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Abstract: The paper presents a worst-case touchdown condition analysis of an autolanded aircraft
under crosswind. Aircraft dynamics are generally considered altitude- and speed-dependent and, thus,
well covered inside the linear parameter-varying framework. Following a specific parameter trajectory
tracking the instrument landing system’s guidance signal, its dynamics amount to a finite horizon
linear time-varying (LTV) system. This allows to explicitly respect the varying dynamics during the
flare maneuver, changing control laws, and the finite horizon of the approach using a finite horizon
LTV analysis. A time-varying trajectory uncertainty is proposed to respect the effects of different
environmental conditions and aircraft parameters in the analysis. By representing the uncertainty as
an integral quadratic constraint (IQC), recent advances in the worst-case gain analysis of finite horizon
LTV systems can be utilized. The analysis condition is based on a parameterized Riccati differential
equation, which leads to an efficiently solvable nonlinear optimization problem. Applying the robust
LTV framework, worst-case touchdown conditions of an autolanded large airliner under crosswind wind
are calculated. The obtained results are evaluated against Monte Carlo analyses of the nonlinear model.
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1. INTRODUCTION

The final approach of an aircraft is the most hazardous flight
phase accounting for more than 49% of all recorded fatal ac-
cidents, see Boeing (2018). Autoland systems were introduced
to mitigate the risk, especially for poor visual conditions in the
early 1950s (Birkle (1956)). These commonly use a runway-
based instrument landing system (ILS) to provide a localizer
and glide slope signal tracked by the aircraft’s autopilot. Given
its operational range, the autoland system must fulfill rigorous
touchdown constraints for safe operation.

The state-of-the-art approaches to evaluate touchdown condi-
tions and constraints are Monte Carlo analyses (Biannic and
Roos (2015)) or worst case optimizations conducted on the non-
linear model (Misra and Bai (2020)). Due to the large parameter
space of the aircraft, the variety of environmental conditions,
and disturbances, these procedures are computationally expen-
sive. Hence, they are not suitable to provide fast feedback in an
iterative design/tuning process of the autopilot. Furthermore,
they cannot provide actual worst-cases, but only a probability
distribution or a lower bound of the worst-case, respectively.

A common approach for worst-case analysis of aircraft dynam-
ics exists in the form of the linear parameter-varying (LPV)
framework. An example of a worst-case analysis method for
LPV systems based on integral quadratic constraints (IQCs) is,
for example, given in Pfifer and Seiler (2016). It is suitable
to efficiently analyze various design constraints such as gust
loads (Knoblach et al. (2015)). A single LPV analysis covers
an infinite amount of admissible trajectories in the parameter
set over infinite time horizons. However, during the (automated)
final approach, the aircraft only follows one specific trajectory

in this set by tracking the ILS signals. Consequently, the dy-
namics can be treated as solely time-dependent over a finite
horizon, i.e. as a linear-time varying system (LTV), which is
a special form of LPV systems. Treating the aircraft as a finite
horizon LTV system allows applying the robust LTV bounded
real lemma (BRL), which is an extension of the IQC based
LPV framework for worst-case analysis, see e.g. Seiler et al.
(2019) or Biertümpfel and Pfifer (2018). The latter provides an
efficient approach to analyze uncertain LTV systems over long
time horizons. It was shown feasible in an industry-relevant
worst-case loads analysis of a space launcher (Biertümpfel and
Pfifer (2019)).

This paper proposes a robust LTV worst-case analysis for
lateral touchdown conditions of an autolanded aircraft under
crosswind. The nonlinear aircraft dynamics are directly taken
from Biannic and Boada-Bauxell (2017), which provides an
A330-like aircraft model in final approach configuration with
the corresponding nonlinear simulation environment. It is freely
available from http://w3.onera.fr/smac/?q=aircraftModel and
briefly described in Section 3.1. The LTV representation of the
aircraft dynamics is derived by numerical linearization along
a reference trajectory, described in Section 3.3. An autoland
controller for this aircraft model has been developed in Theis
et al. (2018) and is analyzed in this paper in Section 4.

To cover realistic wind disturbance under the constraints of the
strict BRL, a tailored wind filter is designed. It shapes an arbi-
trary norm-bounded input signal into a wind disturbance whose
PSD is comparable to Dryden-like turbulence commonly used
in nonlinear analysis. Additionally, the influence of altitude-
dependent wind fields, e.g. wind shears, is implicitly covered in
the aircraft’s linearized dynamics. The LTV worst-case analysis
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Pfifer (2019)).

This paper proposes a robust LTV worst-case analysis for
lateral touchdown conditions of an autolanded aircraft under
crosswind. The nonlinear aircraft dynamics are directly taken
from Biannic and Boada-Bauxell (2017), which provides an
A330-like aircraft model in final approach configuration with
the corresponding nonlinear simulation environment. It is freely
available from http://w3.onera.fr/smac/?q=aircraftModel and
briefly described in Section 3.1. The LTV representation of the
aircraft dynamics is derived by numerical linearization along
a reference trajectory, described in Section 3.3. An autoland
controller for this aircraft model has been developed in Theis
et al. (2018) and is analyzed in this paper in Section 4.

To cover realistic wind disturbance under the constraints of the
strict BRL, a tailored wind filter is designed. It shapes an arbi-
trary norm-bounded input signal into a wind disturbance whose
PSD is comparable to Dryden-like turbulence commonly used
in nonlinear analysis. Additionally, the influence of altitude-
dependent wind fields, e.g. wind shears, is implicitly covered in
the aircraft’s linearized dynamics. The LTV worst-case analysis

Finite Horizon Touchdown Analysis of Autolanded
Aircraft under Crosswind
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Pfifer (2019)).

This paper proposes a robust LTV worst-case analysis for
lateral touchdown conditions of an autolanded aircraft under
crosswind. The nonlinear aircraft dynamics are directly taken
from Biannic and Boada-Bauxell (2017), which provides an
A330-like aircraft model in final approach configuration with
the corresponding nonlinear simulation environment. It is freely
available from http://w3.onera.fr/smac/?q=aircraftModel and
briefly described in Section 3.1. The LTV representation of the
aircraft dynamics is derived by numerical linearization along
a reference trajectory, described in Section 3.3. An autoland
controller for this aircraft model has been developed in Theis
et al. (2018) and is analyzed in this paper in Section 4.

To cover realistic wind disturbance under the constraints of the
strict BRL, a tailored wind filter is designed. It shapes an arbi-
trary norm-bounded input signal into a wind disturbance whose
PSD is comparable to Dryden-like turbulence commonly used
in nonlinear analysis. Additionally, the influence of altitude-
dependent wind fields, e.g. wind shears, is implicitly covered in
the aircraft’s linearized dynamics. The LTV worst-case analysis

Finite Horizon Touchdown Analysis of Autolanded
Aircraft under Crosswind
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Pfifer (2019)).

This paper proposes a robust LTV worst-case analysis for
lateral touchdown conditions of an autolanded aircraft under
crosswind. The nonlinear aircraft dynamics are directly taken
from Biannic and Boada-Bauxell (2017), which provides an
A330-like aircraft model in final approach configuration with
the corresponding nonlinear simulation environment. It is freely
available from http://w3.onera.fr/smac/?q=aircraftModel and
briefly described in Section 3.1. The LTV representation of the
aircraft dynamics is derived by numerical linearization along
a reference trajectory, described in Section 3.3. An autoland
controller for this aircraft model has been developed in Theis
et al. (2018) and is analyzed in this paper in Section 4.

To cover realistic wind disturbance under the constraints of the
strict BRL, a tailored wind filter is designed. It shapes an arbi-
trary norm-bounded input signal into a wind disturbance whose
PSD is comparable to Dryden-like turbulence commonly used
in nonlinear analysis. Additionally, the influence of altitude-
dependent wind fields, e.g. wind shears, is implicitly covered in
the aircraft’s linearized dynamics. The LTV worst-case analysis

Finite Horizon Touchdown Analysis of Autolanded
Aircraft under Crosswind
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1. INTRODUCTION

The final approach of an aircraft is the most hazardous flight
phase accounting for more than 49% of all recorded fatal ac-
cidents, see Boeing (2018). Autoland systems were introduced
to mitigate the risk, especially for poor visual conditions in the
early 1950s (Birkle (1956)). These commonly use a runway-
based instrument landing system (ILS) to provide a localizer
and glide slope signal tracked by the aircraft’s autopilot. Given
its operational range, the autoland system must fulfill rigorous
touchdown constraints for safe operation.

The state-of-the-art approaches to evaluate touchdown condi-
tions and constraints are Monte Carlo analyses (Biannic and
Roos (2015)) or worst case optimizations conducted on the non-
linear model (Misra and Bai (2020)). Due to the large parameter
space of the aircraft, the variety of environmental conditions,
and disturbances, these procedures are computationally expen-
sive. Hence, they are not suitable to provide fast feedback in an
iterative design/tuning process of the autopilot. Furthermore,
they cannot provide actual worst-cases, but only a probability
distribution or a lower bound of the worst-case, respectively.

A common approach for worst-case analysis of aircraft dynam-
ics exists in the form of the linear parameter-varying (LPV)
framework. An example of a worst-case analysis method for
LPV systems based on integral quadratic constraints (IQCs) is,
for example, given in Pfifer and Seiler (2016). It is suitable
to efficiently analyze various design constraints such as gust
loads (Knoblach et al. (2015)). A single LPV analysis covers
an infinite amount of admissible trajectories in the parameter
set over infinite time horizons. However, during the (automated)
final approach, the aircraft only follows one specific trajectory

in this set by tracking the ILS signals. Consequently, the dy-
namics can be treated as solely time-dependent over a finite
horizon, i.e. as a linear-time varying system (LTV), which is
a special form of LPV systems. Treating the aircraft as a finite
horizon LTV system allows applying the robust LTV bounded
real lemma (BRL), which is an extension of the IQC based
LPV framework for worst-case analysis, see e.g. Seiler et al.
(2019) or Biertümpfel and Pfifer (2018). The latter provides an
efficient approach to analyze uncertain LTV systems over long
time horizons. It was shown feasible in an industry-relevant
worst-case loads analysis of a space launcher (Biertümpfel and
Pfifer (2019)).

This paper proposes a robust LTV worst-case analysis for
lateral touchdown conditions of an autolanded aircraft under
crosswind. The nonlinear aircraft dynamics are directly taken
from Biannic and Boada-Bauxell (2017), which provides an
A330-like aircraft model in final approach configuration with
the corresponding nonlinear simulation environment. It is freely
available from http://w3.onera.fr/smac/?q=aircraftModel and
briefly described in Section 3.1. The LTV representation of the
aircraft dynamics is derived by numerical linearization along
a reference trajectory, described in Section 3.3. An autoland
controller for this aircraft model has been developed in Theis
et al. (2018) and is analyzed in this paper in Section 4.

To cover realistic wind disturbance under the constraints of the
strict BRL, a tailored wind filter is designed. It shapes an arbi-
trary norm-bounded input signal into a wind disturbance whose
PSD is comparable to Dryden-like turbulence commonly used
in nonlinear analysis. Additionally, the influence of altitude-
dependent wind fields, e.g. wind shears, is implicitly covered in
the aircraft’s linearized dynamics. The LTV worst-case analysis
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available from http://w3.onera.fr/smac/?q=aircraftModel and
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aircraft dynamics is derived by numerical linearization along
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results are compared to a Monte Carlo analysis conducted on
the corresponding high-fidelity nonlinear aircraft model.

2. BACKGROUND ON LTV ROBUSTNESS ANALYSIS

2.1 Linear Time-Varying Systems

A finite horizon continuous LTV system Gt is a special case of
LPV system, which is limited to a single trajectory. It is defined
as

ẋt(t) = At(t)xt(t) +Bt(t) d(t)

e(t) = Ct(t)xt(t) +Dt(t) d(t),
(1)

where xt(t) ∈ Rnxt denotes the state vector, d(t) ∈ Rnd the
input vector, and e(t) ∈ Rne the output vector. The system
matrices of an LTV system are locally bounded continuous
functions of time t with compatible size to the corresponding
vectors, e.g. At(t) ∈ Rnxt×nxt . The explicit time dependency
will be omitted regularly to shorten the notation. In this paper,
the size of a signal d(t) will be described by the finite horizon
Lebesgue 2-norm:

‖d‖2[0,T ] =

√∫ T

0

dT (t)d(t) dt (2)

as defined in Tadmor (1990).

2.2 Integral Quadratic Constraints

IQCs are used to bound the input/output behavior of an uncer-
tainty ∆. The time-domain definition of an IQC is based on a
filter Ψ ∈ RHnz×(nv+nw)

∞ and a nz×nz real, symmetric matrix
M ∈ Snz×nz (Seiler (2015)). The graphical representation of a
time domain IQC is shown in Fig. 1. The uncertainty ∆ satisfies

∆

Ψ
z

wv

Fig. 1. Feedback Interconnection LTV system Gt and uncer-
tainty ∆

the IQC defined by M and Ψ if the output z of the filter Ψ
fulfills the quadratic time constraint∫ T

0

z(t)TMz(t) dt ≥ 0 (3)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ]. In
this case, the short notation ∆ ∈ IQC(Ψ,M) is used.

2.3 Robust LTV Performance Analysis

A robust performance analysis framework, see e.g. Biertümpfel
and Pfifer (2018) or Seiler et al. (2019) for details, can be
derived from the worst-case analysis condition of nominal
LTV systems in Green and Limebeer (1995). The framework
covers the feedback interconnection Fu(Gt,∆) of a known
LTV system Gt and a perturbation ∆. It is assumed that the
perturbation ∆ satisfies an IQC described by Ψ and M , i.e.
∆ ∈ IQC(Ψ,M). Consequently, the feedback interconnection
can be extended by the IQC filter Ψ as depicted in Fig. 2.
The extension leads to the extended LTV system G, whose

Gt

∆

Ψ

de

wv

z

Fig. 2. Feedback Interconnection LTV system Gt and uncer-
tainty ∆

dynamics are described by

ẋ(t) = A(t)x(t) + [B1(t) B2(t) ]
[
w(t)
d(t)

]
[
z(t)
e(t)

]
=

[
C1(t)
C2(t)

]
x(t) +

[
D11(t) D12(t)
D21(t) D22(t)

] [
w(t)
d(t)

]
,

(4)

where x(t) ∈ Rnx is the state vector of the combined systems
Gt and Ψ, d(t) ∈ Rnd the input vector, and e(t) ∈ Rne the
output vector. The time-domain inequality (3) enforced on the
output z of Ψ is used to replace the explicit representation of
the uncertainty w = ∆(v).

For the interconnection depicted in Fig. 2, the finite horizon
worst case L2[0, T ] to ‖e(T )‖2 gain is defined as:

‖Fu(Gt,∆)‖2 := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d �=0,x(0)=0

‖e(T )‖2
‖d(t)‖2[0,T ]

. (5)

Geometrically interpreted, it describes the ball upper bounding
the worst-case output e(T ) at the terminal time T over all
∆ ∈ IQC(Ψ,M) for ‖d(t)‖2[0,T ] ≤ 1.

Using the extended system G (4) and the time-domain IQC
formulation (3), a dissipation inequality can be derived pro-
viding an upper bound on the worst-case L2[0, T ] to ‖e(T )‖2
gain of the interconnection Fu(Gt,∆) (Seiler et al. (2019);
Biertümpfel and Pfifer (2018)). This dissipation inequality
leads to a linear matrix inequality, which can be expressed as
an equivalent condition based on the integrability of a Riccati
differential equation (RDE). The latter is provided in the fol-
lowing theorem.
Theorem 1. Let Fu(Gt,∆) be well posed ∀∆ ∈ IQC(Ψ,M),
then ‖Fu(Gt,∆)‖2 < γ if there exists a continuously differen-
tiable symmetric P : [0, T ] → Rnx×nx such that

P (T ) =
1

γ
C2(T )

TC2(T ), (6)

Ṗ = Q+ PÃ+ ÃTP − PSP ∀t ∈ [0, T ], (7)
and

R =
[
DT

11MD11 DT
11MD12

DT
12MD11 DT

12MD12−γI

]
< 0 ∀ t ∈ [0, T ], (8)

with
Ã = [B1 B2 ]R−1

[
(CT

1 MD11)
T

(CT
1 MD12)

T

]
−A, (9)

S = − [B1 B2 ]R−1
[
BT

1

BT
2

]
(10)

and
Q = −CT

1 MC1

+
[
(CT

1 MD11)
T

(CT
1 MD12)

T

]T
R−1

[
(CT

1 MD11)
T

(CT
1 MD12)

T

]
.

(11)

Proof. The proof is based on the definition of a time-dependent
quadratic storage function V (x, t) = xTP (t)x. After per-
turbing (7), the resulting Riccati differential inequality can be
rewritten as an LMI applying the Schur complement. Multi-
plying [xT , wT , dT ] and [xT , wT , dT ]T on the left and right
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side respectively of the LMI results in a dissipation inequality.
Integration from 0 to T for zero initial conditions gives∫ T

0

z(t)TMz(t)dt− γ

∫ T

0

d(t)T d(t)dt

+x(T )TP (T )x(T ) < 0.

(12)

Equality (6) is perturbed and left and right multiplied with
x(T )T and x(T ) respectively resulting in

x(T )TP (T )x(T )− 1

γ
e(T )T e(T ) = 0. (13)

Substituting (13) in (12) and applying the vector 2-norm (Eu-
clidean) ‖e(T )‖22 = e(T )T e(T ) results in the upper bound on
(5) given by γ. �

Note that a detailed proof can be found in Seiler et al. (2019).

2.4 Computational Approach

Generally, a given ∆ can be described by an infinite amount
of IQCs. The standard approach found in literature, see e.g.
Pfifer and Seiler (2016) or Veenman et al. (2016), is to select
a fixed filter Ψ and freely parameterize M . Thus, M lies within
a feasibility set M such that ∆ ∈ IQC(Ψ,M) for all M ∈ M.
Given this approach, Theorem 1 describes a parameterized
RDE. A feasible parametrization for a full-block uncertain LTI
dynamic can be found in Veenman et al. (2016), which will be
used in the course of this paper.
Example 1. Let ∆ be a full-block dynamic LTI uncertainty,
with ∆ ∈ RHnw×nv and 0 < ‖∆‖∞ ≤ b. A valid time domain

IQC for ∆ is defined by Ψ =
[
bψν⊗Inv 0

0 ψν⊗Inw

]
and M :=

{M =
[
X⊗Inv 0

0 −X⊗Inw

]
: X = XT ≥ 0 ∈ R(ν+1)×(ν+1)}.

A typical choice for ψν ∈ RH(ν+1)×1
∞ is:

ψν =
[
1 1

(s−ρ) . . . 1
(s−ρ)ν

]T
, ρ < 0 , ν ∈ N0. (14)

In the optimization, ψν is a fixed basis function with preselected
ν and ρ, whereas X is a free optimization parameter. This leads
to a nonlinear optimization problem to minimize the upper
bound γ on the worst-case gain:

min
M∈M

γ

such that ∀t ∈ [0, T ]

P (T ) =
1

γ
C2(T )

TC2(T )

Ṗ = Q+ PÃ+ ÃTP − PSP

R < 0

(15)

In Biertümpfel and Pfifer (2018), an algorithm to efficiently
solve the optimization problem is given. It essentially performs
a bisection of γ for a fixed M in an inner loop. The outer loop
applies a global optimization to identify the optimal parameter-
ization M ∈ M and minimal γ.

3. AUTOLANDING MODEL

3.1 Nonlinear Dynamics

The nonlinear aircraft model represents a large twin-engine
civil transport aircraft in landing configuration from 1000ft
above the runway until touchdown and is taken from Biannic

and Boada-Bauxell (2017). It is modeled as a standard nonlin-
ear six-degrees-of-freedom flight mechanics model with trans-
lational velocities u, v, and w, as well as the angular velocities
around the roll (p), pitch (q), and yaw (r) axis in the body-fixed
frame. The aircraft’s orientation with respect to the earth-fixed
reference frame is described by the standard Euler angles Φ,
Θ, and Ψ, see e.g. McRuer et al. (1974). The position of the
aircraft’s center of gravity in the earth fixed frame is described
by x, y, and z. The flight path with respect to earth is defined
by the path angle γ, course angle χ, and ground speed Vg , i.e.
the horizontal speed relative to the earth’s surface. Based on
the aerodynamic velocity, which results from superimposing
the aircraft’s translational velocity and wind, the aerodynamic
angle of attack α and sideslip angle β are defined. The aircraft’s
aerodynamics include the ground effect. During the approach,
the aircraft is controlled by two anti-symmetrically operating
ailerons (δa), an elevator (δe), a rudder (δe), and symmetrically
operating twin engines. Finally, an atmospheric model based on
the International Standard Atmosphere is included.

3.2 Autolanding Controller

In this paper, the autoland controller developed in Theis et al.
(2018) is analyzed. Its design considers the lateral and longi-
tudinal motion as decoupled. The presented analysis is limited
to the lateral motion of the aircraft. Therefore, only the lateral
control system is described as depicted in Fig. 3.

∫
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∫
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kẏVg0 cosχ0

Lateral-
Directional
Dynamics
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Fig. 3. Lateral part of the autoland controller as used in the LTV
analysis (adaptations highlighted)

The Robust Controller block represents a ninth-order multi-
variable H∞ controller. It provides lateral directional control
via roll rate and lateral load factor feedback, damping aug-
mentation of the dutch-roll mode via yaw rate feedback, and
adverse yaw cancellation via a pronounced roll rate to rudder
forward-feed. Furthermore, it adds lead compensation and roll-
off characteristics.

The reference roll rate for the inner loop controller is provided
by the bank angle tracking realized by proportional bank angle
feedback. It is implemented as

pref = kφ (φref − φ) , (16)
with kφ = 0.7.

The reference bank angle in (16) is provided by the localizer
tracker implemented as proportional-derivative (PD) controller.
Rather than directly implementing a differentiator, ∆ẏ is ap-
proximated by ∆ẏ ≈ Vg sinχ. Thus, the controller is imple-
mented as

φref = k∆y∆ŷ + kẏVg sinχ, (17)
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side respectively of the LMI results in a dissipation inequality.
Integration from 0 to T for zero initial conditions gives∫ T
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z(t)TMz(t)dt− γ

∫ T

0

d(t)T d(t)dt

+x(T )TP (T )x(T ) < 0.

(12)

Equality (6) is perturbed and left and right multiplied with
x(T )T and x(T ) respectively resulting in

x(T )TP (T )x(T )− 1

γ
e(T )T e(T ) = 0. (13)

Substituting (13) in (12) and applying the vector 2-norm (Eu-
clidean) ‖e(T )‖22 = e(T )T e(T ) results in the upper bound on
(5) given by γ. �

Note that a detailed proof can be found in Seiler et al. (2019).

2.4 Computational Approach

Generally, a given ∆ can be described by an infinite amount
of IQCs. The standard approach found in literature, see e.g.
Pfifer and Seiler (2016) or Veenman et al. (2016), is to select
a fixed filter Ψ and freely parameterize M . Thus, M lies within
a feasibility set M such that ∆ ∈ IQC(Ψ,M) for all M ∈ M.
Given this approach, Theorem 1 describes a parameterized
RDE. A feasible parametrization for a full-block uncertain LTI
dynamic can be found in Veenman et al. (2016), which will be
used in the course of this paper.
Example 1. Let ∆ be a full-block dynamic LTI uncertainty,
with ∆ ∈ RHnw×nv and 0 < ‖∆‖∞ ≤ b. A valid time domain

IQC for ∆ is defined by Ψ =
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bψν⊗Inv 0

0 ψν⊗Inw

]
and M :=

{M =
[
X⊗Inv 0

0 −X⊗Inw

]
: X = XT ≥ 0 ∈ R(ν+1)×(ν+1)}.

A typical choice for ψν ∈ RH(ν+1)×1
∞ is:

ψν =
[
1 1

(s−ρ) . . . 1
(s−ρ)ν
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, ρ < 0 , ν ∈ N0. (14)

In the optimization, ψν is a fixed basis function with preselected
ν and ρ, whereas X is a free optimization parameter. This leads
to a nonlinear optimization problem to minimize the upper
bound γ on the worst-case gain:
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1
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In Biertümpfel and Pfifer (2018), an algorithm to efficiently
solve the optimization problem is given. It essentially performs
a bisection of γ for a fixed M in an inner loop. The outer loop
applies a global optimization to identify the optimal parameter-
ization M ∈ M and minimal γ.

3. AUTOLANDING MODEL

3.1 Nonlinear Dynamics

The nonlinear aircraft model represents a large twin-engine
civil transport aircraft in landing configuration from 1000ft
above the runway until touchdown and is taken from Biannic

and Boada-Bauxell (2017). It is modeled as a standard nonlin-
ear six-degrees-of-freedom flight mechanics model with trans-
lational velocities u, v, and w, as well as the angular velocities
around the roll (p), pitch (q), and yaw (r) axis in the body-fixed
frame. The aircraft’s orientation with respect to the earth-fixed
reference frame is described by the standard Euler angles Φ,
Θ, and Ψ, see e.g. McRuer et al. (1974). The position of the
aircraft’s center of gravity in the earth fixed frame is described
by x, y, and z. The flight path with respect to earth is defined
by the path angle γ, course angle χ, and ground speed Vg , i.e.
the horizontal speed relative to the earth’s surface. Based on
the aerodynamic velocity, which results from superimposing
the aircraft’s translational velocity and wind, the aerodynamic
angle of attack α and sideslip angle β are defined. The aircraft’s
aerodynamics include the ground effect. During the approach,
the aircraft is controlled by two anti-symmetrically operating
ailerons (δa), an elevator (δe), a rudder (δe), and symmetrically
operating twin engines. Finally, an atmospheric model based on
the International Standard Atmosphere is included.

3.2 Autolanding Controller

In this paper, the autoland controller developed in Theis et al.
(2018) is analyzed. Its design considers the lateral and longi-
tudinal motion as decoupled. The presented analysis is limited
to the lateral motion of the aircraft. Therefore, only the lateral
control system is described as depicted in Fig. 3.

∫
g
Vg

∫
Vg

∫

k∆ykΦ
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The Robust Controller block represents a ninth-order multi-
variable H∞ controller. It provides lateral directional control
via roll rate and lateral load factor feedback, damping aug-
mentation of the dutch-roll mode via yaw rate feedback, and
adverse yaw cancellation via a pronounced roll rate to rudder
forward-feed. Furthermore, it adds lead compensation and roll-
off characteristics.

The reference roll rate for the inner loop controller is provided
by the bank angle tracking realized by proportional bank angle
feedback. It is implemented as

pref = kφ (φref − φ) , (16)
with kφ = 0.7.

The reference bank angle in (16) is provided by the localizer
tracker implemented as proportional-derivative (PD) controller.
Rather than directly implementing a differentiator, ∆ẏ is ap-
proximated by ∆ẏ ≈ Vg sinχ. Thus, the controller is imple-
mented as

φref = k∆y∆ŷ + kẏVg sinχ, (17)

with k∆y = 0.003 and kẏ = 0.033. The signal ∆ŷ measures
the actual landing gear offset to the centerline rather than the
sensor’s offset to the centerline ∆y.

The decrab maneuver is initiated at a fixed height above ground
level HAGL of 5m. Following a specific trajectory, this altitude
maps to a time tDC. The model uses a ψ feedback controller
with lag compensator given by

ny,ref = kny

4s+ 1

20s+ 1
ψ, (18)

with kny
= 33 after initiation of the decrab maneuver and zero

before.

3.3 Linear Dynamics

The LTV representation of the aircraft is derived by linearizing
the nonlinear model along a nominal approach trajectory. This
trajectory is calculated based on a reference autoland approach
in the nonlinear simulation. For the nominal aircraft configu-
ration, a center of gravity position of 22% and a mass of 140t
are chosen. The respective airfield is on mean sea level given
nominal ISA conditions. The simulation starts at an altitude
of 300m, 30m below the glide slope signal, and 20m right of
the localizer signal and ends with the aircraft’s touchdown. The
lateral nonlinear aircraft dynamics are linearized using the tools
provided by Biannic and Boada-Bauxell (2017). This results in
a finite horizon LTV representation Gt of the aircraft’s dynam-
ics. In interconnection with the autoland controller, the result-
ing closed-loop, as pictured in Fig. 3, has a total of 19 states,
and three performance outputs, namely bank angle φ, lateral
offset to the centerline yLG, and the landing gear’s sideslip angle
relative to the centerline βLG. The single disturbance input is
the lateral turbulence vw. Note that the influence of a static
wind profile can be implicitly respected in the LTV dynamics
by including it in the calculation of the reference trajectory, i.e.
executing the reference approach with a static wind field.

3.4 Wind Model

The wind disturbance analyzed in this paper is derived from
Biannic and Boada-Bauxell (2017). Theis et al. (2018) also
used it for the design verification of the autoland controller.
It is built by the superposition of an altitude dependent wind
shear and a turbulent wind field. The touchdown conditions are
analyzed for two distinct wind scenarios. First a tailwind with
a fixed maximum amplitude of 10kts is analyzed. The second
analysis covers headwind with a fixed maximum amplitude
of 30kts. In both scenarios, simultaneously, a lateral wind
shear superimposed with turbulent crosswind is applied. The
lateral wind shear has a fixed maximum amplitude of 25kts. Its
amplitude is inverse-proportional to the altitude and reaches its
maximum 15m above ground as described by

vlat = 25kts ·min

(
(HAGL −HAGL,0)

2

(HAGL,0 − 15m)2
, 1

)
, (19)

where HAGL,0 is the altitude at initialization of the analysis.
The turbulence is generated by filtering a random number signal
with a mean of zero, variance of one, and sample time of 0.05s
through the first-order filter Glat:

Glat = σlat
20

2.5s+ 1
. (20)

The turbulence intensity σlat has a fixed value of 5.8kts. Note
that the head- and tailwind profiles are shaped equivalent to the
lateral wind shear, using the relation (19).

Due to their altitude dependence, the wind shear profiles are
unique for a specific trajectory. Thus, calculating the reference
trajectory under the respective wind scenario, the derived linear
model includes the wind profiles influence on the aircraft dy-
namics. Hence, only the turbulent component must be covered
in the LTV analysis.

As the turbulence filter (20) requires a white noise input, it
cannot be directly applied in the LTV analysis. Recalling the
definition of the L2[0, T ] to ‖e(T )‖2 gain, the LTV wind filter
has to be designed in such a way that it converts any L2[0, T ]
bounded signal into realistic turbulence. In particular, the LTV
wind filter’s design goal is to match the power spectral density
(PSD) of the turbulence signals in the nonlinear simulation.

The proposed design procedure consists of four steps. In the
first step, 2000 random turbulence profiles are generated along
the nominal approach trajectory using the nonlinear simula-
tion’s turbulence wind model with a fixed sampling of 20Hz.
The second step is to calculate the PSDs Ωvw,i

of the time
domain wind signals vw,i(t) using

Ωvw,i
(ω) = lim

T→∞

1

π

1

T

∣∣∣∣∣
∫ T

−T

vw,i(t)e
−jωtdt

∣∣∣∣∣
2

. (21)

The PSD of a time-domain signal is simply the average squared
of the signal’s Fourier transform. The Fourier transform of the
wind signals can be calculated via a fast Fourier transform
(FFT), e.g. using the built-in Matlab function fft. In the
third step, a minimum phase first order transfer function is

calculated, upper bounding the calculated
√∣∣Ωvw,i(ω)

∣∣ of all
wind signals using the built-in Matlab function fitmagfrd.
Subsequently, the transfer function is transformed into a state-
space representation of the wind filter Glat,LTV. In the fourth
step, it is checked if the derived wind filter produces adequate
wind disturbance signals. The nominal LTV aircraft model
closed loop is extended with Glat,LTV. Subsequently, the nom-
inal LTV worst-case disturbance signal dWC is calculated using
the procedure in Iannelli et al. (2019). Filtering dWC through
Glat,LTV provides the corresponding worst-case wind signal. In
case the LTV wind signals underestimate the amplitude of the
underlying turbulence, steps three and four are repeated with
an increased lower bound for fitmagfrd until the amplitudes
show an adequate match. In combination, steps three and four
assure matching PSDs of the LTV worst-case wind signal and
the nonlinear model’s turbulence. In Fig. 4 the PSDs of the
nominal worst-case LTV wind signal for the lateral displace-
ment due to lateral turbulence is compared to the PSD of lateral
turbulence profiles used in the Monte Carlo Simulation.
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Fig. 4. Comparison of the PSD of the nominal worst case
disturbance LTV signal (vw to yLG ) and turbulence to
generate the wind filter: LTV ( ), Monte Carlo ( )
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Table 1. Aircraft and environmental parameters
covered in Monte Carlo Analysis

Parameter Distribution∗ min max

Mass [t] uniform 120 180

Center of mass [%] uniform 15 41

Temperature [◦C] uniform −69 40

Runway slope [%] N (0, 0.4) −2 2

Glide Slope [◦] N (−3, 0.075) −3.15 −2.85

Runway elevation [ft] [−1000, 250] : 50% −1000 9200

[250, 750] : 28.33%

[750, 1250] : 13.33%

[1250, 1750] : 3.33%

[1750, 2500] : 1.67%

[2500, 3500] : 1.00%

[3500, 4500] : 0.67%

[4500, 9200] : 1.67%
∗N (µ, σ): normal distribution with mean µ

and standard deviation σ.

3.5 Uncertainty Model

The LTV analysis must cover the aircraft configurations and
environmental conditions evaluated in the Monte Carlo anal-
ysis, as summarized in Tab. 1. As different aircraft and envi-
ronmental parameters directly influence the aircraft’s dynamics
and the approach trajectory, the corresponding LTV closed-loop
dynamics differ from the nominal configuration in Section 3.3.
Explicitly respecting every uncertain parameter in Tab. 1 results
in an extensive IQC parameterization. Therefore, the following
uncertain LTV representation of the lateral closed loop is intro-
duced, whose range of behaviors covers the dynamics of a large
set of approaches:

GCL = GCL,nom(1 +Wt∆). (22)
In (22), ∆ is a norm bounded dynamic LTI uncertainty, with
‖∆‖∞ ≤ 1 and Wt is a time varying shaping filter. A weighting
filter Wt is calculated based on Hindi et al. (2002). Firstly,
LTV models resulting from 200 approaches are generated using
parameter combinations based on Tab. 1 and the static wind
profile (19). At frozen altitudes, the time-invariant weighting
W is calculated such that all derived approach models are
included in the uncertainty set (22). Afterward, the altitude
grid is mapped back to the time grid of the nominal approach
trajectory resulting in a time-dependent grid of weights. Finally,
the time-varying weighting filter Wt is obtained by piecewise
cubic polynomial interpolation of the obtained weights over
the time grid of the nominal trajectory. Note that a separate
weighting filter must be calculated for the head and tailwind
analysis with simultaneous lateral wind shear as described in
Section 3.4.

4. ANALYSIS

4.1 Analysis Setup
The general analysis interconnection for the LTV analyses is
shown in Fig. 5. It is used to evaluate three performance criteria,
namely bank angle φ, lateral offset to the centerline yLG, and the
landing gear’s sideslip angle relative to the centerline βLG, at
touchdown. These are represented by e in Fig. 5. The signal ym
describes the controller inputs from Fig 3. Two wind scenarios
as described in Section 3.4 are analyzed. Thus, the blocks C
and GA/C represent the LTV models of the autoland controller

and the aircraft dynamics, respectively. They are both derived
for similar lateral wind shears, but either 30kts headwind or
10kts tailwind. The block Wt is the corresponding time-varying
weight, and ∆ represents the dynamic LTI uncertainty.

GA/C

C

∆Wt

Glat

ym−

edWC

Fig. 5. Lateral LTV worst-case analysis interconnection

The LTV worst-case touchdown conditions are calculated ap-
plying the algorithm in Biertümpfel and Pfifer (2018) on the
nonlinear optimization problem (15). Therefore, the intercon-
nection in Fig. 5 must be transferred into the LTV robustness
analysis framework described in Section 2. The IQC described
in Example 1 is used to cover the behavior of the uncertainty ∆.
In this specific case, nv = nw = 1 and the IQC factorization is
defined by ν = 1 and ρ = −0.75. Hence, ∆ ∈ IQC(Ψ,M),
with M restricted to the set M := {M =

[
X 0
0 −X

]
: X =

XT ≥ 0 ∈ R2×2} and Ψ =
[
ψ1 0
0 ψ1

]
. The finite horizon worst-

case L2[0, T ] to Euclidean gain only bounds the Euclidian vec-
tor norm of the output performance signal over the disturbance
inputs at the final time T . Hence, the LTV touchdown analysis
has to be executed six times, once for each touchdown condition
for each wind setup.

Two separate Monte Carlo analyses of the full nonlinear closed-
loop are necessary to evaluate the head- and tailwind scenarios’
touchdown conditions. Each scenario is evaluated for 10000
samples defined by the parameter set in Tab. 1.

4.2 Results

For the 10kts tailwind scenario, the LTV worst-case analy-
sis delivered a maximum bank angle at touchdown φTD of
11.29deg, a lateral offset to the centerline yLG,TD of 11.4m,
and a worst-case sideslip angle of the landing gear βLG,TD of
17.17deg. The corresponding Monte Carlo analysis identified
maximum values of 11.27deg, 8.36m, and 11.13deg for the
bank angle, lateral offset, and sideslip angle, respectively. For
the 30kts headwind scenario, the LTV worst-case analyses iden-
tified 11.01deg for the bank angle, 14.46m for lateral offset,
and 17.61deg for the sideslip angle. The corresponding Monte
Carlo analysis’ results are 10.72deg for the bank angle, 13.42m
for the lateral offset, and 16.37deg for the sideslip angle. Thus,
each Monte Carlo analysis is upper bounded by the respec-
tive LTV worst-case. This is visualized in Fig. 6, showing the
two Mont Carlo analyses’ histograms and their most critical
value and the individual LTV worst-cases. Notably, the six
LTV analyses were completed in 46min, which is around seven
times faster than the 320min required for the two Monte Carlo
simulations, given relatively small sample sizes. Also, there
is no general rule on how large the sample size must be to
draw conclusions for the design process. Therefore, the LTV
analysis is more viable to assess the qualitative impact of design
changes rapidly. All analyses were run on a standard desktop
computer equipped with Intel i7 processor and 32GB memory.
Furthermore, only the LTV worst-case analysis identifies (guar-
anteed) worst-cases, whereas the Monte Carlo analysis can only
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Table 1. Aircraft and environmental parameters
covered in Monte Carlo Analysis

Parameter Distribution∗ min max

Mass [t] uniform 120 180

Center of mass [%] uniform 15 41

Temperature [◦C] uniform −69 40

Runway slope [%] N (0, 0.4) −2 2

Glide Slope [◦] N (−3, 0.075) −3.15 −2.85

Runway elevation [ft] [−1000, 250] : 50% −1000 9200

[250, 750] : 28.33%

[750, 1250] : 13.33%

[1250, 1750] : 3.33%

[1750, 2500] : 1.67%

[2500, 3500] : 1.00%

[3500, 4500] : 0.67%

[4500, 9200] : 1.67%
∗N (µ, σ): normal distribution with mean µ

and standard deviation σ.

3.5 Uncertainty Model

The LTV analysis must cover the aircraft configurations and
environmental conditions evaluated in the Monte Carlo anal-
ysis, as summarized in Tab. 1. As different aircraft and envi-
ronmental parameters directly influence the aircraft’s dynamics
and the approach trajectory, the corresponding LTV closed-loop
dynamics differ from the nominal configuration in Section 3.3.
Explicitly respecting every uncertain parameter in Tab. 1 results
in an extensive IQC parameterization. Therefore, the following
uncertain LTV representation of the lateral closed loop is intro-
duced, whose range of behaviors covers the dynamics of a large
set of approaches:

GCL = GCL,nom(1 +Wt∆). (22)
In (22), ∆ is a norm bounded dynamic LTI uncertainty, with
‖∆‖∞ ≤ 1 and Wt is a time varying shaping filter. A weighting
filter Wt is calculated based on Hindi et al. (2002). Firstly,
LTV models resulting from 200 approaches are generated using
parameter combinations based on Tab. 1 and the static wind
profile (19). At frozen altitudes, the time-invariant weighting
W is calculated such that all derived approach models are
included in the uncertainty set (22). Afterward, the altitude
grid is mapped back to the time grid of the nominal approach
trajectory resulting in a time-dependent grid of weights. Finally,
the time-varying weighting filter Wt is obtained by piecewise
cubic polynomial interpolation of the obtained weights over
the time grid of the nominal trajectory. Note that a separate
weighting filter must be calculated for the head and tailwind
analysis with simultaneous lateral wind shear as described in
Section 3.4.

4. ANALYSIS

4.1 Analysis Setup
The general analysis interconnection for the LTV analyses is
shown in Fig. 5. It is used to evaluate three performance criteria,
namely bank angle φ, lateral offset to the centerline yLG, and the
landing gear’s sideslip angle relative to the centerline βLG, at
touchdown. These are represented by e in Fig. 5. The signal ym
describes the controller inputs from Fig 3. Two wind scenarios
as described in Section 3.4 are analyzed. Thus, the blocks C
and GA/C represent the LTV models of the autoland controller

and the aircraft dynamics, respectively. They are both derived
for similar lateral wind shears, but either 30kts headwind or
10kts tailwind. The block Wt is the corresponding time-varying
weight, and ∆ represents the dynamic LTI uncertainty.
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Fig. 5. Lateral LTV worst-case analysis interconnection

The LTV worst-case touchdown conditions are calculated ap-
plying the algorithm in Biertümpfel and Pfifer (2018) on the
nonlinear optimization problem (15). Therefore, the intercon-
nection in Fig. 5 must be transferred into the LTV robustness
analysis framework described in Section 2. The IQC described
in Example 1 is used to cover the behavior of the uncertainty ∆.
In this specific case, nv = nw = 1 and the IQC factorization is
defined by ν = 1 and ρ = −0.75. Hence, ∆ ∈ IQC(Ψ,M),
with M restricted to the set M := {M =

[
X 0
0 −X

]
: X =

XT ≥ 0 ∈ R2×2} and Ψ =
[
ψ1 0
0 ψ1

]
. The finite horizon worst-

case L2[0, T ] to Euclidean gain only bounds the Euclidian vec-
tor norm of the output performance signal over the disturbance
inputs at the final time T . Hence, the LTV touchdown analysis
has to be executed six times, once for each touchdown condition
for each wind setup.

Two separate Monte Carlo analyses of the full nonlinear closed-
loop are necessary to evaluate the head- and tailwind scenarios’
touchdown conditions. Each scenario is evaluated for 10000
samples defined by the parameter set in Tab. 1.

4.2 Results

For the 10kts tailwind scenario, the LTV worst-case analy-
sis delivered a maximum bank angle at touchdown φTD of
11.29deg, a lateral offset to the centerline yLG,TD of 11.4m,
and a worst-case sideslip angle of the landing gear βLG,TD of
17.17deg. The corresponding Monte Carlo analysis identified
maximum values of 11.27deg, 8.36m, and 11.13deg for the
bank angle, lateral offset, and sideslip angle, respectively. For
the 30kts headwind scenario, the LTV worst-case analyses iden-
tified 11.01deg for the bank angle, 14.46m for lateral offset,
and 17.61deg for the sideslip angle. The corresponding Monte
Carlo analysis’ results are 10.72deg for the bank angle, 13.42m
for the lateral offset, and 16.37deg for the sideslip angle. Thus,
each Monte Carlo analysis is upper bounded by the respec-
tive LTV worst-case. This is visualized in Fig. 6, showing the
two Mont Carlo analyses’ histograms and their most critical
value and the individual LTV worst-cases. Notably, the six
LTV analyses were completed in 46min, which is around seven
times faster than the 320min required for the two Monte Carlo
simulations, given relatively small sample sizes. Also, there
is no general rule on how large the sample size must be to
draw conclusions for the design process. Therefore, the LTV
analysis is more viable to assess the qualitative impact of design
changes rapidly. All analyses were run on a standard desktop
computer equipped with Intel i7 processor and 32GB memory.
Furthermore, only the LTV worst-case analysis identifies (guar-
anteed) worst-cases, whereas the Monte Carlo analysis can only

provide lower bounds on the touchdown conditions. Besides,
the distribution in Fig. 6 indicates that the latter requires large
sample sizes to allow for meaningful conclusions on the most
critical touchdown scenarios. In Fig. 7, the most critical yLG
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Fig. 6. Analysis Results: LTV worst-case analysis ( ),
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value identified in the Monte Carlo simulations for head- and
tailwind are plotted against the corresponding LTV worst-cases.
It can be seen that, the LTV worst-case provides a not overly
conservative upper bound for the nonlinear simulation.

5. CONCLUSION

The proposed robust LTV analysis of an autolanded aircraft
provides fast upper bounds on worst-case touchdown condi-
tions under crosswind. The common LPV aircraft represen-
tation is simplified to a special finite horizon LTV case, ex-
posing the autoland scenario’s characteristics. This allows to
explicitly respect the changing dynamics and control laws un-
der the restriction of the final approach’s finiteness. Feasible
upper bounds for the Monte Carlo simulations conducted on
corresponding high-fidelity nonlinear model are provided by
the LTV worst-case analysis in a fraction of time. Thus, the
proposed approach delivers a supplemental tool for the design
process and evaluation of autoland controllers.
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