

<u>Christian Schmidt</u>, Arno Straessner, Tom Kreße, Manuel Gutsche, Hannah Jacobi Institute of Nuclear and Particle Physics, TU Dresden

Background uncertainty estimation in the search for a light CP-odd Higgs boson with ATLAS

Session T 82: Higgs, Di-Higgs II DPG Spring Meeting Dresden, 22nd of March, 2023

Analysis background

Motivation

Anomalous magnetic moment of the muon a_{μ} : Deviation between experiment and SM

Flavour-aligned 2HDM

4 additional Higgs-like particles h, H^+ , H^- , Acan explain a_{μ} deviation if CP-odd A is light

JHEP 09 (2021) 080

Analysis overview

Search for A boson

Production of *A* via *ggF* and top quark loop (without *b* association) Decay 100 % to tau pairs Search in channel $A \rightarrow \tau \tau \rightarrow e \mu (+v_e v_\mu v_\tau v_\tau)$

Analysis overview

Search for A boson

Production of *A* via *ggF* and top quark loop (without *b* association) Decay 100 % to tau pairs Search in channel $A \rightarrow \tau \tau \rightarrow e \mu (+v_e v_\mu v_\tau v_\tau)$

Background processes

- $Z/\gamma^* \to \tau \tau$
- Top (mainly $t\bar{t}$)
- Diboson (WW, ZZ, WZ)
- Multijet (misidentified QCD jets)

Non-QCD backgrounds from Monte Carlo simulations

Top background

Top quark decay

Conversion via weak force into *b*, producing $e/\mu + v$

Cut to reduce background

B-veto: Reject all events with b-quark jets

Top background

Top quark decay

Conversion via weak force into *b*, producing $e/\mu + v$

Cut to reduce background

B-veto: Reject all events with b-quark jets

Validation region

Invert b-veto to b-tag

Higher number of top events

 \rightarrow better for calculating relative uncertainties

Monte Carlo generators

Leading order (LO)

Minimal number of vertices, neglecting higher orders

Next-to leading order (NLO)

Allow for one extra loop or radiated particle

Parton shower (PS)

Repeated radiation and pair production Falling energy scale Factorization into a series of independent interactions

Matching

Prevent double-counting of NLO/PS overlap Methods implemented in POWHEG / MC@NLO

Calculating uncertainties

Comparison with other samples

Swap out components of the generator setup Herwig 7 instead of Pythia 8 for parton shower MadGraph5_aMC@NLO instead of POWHEG-BOX for matrix element

Calculating uncertainties

Comparison with other samples

Swap out components of the generator setup Herwig 7 instead of Pythia 8 for parton shower MadGraph5_aMC@NLO instead of POWHEG-BOX for matrix element

$t\bar{t}$ generator uncertainties

ECHNISCHE

UNIVERSITÄI

RESDE

Calculating uncertainties

Comparison with other samples

Swap out components of the generator setup Herwig 7 instead of Pythia 8 for parton shower MadGraph5_aMC@NLO instead of POWHEG-BOX for matrix element

Comparison with different parameter values

Renormalization and factorization scales for initial state radiation (ISR) / final state radiation (FSR) $(\mu_R, \mu_F) = (1, 1) \rightarrow (0.5, 0.5) / (2, 2)$

Damping parameter for Powheg matching $h_{damp} = 1.5 s_{top} \rightarrow 3.0 s_{top}$

Implemented with alternative event weights

$t\bar{t}$ generator uncertainties

Effect on expected limits

Total theoretical $t\bar{t}$ uncertainty ~20-40%

Larger than experimental systematics (~10%)

\rightarrow Okay, because background is small enough

Only weakening limits by max. 1.4%

Uncertainties for $Z \rightarrow \tau \tau$ and Diboson backgrounds

 $Z \rightarrow \tau \tau$ generator uncertainties

Diboson generator uncertainties

Uncertainties for $Z \rightarrow \tau \tau$ and Diboson backgrounds

$Z \rightarrow \tau \tau$ generator uncertainties

DPG Dresden IKTP / Christian Schmidt 22nd of March, 2023

Diboson generator uncertainties

Summary

- Analysis searching for A-boson in final state $e + \mu$
- Backgrounds include top decay, Z→ττ, weak bosons
- Estimate systematic uncertainties of Monte Carlo generators by comparing with variations
- Effect on expected limits varies with background size: Top: max. 1.4% Diboson: max. 0.3% Z→ττ: max. 35%

Backup

Signal and background expectations in signal region

