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Abstract—The amount of image data to be processed has in-
creased tremendously over the last decades. One major computer
vision task is the extraction of information to find patterns in and
between images. One well-studied pattern recognition algorithm
is AKAZE which builds a nonlinear scale space to detect
features. While being more efficient compared to its predecessor
KAZE, the computational demands of AKAZE are still high.
Since many real-world computer vision applications require fast
computations, sometimes under hard power and time constraints,
FPGAs became a focus as a suitable target platform. This work
presents a highly modularized and parameterizable implementa-
tion of the AKAZE feature detection algorithm integrated into
HiFlipVX, which is a High-Level Synthesis library based on the
OpenVX standard. The fine granular modularization and the
generic design of the implemented functions allows them to be
easily reused, increasing the workflow for other computer vision
algorithms. The high degree of parameterization and extension
of the library enables also a fast and extensive exploration of the
design space. The proposed design achieved a high repeatability
and frame rate of up to 480 frames per second for an image
resolution of 1920x1080 compared to related work.

Index Terms—AKAZE, FPGA, HLS, Feature Detection, Com-
puter Vision, Modular, Parametrizable

I. INTRODUCTION

The use of sensors in industry, digital cameras and smart-

phones, which are more and more capable of capturing high-

quality images and videos, increased. Therefore, the amount

of processed image data increased tremendously over the

last few decades and is still increasing rapidly. One major

computer vision task performed on these kinds of data is the

recognition of patterns. Feature detection and description are

key parts of pattern recognition algorithms. One important

measure to evaluate the quality of a feature detector is the

repeatability. Repeatability in context of computer vision tasks

is the capability of detecting the same features under different

kind of transformations, such as change of viewpoint or scale.

Two popular scale-invariant feature detector and descriptor are

Scale Invariant Feature Transform (SIFT) [1] and Speeded

Up Robust Features (SURF) [2]. While SURF has a lower

computation time compared to SIFT by using the Determinant

of Hessian (DoH) and the integral image instead of the

Difference of Gaussian (DoG) for feature detection, both

algorithm use floating point descriptor for features. Because

floating point feature descriptor are in general computational

expensive as well as have a high matching time for features,

feature detection and description algorithms with binary de-

scriptors like KAZE [3], Accelerated-KAZE (AKAZE) [4],

Binary Robust Independent Elementary Features (BRIEF) [5],

Oriented FAST and Rotated BRIEF (ORB) [6], Binary Robust

Invariant Scalable Keypoints (BRISK) [7] and Fast Retina

Keypoint (FREAK) [8] were proposed. This allows faster

feature descriptor computation and much faster matching using

typically the easy to compute Hamming Distance due the fact

that other brute force matching metrics for binary descriptors

show no significant differences [9]. With exception of KAZE,

all these algorithms showed in general a much better improve-

ment in the feature detection and description time compared

to SIFT and SURF. The computational expensive nonlinear

diffusion used by KAZE for feature detection performs in

general worse than SURF, in some cases even worse than

SIFT [10]. To improve the feature detection time using non-

linear diffusion the successor of the KAZE algorithm, named

AKAZE uses the Fast Explicit Diffusion (FED) scheme for

nonlinear diffusion instead of the Additive Operator Splitting

(AOS) scheme. AKAZE also introduces downsampling of

the image for nonlinear diffusion, building a nonlinear scale

space pyramid. The AKAZE algorithm showed better results

in context of repeatability and accuracy in comparison to SIFT,

SURF, ORB and BRISK. In some cases, AKAZE showed even

better repeatability and accuracy than its predecessor KAZE

[3], while at the same time being faster than SURF. However,

it is still more computational expensive and therefore slower

in comparison to ORB and BRISK.

In order to make the AKAZE algorithm feasible to use for

real-time applications as well as in data center or in the field

of High-Performance-Computing (HPC), this paper presents

a hardware acceleration of the feature detection part. This

proposed hardware friendly feature detector is implemented in

a streaming fashion using line-buffers making it less dependent

on the image size in the context of scalability. The feature

detector of this implementation is complemented with the

FREAK feature descriptor, which has shown to result in a

faster computation with lower memory load compared to the

original Modified-Local Difference Binary (MLDB) descrip-

tor. This work is also based on a highly modular High-Level

Synthesis (HLS) based computer vision library showing a use

case how easily a performant implementation of a complex

computer vision algorithm can be implemented on a Field
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Programmable Gate Array (FPGA).

This work is structured as follows, Section II presents

information about related work. Section III gives a brief

overview of the AKAZE algorithm while Section IV presents

implementation specific details and differences compared to

the original algorithm. Section V shows the achieved results

of the implementation compared to related work and Section

VI summarizes this paper and gives a brief outlook.

II. RELATED WORK

Over the years since the publication of the original AKAZE

algorithm by Alcantarilla et al. in 2013 [4], multiple works on

various architectures with the focus on different optimization

methods have been proposed.

In 2017, Kalms et al. [11] presented an implementation

of the AKAZE feature detector, including the build of the

nonlinear scale space pyramid with two octaves on an FPGA

complemented with a FREAK descriptor implementation in

software. The hardware implementation uses a 16-bit fix point

datatype except for the computation of the DoH which uses

a 32-bit fix point datatype. The design was evaluated on

a Zedboard containing a Zynq-7000 SoC with 100 MHz,

achieving 98 frames per second (fps) for an image resolution
of 1024 × 768. In 2019, Kalms et al. [12] extended the
design by an FPGA implementation of the FREAK descriptor

achieving 73.4 fps for 2048 features, showing that much higher
framerates can be achieved with an improved DMA system for

random memory access.

Jiang et al. [13], [14] introduced a real-time hardware

friendly oriented implementation of the AKAZE feature de-

tector, and a descriptor called Polar Local Difference Bi-

nary (PLDB). The implementation verified on a Virtex-5 and

mapped to a 65 nm TSMC ASIC achieved 127 fps for an
image size of 1920× 1080 pixel at a frequency of 200 MHz.
However, their implementation does not include the calculation

of the contrast factor which is an important part of the AKAZE

algorithm.

In 2018, Mentzer et al. [15] proposed an implementation

of the AKAZE algorithm for the Cadence Tensilica Vision

P5 an Application-Specific Instruction-set Processor (ASIP).

Because the implementation was targeted for the stereo camera

calibration for an Advanced Driver Assistant System (ADAS)

and the produced stereo images do not much differ in scale or

orientation, several simplifications of the AKAZE algorithm

were done, leading to a great reduction of the feature vector

size. The implementation reached up to 20.3 fps for an

unoriented and 15.5 fps for an oriented descriptor for 800×640
images at a maximum clock frequency of 800 MHz.

Li et al. [16] proposed an implantation of the AKAZE

algorithm using the SIFT descriptor, combining the efficiency

of the AKAZE feature detector with stability and robustness

of the SIFT descriptor. To reduce high dimensionality and

therefore inherent high computational complexity, the SIFT

descriptor of this implementation is based on a Sparse Random

Projection (SRP). While improving the quality of the descrip-

tor compared to MLDB and having much faster matching

times compared to the standard SIFT descriptor, SRP-AKAZE

has also higher matching time compared to MLDB, making it

a compromise between MLDB and SIFT descriptor.

Du et al. [17] uses Hardware Friendly Descreening (HFD)

[18] as diffusion filter for the linear scale space. To further

increase the processed framerate, the first octave of the follow-

ing frame is predicted using the current frame. To counter the

effect of the reduction of robustness caused by this prediction

they use motion estimation to predict the motion between the

previous and current frame. However, even with this method

the accuracy compared to the original AKAZE is reduced.

Still, their implementation can be beneficial for applications

which require a high number of frames to be processed were

the changes between frames is quite small. They achieved 784
fps for 640× 480 image for their design containing the build
of nonlinear scale space, feature detection, description and

matching.

Soleimani et al. [19] proposed an AKAZE implementation

for FPGAs using image partitioning to compute different sec-

tions of the image in parallel. They also store the conduction

coefficient matrix, which is required by the FED cycle, as

well as the diffused image on-chip in the partitioned Block-

RAM (BRAM) for the parallel computation. The conduction

coefficients for the following step are directly calculated by

the output of the FED cycle of the previous step. This simul-

taneous pipelined design allows to overlap the computation

of the FED function and conduction coefficient matrix. They

achieve with this design 304 fps for a 1280× 720 8-bit grey
scale image. The downside is that the storing of the conduction

coefficient matrix and the defused image is equivalent of

storing the whole image two times on board. As a result,

this design is highly reliant on the available on-chip memory,

making it heavily dependent on the image size and therefore

limiting its scalability. Their proposed design only contains

the computation of the contrast factor and the construction of

the nonlinear scale space, but neither the feature detection nor

the description.

III. AKAZE

AKAZE is a fast multiscale feature detection and descrip-

tion algorithm based on the KAZE algorithm. Both AKAZE

and KAZE build a nonlinear scale space for feature detection.

AKAZE uses a scheme called FED, unlike the original KAZE,

which uses the AOS scheme instead. Both schemes are semi-

implicit schemes to compute the nonlinear diffusion. Unlike

AOS, FED allows a variable time step size that can violate

the stability condition during an FED cycle. However, it

guarantees that a stable state is reached at the end of each

cycle. The second difference of AKAZE compared to its

predecessor KAZE is that it uses the MLDB descriptor instead

of the Modified-SURF (M-SURF) descriptor.

The AKAZE feature detector can be divided into three parts:

the computation of the contrast factor, the building of the

nonlinear scale space pyramid, and the detector that computes

the DoH for the feature response values.
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The computation of the contrast factor is based on the noise

estimator proposed by Canny [20]. A global histogram of

noise amplitudes, which are the absolute gradient values of

the image, is build and a fixed percentile of the noise signal

is then used to estimate the noise strength. In AKAZE a

70% percentile of histogram consisting of 300 bins is used

to determine the contrast factor.

The construction of the nonlinear scale space pyramid is

discretized into a set of levels called evolution. These evolution

levels are further organized in a series of octaves with each

octave o consisting of exactly s sublevels. Each evolution
level produces a smoothed image of the diffused image of

the previous evolution level, using a Gaussian filter kernel.

This Gaussian filtered image is used by the feature detector

of each evolution level, as well as for the computation of

the conduction coefficient matrix, required by the FED. The

first FED step of the FED cycle takes the diffused image of

the FED cycle of the previous evolution level and produces

a further diffused image for the following evolution level.

Each FED cycle consists of multiple steps with variable step

sizes. The step sizes for all FED steps are independent of the

input image, since they depend only on the number of octaves

and sublevels of the nonlinear scale space pyramid, and can

therefore be calculated in advance. Since images can differ in

their luminance values and may also contain noises, a contrast

factor is required to calculate the conduction coefficients.

There are multiple options with different properties to compute

the conduction coefficients for the nonlinear diffusion. One

popular option is the anisotropic diffusion, also called Perona-

Malik diffusion [21], which is not the only one supported

by AKAZE. To make the feature detector scale invariant, the

image is downsampled by the factor of two at the end of each

octave. This produces an image with only a quarter of the size

of the previous octave. In addition, an adaption of the contrast

factor by multiplying it with 0.75 is required.

IV. PROPOSED DESIGN

Two goals are pursued with this work. On the one hand,

a modular and scalable implementation of the AKAZE al-

gorithm that can be optimized in terms of performance,

resources and repeatability, depending on the target device

and application. On the other hand, generic and parameter-

izable building blocks were realized with HLS to improve

the implementation of different feature detection algorithms.

Therefore, the individual function parameters and options have

been designed in such a way that they can cover a wide range

of potential applications. For some functions needed in the

algorithm we used and extended an already existing HLS-

based library [22].

A. Fixed Point

The original implementation of the AKAZE algorithm used

32-bit floating-point precision. Because floating point data

types are expensive to implement in hardware, the design

supports 8- and 16-bit fixed-point data types for the images.

Fig. 1: Overview of the proposed AKAZE feature detector de-

sign, including the build of the nonlinear scale space pyramid

and contrast factor computation.

Fig. 2: Modularization of the contrast factor computation

using Scharr and Magnitude function to compute the absolute

gradient.

The only exception is the DoH function, which creates 16- or

32-bit response values used by the feature extraction function.

B. Vectorization

All functions of the implementation provide a parallelization

or vectorization of 1, 2, 4 or 8, to achieve the desired

performance based on the available resources. This includes

the computation of the contrast factor, the nonlinear scale

space, and the feature detection. Only the Gather and Retain

Best functions (see Figure 1), do not require parallelization.

This is partly due to their complexity and partly because they

operate only on feature vectors, which are much smaller than

the images.

C. Contrast Factor

The contrast factor computation can be divided into four

major parts, as shown in Figure 2. A 5× 5 Gaussian kernel is
used to smooth the input image. The first order derivatives are

computed in parallel with respect to x and y and than used
by the magnitude function to compute the absolute gradients.
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Fig. 3: Overview of the nonlinear diffusion. The input image

is multicasted to the FED Cycle and a Gaussian filter. The

Gaussian image is then multicasted to the conductivity func-

tion and to the feature detector.

Finally, the absolute gradient values are evaluated by the

contrast factor function itself which includes the creation of a

histogram.

Figure 2 describes the complete implementation of the

contrast factor computation. In this context, we computed

λ as shown in Equation 1. The main part of the contrast

factor implementation is the calculation of the histogram,

which was realized by a double buffer. Like in Kalms et

al. [11] the calculation is done in one loop instead of two.

This is possible because the maximum achievable value of the

gradient image (hmax = 0.5) is used for the histogram size

and not the maximum achieved value of each gradient image.

Furthermore, the size of the histogram (bmax) was set to 256

for 8-bit and 512 for 16-bit input data to achieve a sufficient

accuracy and optimized utilization of the local memory.

λ = hmax · i

bmax
=

i

2bmax
(1)

As in the original algorithm, this design uses a 70%

percentile for the contrast factor, but a different percentile

can be freely chosen if required. For a vectorization of n,

n histograms are computed in parallel. These histograms are

then summed together with the calculation of the bin position

(i) until the percentile has been reached. Since we only need
the squared contrast factor in the rest of the algorithm, we

calculate it in advance to avoid unnecessary operations. This

additionally requires a bit-width conversion from 16 to 32-bit

and a multicast in hardware.

D. Nonlinear Scale Space Pyramid

The computation of the contrast factor provides the basis for

the nonlinear diffusion. As shown in Figure 3, the nonlinear

diffusion can also be modularized into three parts. First, the

5 × 5 Gaussian filter which takes the image produced by the
previous evolution level as input and writes the output to

the feature detector, which will be discussed later. Second,

the conductivity function, which produces the conduction

coefficients required by the FED steps. Third, an FED cycle

consisting of multiple FED steps. Since the Gaussian filter

function already existed, we implemented the conductivity and

FED function. Both functions were not implemented from

scratch. Instead they were used as an opportunity to extend

the already existing 2D filter function which is responsible

for handling the other filters like the Gaussian or Scharr filter.

This allowed to skip time expensive (re-) implementation of

often used data handling functionality, like line-buffers, filter

windows and vectorization which already existed in the library

and are highly optimized for hardware synthesis.

The conductivity function uses the more hardware friendly

optimization presented in [11]. Requiring just one instead of

two divisions as described in the following equation:

c(∇L(x, y)) =
1

1 +
(

|∇L(x,y)|
λ

)2 =
λ2

λ2 + |∇L(x, y)|2 (2)

The implementation reused the already optimized derivative

functions with respect to x and y which exploits the symmetry
of filter kernels like Scharr and Sobel to compute the square

gradient value. However, the synthesis tool had problems to

identify the required number of bits for computing the square

of the first order derivatives with respect to x and y, allocating
resources for a bit-width much higher than required. Therefore,

a vendor independent arbitrary precision data type, supporting

a bit-width of up to 64 bit to address this issue, was realized.

Tests done in software using the Affine Covariant Regions

Dataset of the University of Oxford [23] showed that only

8 of over 400 million computed pixels by the FED function

exceeded a value larger than one or lower than zero. This led to

the decision to saturate the exceeding values to the maximum

representable value (using 8- or 16-bit) or to set them to zero

if they would become negative. This increases the fraction

of the fixed-point representation by two bits to increase the

accuracy. The FED function requires two inputs, the image and

the conduction coefficients, where the latter is the same for all

FED steps in a cycle. Therefore, the conduction coefficients

are simultaneously forwarded together with the FED output

by a newly introduced forwarding function, saving memory

resources for buffering. To support these new requirements,

the generic filter function has been adapted to optionally have

up to two inputs and two outputs.

The resize function is used to reduce the image columns and

rows by a factor of 2 by averaging four neighboring pixels,

which is a fast area interpolation. Factors of 4 and 8 are also

supported. Because the design averages always 2n with n ∈
{2, 4, 8} pixels a hardware friendly implementation is possible
using only addition and shifting, instead of a costly division.

The implementation of the resize function was designed in a

generic way not only to support averaging of pixels but also to

support further interpolation methods. Based on the 2D filter

function the resize function also supports a vectorization of the

input of up to 8. Because for every 2n input pixels only one
output pixel is created, the output vector of vout is the quotient
of the input vector vin and the downsampling factor n. Since
for a downsampling factor of 2 an output is written only for
every second input row, an additional data width converter is

used to halve the vector size if possible. This aligns the vector

size with the image size to avoid unnecessary stalls.

Analogous to the original AKAZE feature detection algo-

rithm, the contrast factor is also adapted by a factor of 0.75.
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Fig. 4: Overview of the feature detector module. The detected

features are multicasted to the compare function of the current

and following sublevel. NMS = Non-Maxima Suppression

As this implementation uses the square of the contrast factor,

it is adapted by a constant multiplication with a factor of

0.5625 = 1/2 + 1/16, which can be realized by two shifts and
one addition instead of a more expensive multiplication.

E. Feature Detector

The feature detector consists of three parts in the original

AKAZE algorithm. The DoH response values are computed

using 3× 3 Scharr filter kernels with the corresponding scale.
The scaled kernels are applied on the diffused image to

compute the first order derivatives with respect to x and y.
In addition, the same scaled kernels are applied on the first

order derivatives again to compute the second order derivatives

with respect to xx, yy and xy. The second order derivatives
are then used to compute the DoH response value. The second

part is the detection of the scale space extrema by extracting

the largest response value in a 3× 3 window and compare it
to all other detected extrema in its radius to find the largest

extrema or in other words, the most significant feature in a

region. Since pixel location is not sufficient for many cases and

features can be found between pixels, a subpixel refinement

is applied on the remaining features as last part. Because

a straight forward approach using the same concept would

not be efficient for a direct implementation in hardware a

restructuring of this design is proposed in Figure 4.

Software implementations can access the same memory

location multiple times as well as adjacent memory. However,

this approach is not feasible for a streaming based hard-

ware accelerator implementation. Instead an upscaled kernel

window is required which covers the whole required area.

Therefore, a new compile time solvable scale function which

automatically scales up the kernel by filling the gaps with zeros

for the kernel is introduced. The compiler is able to recognize

all multiplications with zero and optimizes them out, so that

no overhead in the resource allocation for DSPs is created.

The only disadvantage is that with the increasing kernel size,

in addition to the kernel windows size also the number of

line-buffer lines increases, putting higher demands on the on-

chip-memory resources. To reduce the resource demands as

well as the latency the 3 × 3 Scharr filter kernel for the first
order derivatives with respect to x and y were convolved into
three 5×5 filter kernel to compute the second order derivatives

directly. This led to the introduction of a compile time solvable

kernel convolution function, which can convolve any two given

input kernels with each other. As the three created kernels

also have symmetrical properties which can be exploited, three

second order derivative functions are introduced similar to the

already existing first order derivative functions. Compared to

a separate implementation using two Scharr filter modules 1/3
of BRAM utilization could be saved.

A feature extraction function that compares all detected

features of the same level with those of the previous level

would be possible but would have a large disadvantage in

hardware. Since the design reads in a streaming fashion, as

soon as one feature is detected and compared to the others,

it would stop reading and stall the entire design during the

comparison phase. For this reason, and because it also matches

with the fine granular idea of the used library, the scale space

detection function used in the original AKAZE implemen-

tation is divided in two modules, named feature extraction

and feature comparison. The subpixel-refinement done in the

post-detection part also uses the DoH response values to find

the subpixel location. This led to the decision to modularize

the feature extraction into a Non-Maxima Suppression (NMS)

module and a subpixel refinement module.

Another difference compared to the original AKAZE algo-

rithm is that the NMS function, which is an existing library

function, follows the NMS definition of the OpenVX standard

[24]. According to the definition the top-left elements have to

be smaller or equal and the bottom-right elements only smaller

compared to the center element. In the original algorithm all

eight surrounding DoH response values have to be smaller.

Because NMS and subpixel-refinement are using the same

input, both are computed in parallel regardless of whether

the NMS function has rejected the pixel or not. Only if both

modules accept the response value as a valid feature and if it

is beyond a certain threshold, it will be written to the output.

Otherwise it will be discarded.

To keep the library generic, not only is the subpixel refine-

ment, which is quite computational and resource demanding,

optional, but also the NMS. In addition, the functions for creat-

ing features and for subpixel refinement are exchangeable. By

using function pointers to realize the easy exchangeability, the

implementation exploits high-level language features provided

by C/C++ and uses a wrapper for AKAZE feature detector

specific functions. This allows to adapt the detector depending

on the algorithm and characteristic of input data as well as of

the created feature.

Since more than one feature can be detected for one input

vector the feature extraction function can also write feature

vectors to the output, containing more than one element. In

case that not for every entry in the output vector a feature has

been detected, an invalid element is written to the according

position in the vector. However, it is ensured that each output

vector contains at least one valid feature. The deserialization

function disassembles the output vector of the feature extrac-

tion function and writes out all valid vector entries one by one

and discards all invalid entries. The deserialization function
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supports replacing its functionality to decide which entry is

valid or not.

Unlike the multicast function for images, the number of

features is unknown at compile/synthesis time, thus requiring

a multicast function that can handle an arbitrary number of

features. Therefore, a new feature multicast function has been

introduced, stopping multicasting if an invalid input vector

has been detected, which signals the end of a transaction by

a feature function.

Like in the original AKAZE algorithm all neighboring

features are compared against each other to avoid replica-

tion. The design of the comparison function allows to read

between one and three inputs and compares the features of

all these inputs against each other. The original AKAZE

implementation compares not only the features of the current

sublevel against each other but compares them also against the

features of the previous and following sublevel of an octave.

Therefore, this design also presents a comparison function

with the support of up to three inputs. However, as Kalms et

al. [11] evaluated for AKAZE, the lower sublevel contributes

to only about 1% of the matches. Therefore, we have also

omitted this in our final design. The features of the feature

extraction function of the current and previous sublevel are

read from the input and compared against the features already

stored in the buffer and then written to the end of the buffer.

Due to the fact that the features are detected in ascending

order with respect to the vertical location of the image, the

comparison is stopped as soon as the first feature stored in the

buffer is outside of the vertical radius. Because the detectable

features inside the radius are in general much lower than the

overall features detected by the feature extraction function,

the design automatically limits the buffer size to the worst-

case number of detectable features in the radius. The buffer

is therefore designed in a ring-buffer fashion. This means that

as soon as the maximum capacity of the buffer is reached, the

oldest stored feature in the buffer is replaced by the newest

one. Depending on whether the replaced feature is still valid

or not, it is written to the output or discarded. The same

mentality driven to keep the feature extractor generic also

led to a generic implementation of the compare function. All

functionalities concerned with the specific characteristics of

the features are also exchangeable and wrapper functions can

be used to specialize the function, as has been done for our

AKAZE implementation.

F. Additional Functions

We developed a gather function that supports both block or

cyclic mode. This was designed in conjunction with a scatter

function. Both functions require that the number of elements

to be scattered or gathered is known at compile time. Due to

the fact that the number of detectable features is unknown, a

feature gather function was implemented. Similar to the feature

multicast function this gather function also stops reading from

an input as soon as an invalid feature or the maximum defined

number of elements for this input has been read. The gather

function of the AKAZE feature detector is used to collect the

features from all evolution levels, creating one output stream

to be finally processed by the Retain Best function. The feature

gather function also supports the exchange of the function

that decides which element signals the end of a transaction.

This allows various complex data types to be handled by this

function.

V. EVALUATION

This section provides the results and metrics of our imple-

mentation of the AKAZE feature detector algorithm. The eval-

uation of the repeatability for different configurations of our

design was done in software using the Oxford affine covariant

features dataset [23]. The image dataset contains 8 images with

5 additional transformations for each image, covering image

transformations like zooming, rotation, change of viewpoint,

blurring, change in brightness and JPEG compression. The

software evaluation only uses the same modules as proposed

for the hardware design. The final design was evaluated on the

ZCU104 evaluation board featuring a Xilinx Zynq UltraScale+

MPSoC. We synthesized the modules using a graph-based tool

based on the OpenVX standard, complemented with Vivado

HLS 2020.1 for the IP-cores and Vivado 2021.1 for the

synthesis of the block-design. The design consist of 95 IP-

cores for two octaves and 163 IP-cores for three octaves.

A. Comparison with other FPGA implementations

Table I shows the overall resource utilization, achieved

frequency and frame rate for our design compared to related

work. To make it more comparable, we also present the image

resolution, the stages implemented in hardware, and whether

the design was tested in hardware or in simulation. The frame

rate of our design is with 480 fps higher than the others.
The only exception is Du et al. [17] with 784 fps. However,
the image size of Du et al. [17] is only 640 × 480, while
ours is 1920 × 1080 which are 6.75 times the number of
pixels to compute. With the same resolution we achieve 1998
fps. Soleimani et al. [19] achieved a frame rate of 304 fps,
but at a resolution of 1280 × 720. Because their work only
focused on the nonlinear scale space they are missing the

feature detector. Their implementation uses buffers two times

the image size to store the conduction coefficients and diffused

FED image on-chip. Therefore, their Memory Management

Unit (MMU) already requires 524 BRAM, which strongly

restricts the scalability of their design. While Jiang et al. [13]

achieved a similar frequency to our design at the same frame

resolution, at only 127 fps, the frame rate is much lower
than ours. Their implementation also does not include the

computation of the contrast factor of an image. Kalms and

Göhringer [25] presented an OpenCL based FPGA (Virtex-7

XC7VX690T) implementation of the AKAZE feature detector.

The Scharr, Gaussian, conductivity, FED, DoH and the feature

extraction kernel function did run on the FPGA while the

comparison functions for the extracted features did run on

the host CPU. They achieved 342 fps (709 Million Pixels per

Second (Mpps)) with a frequency of 200 MHz and an images

size of 1920× 1080 with their design. Which is close to our
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Our Design Kalms et al.[11] Soleimani et al.[19] Du et al.[17] Jiang et al.[13]

Device Zynq®UltraScale+™ Zynq®-7000 SoC Kintex®UltraScale™ Kintex®-7 ASIC
(ZCU104) (7020) (KCU105) (XC7K325T) (TSMC 65nm)

Image resolution 1920x1080 1024x768 1280x720 640x480 1920x1080
Contrast factor � � � ? �
Nonlinear scale space � � � � �
Detector � � � � �
Descriptor � � � � �
Matching � � � � �
Test on device � � � � �

FF 79 835 123 944 38 314 65 028 157 122 -
LUT 69 722 127 063 24 945 112 596 196 134 -
LUTRAM - - - 72 276 28 068 -
36k BRAM 147.5 232 108 524 291 -
URAM 4 4 - - - -
DSP 136 272 157 31 228 -
Frequency (MHz) 214.5 150 100 100 100 200
Frames per second 360 480 98 304 784 127
Million pixels per second 746 996 77 280 241 263

TABLE I: Proposed design with a vector size of 4 (left) and 8 (right) compared to related work. All designs presented in this

table implemented 2 octaves.

proposed design. However, it is to consider that the design in

[25] consists of only one octave.

B. Comparison with CPU and GPU implementations

Pieropan et al. [26], [27] implemented AKAZE (as well

as SIFT) in CUDA. They used a Intel Xeon processor with

16 cores at 2.6 GHz, with 32 GB of RAM and an Nvidia

Titan X (Maxwell) for their evaluation, doing 100 runs on

an image of the Iguazu data set [4] with a resolution of

900 × 675 pixels. For the feature detector they achieved an
average frame rate of around 154 fps (94 Mpps) on the

GPU and 8.5 fps (5.2 Mpps) on the CPU. Since the building

of nonlinear scalar space of the AKAZE algorithm requires

many sequential steps, they concluded that it is not really

suitable for a GPU architecture. In addition to the OpenCL

based FPGA implementation, Kalms and Göhringer also [25]

presented a OpenCL implementations of the AKAZE feature

detector for a CPU (Intel Core-i7 4770k), integrated GPU

(iGPU) (Intel HD 4600) and GPU (Nvidia GTX 780). They

achieved with an images size of 1920 × 1080 pixels, 27 fps
(56 Mpps) on the CPU, 32 fps (67 Mpps) on the iGPU and

233 fps (483 Mpps) on the GPU. Our proposed design is

around 2.3 times faster than the GPU implementation of [26]

and around 1.5 faster than the GPU implementation of [25].

However, it is to consider that [26] implemented 4 octaves and

[25] implemented 1 octave. While performance comparisons

between different architectures are hard to make, we can show

that thanks to the streaming based nature of our design and

the exploitation of pipeline and data parallelism (vectorization)

an FPGA implementation of the AKAZE feature detector can

outperform a GPU implementation.

C. Repeatability

We tested our design in both hardware and software, using

8-bit gray scale images and 16-bit for DoH computation.

However, image processing using 16-bit fixed-point precision

and 32-bit for DoH response values is also supported. We

complemented our hardware implementation of the AKAZE

feature detector with a software implementation of the FREAK

[8] descriptor for evaluation. To show the correctness of our

design, we decided to use the repeatability [23] as metric for

evaluation. The repeatability is the ratio of detected features

that survive photometric and geometric transformations. It is

calculated on the basis of the intersection of regions and

depends only on the detector and not on the descriptor.

Therefore, making it a good choice for our evaluation of our

detector implementation.

One major contribution of our work is the implementation of

a fully pipelined compare function. Using a ring buffer design

to store the intermediate results for comparison and the fact

that features are sorted with respect to the y position, reduced
the complexity from O(n2) to approximately O(n log b),
with b denoting the ring buffer size and n the number of

input features to compare. The ring-buffer size is computed

automatically depending on the number of detectable features

in the search radius, but it can also be manually restricted

if required. However, the number of maximum required loop

iterations can still become quite high. To integrate the com-

pare function into the pipeline, its loop iterations should be

limited. While rewinding the loop would be possible to ease

the constraint, it would lead to a strong reduction of the

frequency and increase the initiation interval. Therefore, we

allow to define the maximum number of iterations manually.

We tested our design for two and three octaves, with and

without iteration limitation for the feature compare function,

and with and without subpixel refinement in hardware. We

compared it against a pure 32-bit floating point implementation

done in software with subpixel refinement. The result for the

repeatability are shown in the Figure 5. The 32-bit floating

point implementation performs best. However, the hardware

using subpixel refinement achieves close results to the software

implementation, with differences between 0.05% and 2%. The
only exception is the boat set (Figure 5a) with around 2.6%
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(a) Boat (Zoom & Rotation) (b) Bark (Zoom & Rotation) (c) Graffiti (Viewpoint)

(d) Wall (Viewpoint) (e) Bikes (Blur) (f) Leuven (Light)

(g) UBC (JPEG compression) (h) Trees (Blur)

Fig. 5: Repeatability a software implementation and different configurations for our proposed hardware design.

SW = 32-bit floating-point, HW = 8-bit fixed point for images and 16-bit fixed-point for DoH, O2/3 = 2 or 3 octaves,

L = Latency Restriction for compare function, SR = Subpixel Refinement using 32-bit floating-point for both SW and HW

for three octaves. However, they perform in all cases better

compared to the hardware implementation without subpixel

refinement, with up to 5.6% improvement in the bikes set

(Figure 5e) for three octaves. The hardware has an average

loss of less than 1% compared to software when subpixel

refinement is selected. If we omit subpixel refinement in

hardware, we lose on average additional 2.6% for three octaves
and 1.6% for two octaves. This shows that a fixed-point

hardware implementation has the potential to achieve similar

results in context of repeatability compared to a 32-bit floating-

point software implementation. The results also show that

the difference in repeatability is negligible if the maximum

number of iterations for the comparison module is carefully

chosen. Therefore, we have chosen a value similar to that of

Stage LUT FF BRAM URAM DSP

Constrast Factor 3772 3295 7 0 4
Nonlinear Scale Space 24351 27265 49 0 0
Detector 41599 49275 91.5 4 132
Inter Node FIFOs 7746 13524 0 39 0
System 7223 11634 7.5 0 0

TABLE II: Resource consumption of each stage of our hard-

ware design with 2 octaves, vectorization of 4, no subpixel

refinement and latency restrictions.

the slowest function (DoH) of the respective level to not slow

down the pipeline.

Table II shows a more detailed breakdown of the resource

utilization. The system resources are needed for the connection

to the main memory and the ARM processor. Since there was
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plenty of unused URAM on the system, they were partly used

for our inter node FIFOs, but normal BRAM would have been

sufficient as well.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a hardware friendly design for the

AKAZE feature detection algorithm using HLS. Our design is

streaming based and fully pipelined. This allows an overlap-

ping parallel computation of different modules. An utilization

of line buffers, kernel windows, and FIFOs between the mod-

ules to store intermediate results, keeps the on-chip memory

utilization low compared to other related work. The use of the

template based HLS library allowed an easy implementation

of many functions required by the algorithm. However, not

all required functions could be realized at first. Therefore,

this work extended the library with new functionalities while

keeping them at the same time as generic as possible. The

introduction of exchangeable functions using function pointers

allows to extend the library much easier. Therefore, they can

be reused for different algorithms not just for AKAZE. We

showed that a hardware friendly implementation using HLS is

possible, achieving 480 fps for a 1920 × 1080 resolution on
a Zynq UltraScale+. The use of the HLS library reduced the

high workload which would be required for a fine tuned im-

plementation using a Hardware Description Language (HDL)

like VHDL or Verilog. Designing a hardware-friendly subpixel

refinement without the costly use of 32-bit floating point data

is a prime target for future work, in addition to a hardware-

friendly implementation of a descriptor like FREAK using

HLS, and making the implemented functions open source.
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