate the parameter r2,r3 and r4 in the ranges of
[0, 2π], [0, 2] and [0, 1], respectively

11: Update the kth element of the lth solution (λl) based on (13)
12: end for
13: Build M(λl) ∈M
14: if RDE solvable for γlNi−1 and M(λl) then Execute bisection with

γu = γlNi−1 calculating γ(M(λl)), handle R ≥ 0 as failed integration
15: else Skip bisection, treat λl as failure
16: end if
17: end for
18: Find λbest,new

19: if γ(M(λbest,new)) < M(γ(λbest)) then λbest = λbest,new and set U = 0
20: else U = U + 1
21: end if
22: if U > Umax then Update search bounds via (15), reset U to 0
23: Generate Nadd solutions inM using LHS for new bounds
24: Remove all solutions located in the old bounds
25: Apply the k-mean clustering technique to group the remaining

solutions into Nadd groups and find the centroid solutions
26: Calculate γ values of the centroid solutions of each group via bisection

(γl/γu fixed) and save to current population if they are better than the
worse solution in the population

27: end if
28: Update population size via (16) and remove the worst solutions
29: end for

12



starts with the reproduction process updating each design solution in the popula-
tion via

λlnew,k =

{
λlold,k + r1 sin (r2)

∣∣r3λbest,k − λlold,k

∣∣ , if r4 < 0.5

λlold,k + r1 cos (r2)
∣∣r3λbest,k − λlold,k

∣∣ , otherwise
, (13)

where λlnew,k, λlold,k, and λbest,k are the kth vector element of a newly generated
solution for λl, a current solution and the current best solution of the population,
respectively. The parameters r2, r3, and r4 are uniformly randomized for each
iteration in the ranges of [0, 2π], [0, 2] and [0, 1], respectively. The parameter r1 is
an iterative adaption using

r1 = a−Ni
a

Ni,max

, (14)

where Ni is the current iteration and a is a predefined constant. Again, it has to
be assured that the updated M(λlnew) ∈ M. As M(λlnew) /∈ M for Example 2 is
a simple boundary infraction, the respective λlnew,k are simply set to their closest
boundary value.

Before the bisection for the updated λlnew,k is conducted, it is checked if the
RDE (7) is solvable for M(λl) and the minimal γlNi−1 value calculated for its re-
spective parent . If this is not the case, the bisection can be skipped as the offspring
is no improvement over its parent and can be treated as failure, i.e. it is assigned
a value of 1020. This avoids unnecessary evaluations of the RDE and thus, sig-
nificantly reduces the computational effort. In Section 4, it will be shown that the
accompanying reduction of search information does not come at the cost of search
performance.

If the RDE (7) is fully solvable forM(λl) and γlNi−1, the bisection is conducted
using γlNi−1 as (the new) upper bound γu. Using this adaptive upper bound, signif-
icantly narrows the bisection interval compared to the initial population’s or the
one used after a boundary extension, which utilize user defined bounds. Conse-
quently, the number of computational expensive RDE integrations is considerably
reduced.

After concluding the bisections, the best solution obtained from the newly
generated population is compared with its counterpart from the previous iteration.
If the best solution of the new population is better, the current best solution is
updated, while U is reset to zero. Here, U is a variable that counts the number of
unsuccessful iterations. Otherwise, the current best solution is not changed and U
is increased by one. If the value of U is higher than a predefined limit, the bounds
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of the search space are extended. Given the IQC parameterization in Example 2
the upper bound of each design variable is extended by

λu,newk =

{
10λu,oldk if λu,oldk < λmaxk

λu,oldk otherwise
(15)

whereas the lower bound remains zero. In (15), λu,oldk and λu,newk are the upper
bound of the kth element of all design variables λl before and after updating,
respectively. The maximum allowable upper bounds of the respective elements
are given by λmaxk . Note, that this boundary adaption can be easily adjusted to
other search spaces.

Since the bounds of the design variables have been extended, a set of addi-
tional Nadd solutions located on/inside the extended boundary must be generated
to enhance the search performance of the optimizer. In order to have the solutions
well distributed throughout the extended boundary, a Latin Hypercube Sampling
(LHS) technique is firstly used to create 50Nadd solutions throughout the whole
boundary of the design variables [41]. Then, all solutions inside the old boundary
are removed, while a total of Nadd (default is 10) solutions are created based on
the distribution of the remaining solutions. Here, a k-mean clustering technique is
used to group the remaining solutions into Nadd groups, whereas the centroid of
each group is assigned as one of those Nadd solutions [5, 39]. Having evaluated
their objective function values, the solutions are added to the current population.
Afterwards, the worst solutions in the population are deleted to restore the correct
population size.

For each iteration, after obtaining the current best solution of γ and updating
the search space, the population size is reduced based on the following equation

NpNi+1
= Np,max − round

Ni (Np,max −Np,min)

Ni,max

, (16)

where NpNi+1
is the population size at iteration Ni + 1. Np,max and Np,min are

the user-defined maximum and minimum population sizes, respectively. In order
words, the proposed algorithm starts with the maximum population size at the ini-
tial function evaluation and decreases the population size with increasing function
evaluations. If NpNi+1

is lower than the current population size, the worst solu-
tions in the current population are removed to match the new population size.
This allows to reduce the amount of necessary bisection evaluation at the end of
the search when the region of the global minimum is likely identified. At the same
time, it also biases the search continuously towards this region promising a better
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convergence. Subsequently, the reproduction starts again. The search process ter-
minates as soon as the maximum number of iterations Ni,max is reached providing
minimal γbest and the corresponding λbest.

The proposed Ab-SCA-PR is slightly more computational complex than the
original SCA algorithm due to the introduced boundary extension and population
reduction. This increase in complexity can be quantified using Big-O analysis.
For the original SCA the overall complexity is O(Np,max×nλ×Ni,max), calculated
from the initialization ( O(Np,max× nλ)), reproduction (O(Np,max× nλ×Ni,max)),
and selection process (O(Np,max ×Ni,max)). In case of the proposed Ab-SCA-PR,
the additional boundary adaptation process including LHS (O(10Nadd)) as well
as K-mean clustering (O(10Nadd × Nadd)), and the population reduction process
(O(Np,max−Np,min)) contribute to the computational complexity. This results in an
overall complexity of O(Np,max × nλ × Ni,max + N2

add). However, this increase in
complexity (i.e., the additional steps) is insignificant regarding its additional com-
putational time compared to the time saving resulting from reducing the overall
amount of expensive objective function evaluations.

4. Numerical Experiment

In the final section, the worst case optimization problem (11) as presented
in a benchmark example is solved using the Ab-SCA-PR algorithm proposed in
Section 3 and thirteen existing MHs. The benchmark example is taken from [10],
where the robust performance of a small space launcher under wind disturbance
is analyzed. The Matlab implementation of the numerical experiment as well as
additionally tested solver are provided on https://github.com/tudfmr/LTViqcMHs.

In Fig. 4, the corresponding analysis interconnection is displayed. Here, the

GTVC
GLV

∆

C

uvuC

w

θ
−

ed

Figure 4: Analysis Interconnection

block GLV represents the space launcher’s LTV dynamics. These are similar to
the ones introduced in Example 1 represented by equation (1). The associated
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numerical values of the matrix coefficients can be found in [66], which describe
the Vanguard space launcher, a small expandable launch vehicle from the times
of early space exploration. The launcher is controlled by a thrust vector control
(TVC) represented by GTVC. Its dynamics are described by

GTVC =
50

s+ 50
(17)

The respective control signals are calculated by a linear quadratic regulator (LQR)
including an observer based on pitch angle feedback. The corresponding gains
are calculated in accordance to [66]. In Fig. 4 the controller is represented by
C. To evaluate the robustness of the system towards phase and gain perturba-
tions/uncertainties, the interconnection is extended with a norm bounded dynamic
LTI uncertainty ∆, with ‖∆‖∞ ≤ b. This specific implementation of ∆ as shown
in Fig. 4 is chosen to mimic input LTI disk margins. These are commonly used
in flight control validation, e.g. [11]. Here, the norm bound b directly corresponds
to simultaneous phase and gain disturbances’ maximum value. Hence, analyzing
the interconnection in Fig. 4 for increasing b allows to identify the maximum tol-
erable disturbance. In total eight values of b in the range from 0.01 to 0.085 are
evaluated. The performance of the launcher is quantified by its worst case finite
time induced L2[0, T ] gain γ from the wind disturbance d = δα to the angle of
attack e = α.

This requires a conversion of the analysis interconnection in Fig. 4 into the
IQC framework as described in Section 2.3. Here, the conic combination of two
IQCs is chosen to cover the input/output behavior of the dynamic LTI uncertainty
∆ following Example 2. The first IQC, denoted by IQC1(Ψ1,M1), is factorized
with Ψ1 = I2 and parameterized by M1(λ1) = λ1M , with M =

[
b2 0
0 −1

]
. For the

second IQC, denoted by IQC2(Ψ2,M2), the factorization is chosen as Ψ2 = 1
s+1

I2

with the parameterization M2 = λ2M . The scalar factors λ1 and λ2 are strict
positive. Subsequently, IQC1(Ψ1,M1) and IQC1(Ψ1,M1) stacked into a single
IQC, as described in Example 2. This results in a single IQC with factorization
Ψ = [ΨT

1 ,Ψ
T
2 ]T and parameterization M(λ) =

[
λ1M

λ2M

]
. Consequently, the

optimization problem (11) described in Section 2.4 is solved over the two decision
variables λ1 and λ2 identifying the worst case gain γ. The analysis is repeated for
increasing values of b. Note, that the RDE is solved using the Matlab internal
solver ODE15s which is a variable step size solver for stiff differential equations.
Over a finite time interval theoretically all signals remain bounded. Thus for any
value b there should exist a finite value γ. In practice, it is possible that the finite
escape times of the RDE ([1]) is always smaller than considered analysis horizon
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for a given b. Consequently, no γ value can be calculated in this case. Therefore,
it is possible that some solvers cannot find a valid γ for all executed test cases in
the presented analyses.

4.1. Solver and Benchmark Setup
A total of eighteen MHs are evaluated against the proposed Ab-SCA-PR. Each

is solving the worst-case gain optimization of the space launcher in five indepen-
dent runs. All solvers are initialized with a population size of 50. Solvers with
fixed population sizes are terminated after 50 generations. In case of an adaptable
population size, the algorithm is terminated after a total of 2500 (50× 50) objec-
tive function evaluations. All optimizers except the Ab-SCA-PR will use a lower
bound and upper bound of 1 · 10−6 and 1 · 108, respectively for both λ1 and λ2.
As the proposed Ab-SCA-PR algorithm utilizes self-adaptive upper bounds, the
optimizer can be initialized with a significantly tighter search space. Therefore,
the initial upper bound of both decision variables is set to 100. All meta-heuristic
specific optimization parameter settings are listed below.

1. Differential evolution (DE) [55]: DE/best/2/bin strategy was used. A scaling
factor, crossover rate and probability of choosing elements of mutant vectors
are 0.5, 0.7, and 0.8 respectively

2. Adaptive differential evolution (JADE) [74]: The parameters are self-adapted
during an optimization process.

3. Success-history based adaptive differential evolution (SHADE) [64]: The
parameters are self-adapted during an optimization process.

4. SHADE with Linear Population Size Reduction (L-SHADE) [65] : The pa-
rameters are self-adapted during an optimization process.

5. Neuro-dynamic Differential Evolution Algorithm (L-SHADE-ND) [60]: The
parameters are self-adapted during an optimization process.

6. L-Shade with Eigenvector-Based Crossover and Successful-Parent-Selecting
Framework (SPS-L-SHADE-EIG) [28]: The parameters are self-adapted
during an optimization process.

7. Whale optimization algorithm (WOA) [47]: The code and parameters are
provided by the authors of the algorithm.

8. Moth-flame optimization algorithm (MFO) [43]: The code and parameters
are provided by the authors of the algorithm.

9. Dragonfly Algorithm (DA) [45]: Default parameter settings from original
code by [45] are used in this study.
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10. Grey Wolf Optimiser (GWO) [48]: Default parameter settings from original
code by [48] are used in this study.

11. Sinusoidal differential evolution (SinDE) [20]: Default parameter settings
from original code by [20] are used in this study.

12. Particle swarm optimization algorithm (PSO) [22]: The starting inertia weight,
ending inertia weight, cognitive learning factor and social learning factor are
set to be 0.5, 0.01, 2.8, and 1.3, respectively.

13. Genetic algorithm (GA) [18]: The crossover and mutation probability are
set to be 1 and 0.1, respectively.

14. Heap-based optimizer (HBO) [6]: The code and parameters are provided by
the authors of the algorithm.

15. Harris hawks optimization (HHO) [32]: The code and parameters are pro-
vided by the authors of the algorithm.

16. Sine cosine algorithm (SCA) [46] (Algorithm 1): The constant a parameter
is set to be 2.

17. Improved sine cosine algorithm with crossover scheme (ISCA) [31]: The
constant a parameter is set to be 2 while crossover rate is set to be 0.3.

18. Modified sine cosine algorithm (m-SCA) [29]: The constant a parameter,
crossover rate and jumping rate are set to be 2, 0.3 and 0.1, respectively.

19. Adaptive boundary sine cosine optimizer with population reduction (Ab-
SCA-PR) (Algorithm 1): Used the same parameter settings as SCA.

Note that all optimizations are run with an adaptive upper bound of the bisection
as well as skipping the bisection altogether if the offspring shows no improvement
(see Section 3 for details). However, the lower bound γl remains fixed and the ini-
tial population is evaluated fully with a fixed upper bound γu. The corresponding
values for the different evaluated b are taken from [10] and summarized in Table
1. Note that for b = 0.01, γ1 equals the nominal worst case gain and γu is a factor
of ten higher. The subsequent b use a γl and γu of 0.8 and 10 times the worst case
γ of the previous norm bound, respectively.

4.2. Results and Discussion
Four criteria are applied to evaluate the search performance of the MHs. Firstly,

the absolute search performance based on the lowest cost function value γbest. Sec-
ondly, the mean value of the worst case gain µγ over the five optimization runs. It
is used to measure the convergence rate and consistency of the algorithms. These
are indicators for the reliability of the algorithm, which is essential for its indus-
trial applicability. This is further emphasized by the third criterion, the number of
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Table 1: Lower bound γl and upper bound γu used for the bisection for a given b based on [10]

Norm bound b Lower bound γl Upper bound γu
0.01 1.1527 11.527

0.03 1.8837 23.5460

0.05 2.2529 28.1610

0.06 2.8194 35.2420

0.07 3.2229 40.2860

0.075 3.7438 46.7970

0.08 4.2086 52.6070

0.085 5.3578 66.9730

successful runs nfeas. In case two algorithms have the same number of successful
runs, the standard deviation σγ of the worst case gain is used to measure the search
consistency instead. It should be noted that, only algorithms which can find feasi-
ble solutions in more than one optimization run are considered for the µγ and σγ
value comparison.

In Figure 5, the Ab-SCA-PR’s the mean value as well as the variance of γ
over b is shown. It is compared to the existing optimizer with the most successful
runs, namely the GWO, and the original SCA. For all cases, the proposed algo-
rithm has a low variance σγ in the worst case gain. The two existing MHs cannot
provide multiple solutions for all values of b. Furthermore, they show a higher
variance as well as higher mean values µγ . This is especially visible for the SCA
for b = 0.03 and b = 0.07. Hence, the proposed Ab-SCA-PR is visibly the most
reliable and consistent optimizer for the LTV robustness analysis problem. This is
further emphasized by evaluating the detailed results for each algorithm summa-
rized in Table 2. Note that results for the remaining b can be found in Table B.5 in
the appendix. Focusing on absolute search performance, the proposed algorithm
is the best performer for norm bounds of 0.03, 0.05, and 0.085. For the lowest
norm bound b = 0.01, it reaches the sixth place, with the LSND providing the
lowest γbest. Given b = 0.07, the proposed algorithm provides the third lowest γ.
Nevertheless, the Ab-SCA-PR’s γbest is always equivalent to at least the second
decimal of the respective best algorithm’s.

With respect to search convergence, the proposed Ab-SCA-PR is the best per-
former for the cases of b = 0.03, b = 0.05 as well as b = 0.085 and is further the
runner-up for 0.07. Given b = 0.01, the best algorithms in this category are the

19



0.01 0.03 0.05 0.06 0.07 0.075 0.08 0.085
0

5

10

15

20

Norm Bound b

W
or

st
C

as
e

G
ai

n
γ

Figure 5: Mean values and variance of the top three optimizers: Ab-SCA-PR ( ), GWO ( ), SCA
( )

GWO and the WOA, with the Ab-SCA-PR ranking fourth. For a norm bound of
0.07, the GWO is the best optimizer. The runner-ups for b = 0.03 and b = 0.05
are the GWO and the LSHADE-ND, respectively. The third best algorithm for
b = 0.01 and b = 0.03 is the SCA, while the third best method for b = 0.07 is the
WOA.

With respect to the search consistency, the best performer across all norm
bounds is the proposed Ab-SCA-PR achieving 100% success rate. All other al-
gorithms show a deterioration of search consistency for increasing values of the
norm bound b. Given the lowest norm bound of 0.01 the overall results are still
good, with five algorithms (SCA, DA, GWO, WOA, HHO and mSCA) reaching
100% success rate, but none of these algorithms achieved a standard deviation
as low as the Ab-SCA-PR (σγ = 0.0004). The second lowest standard deviation
was achieved by the SCA with σγ = 0.007 and the highest by the HBO with
σγ = 4.4961. Two other algorithms, the LSND and the ISCA, achieved 4 success-
ful runs, with the ISCA performing worse overall having a ten times higher stan-
dard deviation. Another algorithm concluding 2 successful runs was the DE and
HBO. Finally, a total of 7 algorithms cannot identify a valid γ in any run. Increas-
ing the norm bound to 0.03, other than the proposed algorithm, only the GWO
and the SCA have more than one positive run, with four and three, respectively.
Although, their standard deviations are significantly worse than the Ab-SCA-PR’s
0.0013 with 0.2581 and 3.7230 achieved by the GWO and the SCA, respectively.
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Apart from that, just the WOA and HHO can identify a solution at all for this norm
bound As the norm bound is increased to 0.05, besides the Ab-SCA-PR only the
LSND has multiple successful runs with two each with γ = 3.5668. Although,
this γ value is slightly higher than the Ab-SCA-PR’s attained µγ = 3.5213. Apart
from that, just three other algorithms (GWO, HHO and WOA) concluded suc-
cessfully, leaving fourteen algorithms not delivering results. For b = 0.07, beyond
the proposed algorithm the SCA, WOA and GWO had multiple successful runs
with the first two having three and the last two successes. All of these algorithms
reached a standard deviation of zero, but only the GWO calculated a γ less than
the Ab-SCA-PR’s mean value. Furthermore, Ab-SCA-PR still achieves a very low
σγ = 0.0040. Given the maximum norm bound of b = 0.085, only the HHO other
than the Ab-SCA-PR found a valid solution. However, it only had one successful
run, with γ = 20.009 which is significantly worse than the mean value achieved
by the Ab-SCA-PR (µγ = 16.831). Also taking the test cases in Table B.5 into
consideration, only the proposed Ab-SCA-PR could be exclusively used for all b.
Consequently, the user would have to change the solvers or their settings depend-
ing on b, without indication of their suitability. This is infeasible for industrial
application. Moreover, the proposed algorithm is generally superior for high val-
ues of b. This is especially important to evaluate the worst case performance. It
can be concluded, that the proposed Ab-SCA-PR shows the best overall search
performance. Hence, the integration of boundary adaptation as well as population
reduction technique into the SCA significantly increased the algorithms suitability
for LTV worst case analysis.
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4.3. Effects of the Bisection Adaptations
The modifications of the bisection, namely an adaptive upper bound and skipped

evaluations, reduce the search space exploration. Hence, their influence on the
search performance is investigated in this subsection. Accordingly, the analyses
of the previous section are repeated using fixed upper and lower bounds in the
bisection as provided in Table 1. Furthermore, no bisections of the offspring are
skipped. Hence, the optimizer is provided with more search information at the
cost of significantly increased computational effort.

In Fig. 6 the mean value as well as the variance of γ over b of the three most
consistent optimizers, namely the Ab-SCA, the SCA, and GWO are compared.
The increase in search information shows only an insignificant improvement on
the search performance of the Ab-SCA-PR compared to the preceding evaluation.
Only for higher values of b the σγ is slightly reduced, with no visible effect on
the achieved µγ . The marginal improvement in search performance requires sig-
nificantly more computational effort. Compared to the preceding evaluations, on
average twice as much time was required for the same number of function eval-
uations. More successful solutions, over a wider range of b are identified by the
SCA. The variance of γ is reduced and the achieved mean values are closer to the
Ab-SCA-PR. In the contrary, an adverse effect on the search performance of the
GWO with respect to µγ and σγ is evident. It only has multiple successful runs
for four values of b, which is one less than in the preceding analysis. Hence, the
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Figure 6: Mean values and variance of the top three optimizers without bisection adaptations:
Ab-SCA-PR ( ), GWO ( ), SCA ( )
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existing optimizers are highly sensitive towards alterations of the search informa-
tion. In the contrary, the proposed Ab-SCA-PR is significantly more robust. This
becomes more evident comparing the detailed results for all solvers as provided
in Table 3 with the preceding results in Table 2. Note that the results for the re-
maining b can be found in Table B.6 in the appendix. The γbest over all b of the
Ab-SCA-PR are reduced on average by only−0.25%. Most of the existing solvers
show more improvement with respect to the absolute search performance com-
pared to the Ab-SCA-PR, especially for higher values of b. Here, the most signifi-
cant improvements showed the GWO with −58% for b = 0.05 and the MFO with
−53% for b = 0.08. Nevertheless, some solvers performed significantly worse,
e.g. the γbest of the DE was increased by 262% for b = 0.06. Consequently, the
extended search information and increased computational effort do not guarantee
an improvement of γbest for the existing solvers.

Focusing on the search convergence (µγ), only the proposed algorithm showed
an improvement for all b. Although, it is insignificantly averaging −0.2%, with a
maximum improvement of 1% for b = 0.085. The existing algorithms show the
same indifferent behavior as for the absolute search performance. Here, the DA
showed the most improvement with −34.03% for b = 0.01, whereas the GWO
showed the most degradation with 159% for b = 0.075.

With respect to the search consistency the best algorithm remains the Ab-
SCA-PR achieving a 100% success rate for all analyzed norm bounds. Despite the
significantly increased computational effort, none of the already existing solvers
showed consistent search behavior over all b. Actually, the total number of feasible
runs over all optimizations dropped from 137 to 124. In general, the analyses
required nearly twice as much time as in the preceding section given the same
number of function evaluations.

Concluding, the Ab-SCA-PR allows to fully exploit the bisection modifica-
tion without almost no cost for the performance criteria. The existing solvers per-
form at times significantly better without these modifications. However, they are
still significantly less consistent than the proposed solver with the modifications,
which is then also much faster.
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Table 4: Comparison of the best results obtained with Ab-SCA-PR in this study with the best
results from the algorithm used in the previous work

b Results [10] Ab-SCA-PR
(fixed bounds)

Ab-SCA-PR
(adaptive bounds)

0.01 2.3546 2.3360 2.3365

0.03 2.8161 2.8130 2.8140

0.05 3.5242 3.5199 3.5204

0.06 4.0286 4.0071 4.0127

0.07 4.6797 4.6570 4.6737

0.075 5.2607 5.0733 5.0718

0.08 6.6973 6.2975 6.3140

0.085 n.f. 16.6624 16.6789

4.4. Comparison to Original Benchmark
The evaluation of the proposed Ab-SCA-PR is concluded by the comparison

of the best results obtained in this study with the best results from the algorithm
used in [10] shown in Table 4. When comparing the results with the previous work
[10], the proposed MH (Ab-SCA-PR) gives better results than those obtained by
the optimizer in [10] using the same fixed bisection intervals. The improvement
becomes more significant for increasing values of b. For b = 0.085, the opti-
mization in [10] cannot find a feasible solution. Note that the algorithm in [10]
employed a local gradient free search and is highly dependent on an initial guess.
It required a significant background research to find good initial estimates for λ1

and λ2. This is highly undesirable in an industrial application, as the optimizer
shall be deployable with as little prior knowledge as possible. Furthermore, the
applied solver in [10] can by the nature of its search strategy neither exploit adap-
tive bisection bounds nor the avoidance of bisections.

5. Conclusion

In this work, an adaptive boundary sine cosine optimizer with population re-
duction is proposed for worst case gain optimization of finite horizon LTV sys-
tems. The optimization problem is set to find an IQC parameterization in order to
minimize the worst-case gain’s upper bound. Several existing MHs and the pro-
posed algorithm are used to solve the problem. The comparison results shown that

26



the proposed algorithm is the best performer in every category. Using the reduc-
tion of γu during the MHs search process lead to less computational time, how-
ever, the optimum results obtained are slightly worse. For this numerically hard
optimization problem, using adaptive boundary techniques and population reduc-
tion leads to significant enhancement of SCA. However, the proposed technique
might be suitable for the LTV IQC problem, while its performance on other large
design domain problems requires further investigation. This work forms the base-
line of applying MHs to IQC based worst-case gain optimization of finite horizon
LTV systems of industrial complexity. The applicability is demonstrated on the
example of the robustness analysis of a space launcher under a disk margin-type
uncertainty.
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Appendix A. Strict Bounded Real Lemma for IQCs

The strict bounded real lemma as used to derive the optimization problem in
this paper, is based on a dissipation inequality expressed as an equivalent RDE
formulation. It is given in the following Theorem:

Theorem 1. Let Fu(Gt,∆) be well posed ∀∆ ∈ IQC(Ψ,M), then
‖Fu(Gt,∆)‖2[0,T ] < γ if there exist a continuously differentiable P : R+

0 → Snx
such that

P (T ) = 0, (A.1)

Ṗ = Q+ PÃ+ ÃTP − PSP ∀t ∈ [0, T ] (A.2)

and

R =
[
DT11MD11+DT21D21 DT11MD12+DT21D22

DT12MD11+DT22D21 DT12MD12+DT22D22−γ2I

]
< 0, (A.3)

with

Ã = [ B1 B2 ]R−1
[

(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]
− A, (A.4)

S = − [ B1 B2 ]R−1
[
BT1
BT2

]
, (A.5)

Q =− CT
1 MC1 − CT

2 C2

+
[

(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]T
R−1

[
(CT1 MD11+CT2 D21)T

(CT1 MD12+CT2 D22)T

]
.

(A.6)

PROOF. The proof is based on the definition of a time-dependent quadratic stor-
age function V (x, t) = xTP (t)x. After a perturbation of (A.2) the resulting Ric-
cati differential inequality can be reformulated as an equivalent linear matrix in-
equality by Schur’s complement. The left and right multiplication of [xT , wT , dT ]
and [xT , wT , dT ]T respectively leads to a dissipation inequality whose integration
from 0 to T for zero initial conditions provides the upper bound on γ using the
nominal formulation of (6).

More details regarding the proof can be found in [62].

Appendix B. Additional Optimization Results

The following tables contain the results for the remaining analyzed norm bounds:
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