
Construction and properties of the
NRQED Lagrangian up to order 1/𝑀3

Bachelorarbeit
zur Erlangung des Hochschulgrades

Bachelor of Science
im Bachelor-Studiengang Physik

vorgelegt von

Jonas Scheibler
geboren am 09.07.1998 in Zittau

Institut für Kern- und Teilchen Physik
Fakultät Physik

Bereich Mathematik und Naturwissenschaften
Technische Universität Dresden

2022



Eingereicht am 27. 06. 2022

1. Gutachter: Prof. Dr. Dominik Stöckinger
2. Gutachter: Prof. Dr. Ralf Schützhold



iii

Summary

Abstract
Nonrelativistic quantum electrodynamics (NRQED) is an effective field theory that describes a
nonrelativistic spin 1

2
-particle interacting with the electromagnetic field. We present a detailed

discussion of the NRQED Lagrangian up to order 1/𝑀3, in which we introduce a procedure
to construct all valid terms at the respective order and show the explicit calculations for each
term. We motivate the construction of the NRQED Lagrangian by discussing properties of
the Lagrangian of quantum electrodynamics (QED).

Abstract
Die nichtrelativistische Quantenelektrodynamik (NRQED) ist eine effektive Feldtheorie, die
die Wechselwirkung eines nichtrelativistischen Spin 1

2
-Teilchens mit dem elektromagnetischen

Feld beschreibt. Die NRQED Lagrangedichte wird bis zur Ordnung 1/𝑀3 untersucht, wobei
ein Verfahren präsentiert wird, welches ermöglicht, alle erlaubten Terme in der zugehörigen
Ordnung zu bestimmen. Die Berechnung aller Terme wird dabei explizit angegeben. Vorüber-
legungen zur Lagrangedichte der Quantenelektrodynamik (QED) motivieren die Auseinander-
setzung mit der NRQED Lagrangedichte.
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1 Introduction

1.1 Motivation of the QED Lagrangian ℒ𝑄𝐸𝐷

Since a rigorous derivation of ℒ𝑄𝐸𝐷 would be too detailed for the following considerations,
ℒ𝑄𝐸𝐷 is motivated by introducing the description of a free, relativistic, spin 1

2
-particle and the

coupling to the electromagnetic field.

Description of relativistic particles

The Dirac equation describes a free, relativistic, spin 1
2
-particle. The associated wave-functions

(Dirac spinors) 𝜓 are 4-component complex spinors. The corresponding Lagrangian ℒ𝐷,𝑓𝑟𝑒𝑒 is
given as

ℒ𝐷,𝑓𝑟𝑒𝑒 = 𝜓(𝑖/𝜕 −𝑚)𝜓 (1.1)

Slashed properties, such as /𝜕 are defined by a contracion with the complex, 4x4-𝛾𝜇-matrices:
/𝑎 = 𝑎𝜇𝛾

𝜇. The barred spinor 𝜓 is defined by 𝜓 = 𝜓†𝛾0. The equations of motion for the
spinors 𝜓 and 𝜓 can be obtained by the Euler-Lagrange-equations of ℒ𝐷,𝑓𝑟𝑒𝑒

𝜕ℒ𝐷
𝜕𝜓

= 𝜕𝜇
𝜕ℒ𝐷
𝜕(𝜕𝜇𝜓)

=⇒ 𝜓(𝑖
←
/𝜕 +𝑚) = 0 (1.2)

𝜓
←
/𝜕 denotes, that the derivative acts on the spinor to the left.

𝜕ℒ𝐷
𝜕𝜓

= 𝜕𝜇
𝜕ℒ𝐷
𝜕(𝜕𝜇𝜓)

=⇒ (𝑖/𝜕 −𝑚)𝜓 = 0 (1.3)

This reproduces the free Dirac equation (𝑖/𝜕 −𝑚)𝜓 = 0.

Classical electrodynamics

Before discussing the introduction of the electromagnetic interaction, it is worthwhile to take
a look into classical electrodynamics. The physical fields E and B are governed by the elec-
tromagnetic potentials 𝜑 and A in the following way: E = −∇𝜑 − 𝜕𝑡A, B = ∇ × A. In
4-notation, both potentials are combined into the 4-potential 𝐴𝜇 := (𝜑,A) = (𝐴0,A). An im-
portant property of 𝐴𝜇 is that E and B are invariant under the following gauge transformation
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with an arbitrary field 𝜃(x, 𝑡): 𝐴′𝜇 = 𝐴𝜇 − 𝜕𝜇𝜃. This degree of freedom of 𝐴𝜇 is essential in
the following considerations.

Coupling to the electromagnetic field

ℒ𝐷,𝑓𝑟𝑒𝑒 is invariant under a global gauge transformation of the spinor field 𝜓 → 𝑒𝑖𝜃𝜓. It is
however a crucial point that the Lagrangian-density should be invariant under a local gauge
transformation 𝜓 → 𝑒𝑖𝑒𝑄𝜃(𝑥)𝜓 as well. ℒ𝐷,𝑓𝑟𝑒𝑒 requires some modification in order to achive
said invariance. The minimal coupling principle presents a way to introduce a gauge field,
which establishes local gauge invariance. The field 𝐴𝜇 is introduced by the replacement 𝑖𝜕𝜇 →
𝑖𝜕𝜇 − 𝑒𝑄𝐴𝜇 into the free Dirac Lagrangian.

ℒ𝐷,𝑓𝑟𝑒𝑒 = 𝜓(𝑖/𝜕 −𝑚)𝜓 → ℒ𝐷,𝑖𝑛𝑡 = 𝜓[(𝑖𝜕𝜇 − 𝑒𝑄𝐴𝜇)𝛾𝜇 −𝑚]𝜓 (1.4)

The obtained Lagrangian ℒ𝐷,𝑖𝑛𝑡 contains a new type of interaction between the spinor field
and 𝐴𝜇, the electromagnetic interaction. In order to show local gauge invariance of ℒ𝐷,𝑖𝑛𝑡, it
is useful to introduce the gauge covariant derivative 𝐷𝜇 := 𝜕𝜇 + 𝑖𝑒𝑄𝐴𝜇

ℒ𝐷,𝑖𝑛𝑡 = 𝜓[(𝑖𝜕𝜇 − 𝑒𝑄𝐴𝜇)𝛾𝜇 −𝑚]𝜓 = 𝜓[𝑖 /𝐷 −𝑚]𝜓 (1.5)

𝐷𝜇 transforms covariantly under a gauge transformation, hence the name.

𝐷𝜇𝜓 → 𝐷
′𝜇 = [𝜕𝜇 + 𝑖𝑒𝑄 (𝐴𝜇 − 𝜕𝜇𝜃(𝑥))] 𝑒𝑖𝑒𝑄𝜃(𝑥)𝜓 = 𝑒𝑖𝑒𝜃(𝑥)𝐷𝜇𝜓 (1.6)

With this, one can easily show the gauge invariance of ℒ𝐷,𝑖𝑛𝑡

ℒ′

𝐷,𝑖𝑛𝑡 = 𝜓′ [𝑖 /𝐷
′
−𝑚]𝜓

′
= 𝜓[𝑖 /𝐷 −𝑚]𝜓 = ℒ𝐷,𝑖𝑛𝑡 (1.7)

The Lagrangian of the photon field 𝐴𝜇

The proposed gauge field 𝐴𝜇 can be interpreted as the photon field. The associated Lagrangian
ℒ𝐴 should therefore fulfill the following demands: ℒ𝐴 should be Lorentz-invariant and the
associated equations of motion should reproduce the Maxwell equations. Since the photon is a
massless particle, there should be no mass term in ℒ𝐴. The kinetic term should contain Field
derivatives 𝜕𝜇𝐴𝜈 . The simplest Lagrangian to fulfill these demands is

ℒ𝐴 = −1
4
𝐹 𝜇𝜈𝐹𝜇𝜈 (1.8)

with the electromagnetic field tensor 𝐹 𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇.
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The Lagrangian of QED ℒ𝑄𝐸𝐷

ℒ𝑄𝐸𝐷 is obtained by combining ℒ𝐷,𝑖𝑛𝑡 and ℒ𝐴.

ℒ𝑄𝐸𝐷 = ℒ𝐷,𝑖𝑛𝑡 + ℒ𝐴
= 𝜓(𝑖 /𝐷 −𝑚)𝜓 − 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈

= 𝜓𝑖𝜕𝜇𝛾𝜇𝜓⏟  ⏞  
kinetic term 𝜓

− 𝑒𝑄𝜓𝛾𝜇𝜓𝐴
𝜇⏟  ⏞  

interaction term

− 𝜓𝑚𝜓⏟  ⏞  
mass term

− 1
4
𝐹 𝜇𝜈𝐹𝜇𝜈⏟  ⏞  

kinetic term 𝐴𝜇

(1.9)

The Euler-Lagrange equations for 𝜓 and 𝐴𝜇 produce the coupled Dirac equation for 𝜓 and as
expected, the Maxwell equations for 𝐴𝜇

𝜕ℒ𝑄𝐸𝐷
𝜕𝜓

= 𝜕𝜇
𝜕ℒ𝑄𝐸𝐷
𝜕(𝜕𝜇𝜓)

=⇒ (𝑖 /𝐷 −𝑚)𝜓 = 0 (1.10)

𝜕ℒ𝑄𝐸𝐷
𝜕𝐴𝛽

= 𝜕𝛼
𝜕ℒ𝑄𝐸𝐷
𝜕(𝜕𝛼𝐴𝛽)

=⇒ 𝜕𝛼𝐹
𝛼𝛽 = 𝑒𝑄𝜓𝛾𝛽𝜓 (1.11)

The interaction term from (1.9) appears on the right side of the Maxwell equations. It is
therefore reasonable to define the electron current 𝑗𝛽 as 𝑗𝛽 := 𝑒𝑄𝜓𝛾𝛽𝜓, since it is the source
term of the Maxwell-equations.

1.1.1 Symmetries of ℒ𝑄𝐸𝐷

Lorentz-invariance

Under a Lorentz-transformation 𝜓, 𝜓, 𝜕𝜇 and 𝐴𝜇 transform as 𝑆(Λ)𝜓 = 𝜓
′
(𝑥

′
), 𝜓(𝑥)𝑆(Λ)−1 =

𝜓
′
(𝑥

′
), 𝜕𝜈 = Λ𝜇𝜈𝜕

′
𝜇 and 𝐴𝜈 = Λ𝜇𝜈𝐴

′
𝜇, respectively.

𝑆(Λ)𝜓(𝑥) = 𝜓
′
(𝑥

′
) =⇒ 𝜓(𝑥) = 𝑆−1(Λ)𝜓

′
(𝑥

′
)

𝜓(𝑥)𝑆(Λ)−1 = 𝜓
′
(𝑥

′
) =⇒ 𝜓(𝑥) = 𝜓

′
(𝑥

′
)𝑆(Λ)

(1.12)

Lorentz-invariance of ℒ𝑄𝐸𝐷 can be shown by using 𝑆−1(Λ)𝛾𝜇𝑆(Λ) = Λ𝜇𝜈𝛾
𝜈 .

ℒ𝑄𝐸𝐷 = 𝜓(𝑥)(𝑖𝜕𝜈𝛾
𝜈 − 𝑒𝑄𝐴𝜈𝛾

𝜈 −𝑚)𝜓(𝑥)− 1
4
𝐹 𝜇𝜈𝐹𝜇𝜈

= 𝜓
′
(𝑥

′
)𝑆(Λ)(𝑖Λ𝜇𝜈𝜕

′

𝜇𝛾
𝜈 − 𝑒𝑄Λ𝜇𝜈𝐴

′

𝜇𝛾
𝜈 −𝑚)𝑆−1(Λ)𝜓

′
(𝑥

′
)− 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈⏟  ⏞  

Lorentz-scalar

= 𝜓
′
(𝑥

′
)𝑆(Λ)(𝑖𝜕

′

𝜇 Λ
𝜇
𝜈𝛾

𝜈⏟  ⏞  
𝑆−1𝛾𝜇𝑆

−𝑒𝑄𝐴′

𝜇 Λ
𝜇
𝜈𝛾

𝜈⏟  ⏞  
𝑆−1𝛾𝜇𝑆

−𝑚)𝑆−1(Λ)𝜓
′
(𝑥

′
)− 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈

= 𝜓
′
(𝑥

′
)(𝑖𝜕

′

𝜇𝛾
𝜇 − 𝑒𝑄𝐴

′

𝜇𝛾
𝜇 −𝑚)𝜓

′
(𝑥

′
)− 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈

= ℒ′
𝑄𝐸𝐷

(1.13)
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This also means that the equations of motion for 𝜓 (1.10) and 𝐴𝜇 (1.11), that are obtained
from ℒ𝑄𝐸𝐷, are Lorentz-covariant and therefore valid in any reference frame.

Gauge-invariance

ℒ𝐷,𝑖𝑛𝑡 is invariant under local gauge transformations by design. ℒ𝐴 is also gauge-invariant
because 𝐹𝜇𝜈 is invariant under the transformation of 𝐴𝜇: 𝐴𝜇 → 𝐴𝜇−𝜕𝜇𝜃(𝑥). Therefore ℒ𝑄𝐸𝐷
is gauge invariant as well.

Parity-conservation

Parity transformation 𝒫 denotes the inversion of space: x 𝒫−→ -x. A representation of this
transformation for Dirac spinors is 𝛾0

𝜓
′
(−x, 𝑡) = 𝛾0𝜓(x, 𝑡)

𝜓
′
(−x, 𝑡) = 𝜓(x, 𝑡)𝛾0

(1.14)

The transformation behavior of the quantities of ℒ𝑄𝐸𝐷 under parity transformation is sum-
marized in table (1.1). ℒ𝑄𝐸𝐷 is invariant under Parity transformation

ℒ𝒫𝑄𝐸𝐷 = 𝜓
′
(−x, 𝑡)(𝑖𝜕0𝛾0 − 𝑖𝜕𝑗𝛾

𝑗 − 𝑒𝑄𝐴0𝛾
0 + 𝑒𝑄𝐴𝑗𝛾

𝑗 −𝑚)𝜓
′
(−x, 𝑡)− 1

4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡)𝛾0(𝑖𝜕0𝛾0𝛾0 − 𝑖𝜕𝑗 𝛾
𝑗𝛾0⏟ ⏞ 
−𝛾0𝛾𝑗

−𝑒𝑄𝐴0𝛾
0𝛾0 + 𝑒𝑄𝐴𝑗 𝛾

𝑗𝛾0⏟ ⏞ 
−𝛾0𝛾𝑗

−𝛾0𝑚)𝜓(x, 𝑡)− 1
4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡) 𝛾0𝛾0⏟ ⏞ 
I

(𝑖𝜕0𝛾
0 + 𝑖𝜕𝑗𝛾

𝑗 − 𝑒𝑄𝐴0𝛾
0 − 𝑒𝑄𝐴𝑗𝛾

𝑗 −𝑚)𝜓(x, 𝑡)− 1
4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡)(𝑖𝜕𝜈𝛾𝜈 − 𝑒𝑄𝐴𝜈𝛾
𝜈 −𝑚)𝜓(x, 𝑡)− 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈

= ℒ𝑄𝐸𝐷
(1.15)

This shows that ℒ𝑄𝐸𝐷 is parity conserving. In other words, the combination of physical
quantities of ℒ𝑄𝐸𝐷 is even under parity transformation.

parity transformation 𝒫
quantity 𝜕𝜇 𝐴𝜇 𝐹𝜇𝜈

𝒫 𝜕𝜇 𝐴𝜇 𝐹 𝜇𝜈

Table 1.1: Transformation behavior under parity transofrmation.

Time-reversal-invariance

Time reversal transformation 𝒯 denotes the inversion of time: 𝑡 𝒯−→ −𝑡. A physical interpre-
tation is observing a process and then observing the same process in reversed temporal order.
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If a process is symmetric under this transformation, an observer could not tell the difference
between the process itself and the reversed one. Dirac spinors transform like

𝜓
′
(x,−𝑡) = 𝛾1𝛾3𝜓(x, 𝑡)

𝜓
′
(x,−𝑡) = 𝜓(x, 𝑡)𝛾3𝛾1

(1.16)

The transformation behavior of the quantities of ℒ𝑄𝐸𝐷 under time reversal transformation is
summarized in table (1.2). As well as transforming the physical quantities, 𝒯 also acts on 𝑖:
𝑖
𝒯−→ −𝑖. Time reversal invariance of ℒ𝑄𝐸𝐷 can be shown by using

[𝛾1𝛾3, 𝛾0] = {𝛾1𝛾3, 𝛾1} = [𝛾1𝛾3, 𝛾2] = {𝛾1𝛾3, 𝛾3} = 0 (1.17)

ℒ𝒯𝑄𝐸𝐷 = 𝜓
′
(x,−𝑡)(𝑖𝜕0𝛾0 − 𝑖𝜕𝑗𝛾

𝑗 − 𝑒𝑄𝐴0𝛾
0 + 𝑒𝑄𝐴𝑗𝛾

𝑗 −𝑚)𝜓
′
(x,−𝑡)− 1

4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡)𝛾3𝛾1(𝑖𝜕0𝛾0 − 𝑖𝜕1𝛾
1 + 𝑖𝜕2𝛾

2 − 𝑖𝜕3𝛾
3 − 𝑒𝑄𝐴0𝛾

0 + 𝑒𝑄𝐴1𝛾
1 − 𝑒𝑄𝐴2𝛾

2

+ 𝑒𝑄𝐴3𝛾
3 −𝑚)𝛾1𝛾3𝜓(x, 𝑡)− 1

4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡)𝛾3𝛾1(𝑖𝜕0 𝛾0𝛾1𝛾3⏟  ⏞  
𝛾1𝛾3𝛾0

−𝑖𝜕1 𝛾1𝛾1𝛾3⏟  ⏞  
−𝛾1𝛾3𝛾1

+𝑖𝜕2 𝛾
2𝛾1𝛾3⏟  ⏞  
𝛾1𝛾3𝛾2

−𝑖𝜕3 𝛾3𝛾1𝛾3⏟  ⏞  
−𝛾1𝛾3𝛾3

−𝑒𝑄𝐴0 𝛾
0𝛾1𝛾3⏟  ⏞  
𝛾1𝛾3𝛾0

+ 𝑒𝑄𝐴1 𝛾
1𝛾1𝛾3⏟  ⏞  
−𝛾1𝛾3𝛾1

−𝑒𝑄𝐴2 𝛾
2𝛾1𝛾3⏟  ⏞  
𝛾1𝛾3𝛾2

+𝑒𝑄𝐴3 𝛾
3𝛾1𝛾3⏟  ⏞  
−𝛾1𝛾3𝛾3

−𝑚)𝜓(x, 𝑡)− 1
4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡) 𝛾3𝛾1𝛾1𝛾3⏟  ⏞  
I

(𝑖𝜕0𝛾
0 + 𝑖𝜕𝑗𝛾

𝑗 − 𝑒𝑄𝐴0𝛾
0 − 𝑒𝑄𝐴𝑗𝛾

𝑗 −𝑚)𝜓(x, 𝑡)− 1
4
𝐹𝜇𝜈 𝐹

𝜇𝜈

= 𝜓(x, 𝑡)(𝑖𝜕𝜈𝛾𝜈 − 𝑒𝑄𝐴𝜈𝛾
𝜈 −𝑚)𝜓(x, 𝑡)− 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈

= ℒ𝑄𝐸𝐷

(1.18)

In other words, the combination of physical quantities of ℒ𝑄𝐸𝐷 is even under time-reversal
transformation.

time reversal transformation 𝒯
quantity 𝜕𝜇 𝐴𝜇 𝐹𝜇𝜈 𝛾2

𝒯 -𝜕𝜇 𝐴𝜇 𝐹 𝜇𝜈 -𝛾2

Table 1.2: Transformation behavior under time reversal transofrmation.

Charge-conjungation-invariance

Charge conjungation 𝒞 denotes the reversal of the sign of the electric charge: 𝑄𝑒 𝒞−→ −𝑄𝑒.
This can be interpreted as changing particles into antiparticles and vice versa. Dirac spinors
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transform like

𝜓𝒞 = 𝐶𝜓⊺

𝜓𝒞 = (𝜓𝒞†𝛾0) = 𝜓⊺ 𝛾0𝐶†𝛾0⏟  ⏞  
C

(1.19)

An appropriate choice for C is 𝐶 = 𝑖𝛾2𝛾0. The relation used for 𝜓𝒞† can be shown accordingly.

𝐶† = -𝑖𝛾0 𝛾0𝛾2𝛾0⏟  ⏞  
𝛾2†

=⇒ 𝛾0𝐶†𝛾0 = - 𝛾0𝛾0⏟ ⏞ 
I

𝛾0𝛾2 𝛾0𝛾0⏟ ⏞ 
I

= -𝑖 𝛾0𝛾2⏟ ⏞ 
-𝛾2𝛾0

= 𝐶 (1.20)

ℒ𝒞𝑄𝐸𝐷 = 𝜓𝒞
(︀
𝑖𝜕𝜇𝛾

𝜇 + 𝑒𝑄𝐴𝜇𝛾
𝜇 −𝑚

)︀
𝜓𝒞 − 1

4
𝐹 𝜇𝜈𝐹𝜇𝜈 (1.21)

Charge conjungation invariance of ℒ𝑄𝐸𝐷 can be shown by analyzing 𝜓𝒞𝛾𝜇𝜓𝒞.

𝜓𝒞𝛾𝜇𝜓𝒞 = 𝜓⊺𝐶𝛾𝜇𝐶⏟  ⏞  
𝛾𝜇⊺

𝜓⊺ = 𝜓⊺𝛾𝜇⊺𝜓⊺ = −𝜓𝛾𝜇𝜓 (1.22)

The last step picks up a minus sign because 𝜓 is an anticommuting field and the order of
spinors is changed. With this result, we make up for the minus sign of the second term in
ℒ𝒞𝑄𝐸𝐷, that was caused by the reversal of the charge. The kinetic term should not take up a
minus sign, since it has not been altered.

𝜓𝒞𝑖𝜕𝜇𝛾
𝜇𝜓𝒞 = 𝜓⊺𝑖𝜕𝜇𝐶𝛾

𝜇𝐶⏟  ⏞  
𝛾𝜇⊺

𝜓⊺ = 𝜓⊺𝑖𝜕𝜇𝛾
𝜇⊺𝜓⊺ = −𝜓𝑖

←
𝜕𝜇𝛾

𝜇𝜓 = 𝜓𝑖𝜕𝜇𝛾
𝜇𝜓 (1.23)

When changing the order of the spinors, the derivative then acts on the spinor to its left. The
last step uses the method of partial integration in the associated action integral in order to
change the spinor on which the derivative acts. This is demonstrated in more detail in the
discussion of hermicity below.

Hermicity

In order to investigate the hermicity of (1.9), the terms are discussed seperately. The only
term that needs further consideration is the kinetic term. The hermitian conjungate of the
kinetic term is

(𝜓𝑖𝜕𝜇𝛾
𝜇𝜓)† = −𝑖𝜓†𝛾0𝛾𝜇𝛾0

←
𝜕𝜇 𝜓

†𝛾0⏟ ⏞ 
𝛾0𝜓

= −𝑖𝜓
←
/𝜕 𝛾0𝛾0⏟ ⏞ 

I

𝜓 (1.24)
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Hermicity of the kinetic term can be shown by integration by parts in the associated action
integral.

𝑆𝑘𝑖𝑛 =

∫︁
𝑑4𝑥 𝜓𝑖/𝜕𝜓

𝑝.𝑖.
=

∫︁
𝑑4𝑥 -𝑖𝜓

←
/𝜕𝜓

=

∫︁
𝑑4𝑥 (𝜓𝑖/𝜕𝜓)†

(1.25)

Locality

The Lagrangian obeys the mathematical definition of locality: It is a functional of the Dirac
spinor field, 𝐴𝜇 and their respecive derivatives, wich are all evaluated at the same spacetime-
point.



2 The NRQED Lagrangian

2.1 Preliminary considerations

This section is composed of information gathered from [3],[4],[5] and [9]. In the previous
chapter, we have presented the fundamental theory for a spin 1

2
-particle, interacting with an

electromagnetic field. Despite being generally valid, the relativistic equations, which arise from
this theory, are rather difficult to apply when describing non-relativistic problems like bound
states and low energy scattering processes. Non-relativistic atoms like muonium (𝜇+𝑒−) are
described very precisely by non-relativistic quantum mechanics. However, corrections need to
be accounted for. This is done by introducing pertubation theory into non-relativistic quan-
tum mechanics, in order to discuss for example the hydrogen fine-strucutre. More accurate
results can only be produced by abandoning non-relativistic quantum mechanics and applying
the covariant pertubation theory of QED. This was accomplished by Bethe and Salpeter [2],
but the approach turned out to be very difficult to apply.
In 1986, Caswell and Lepage [4] presented a fundamentally different approach. Instead of ap-
plying a relativistic quantum field theory (QED) to non-relativistic problems, they introduced
a new, nonrelativistic field theory called non-relativistic quantum electrodynamics (NRQED).
This effective field theory approach is applicable to any non-relativistic problem and can achive
any desired accuracy. Although being traditionally applied to point-like particles, NRQED can
also be used to analyse the electromagnetic interactions of a spin 1

2
-particle that is not ele-

mentary (cf.[3]).

Effective field theory approach to non-relativistic QED

A very remarkable fact about nature is that different physical phenomena arise at different
scales. In order to describe the physics at certain regions of distance, time or energy relatively
easy and with sufficent precision, it is useful to focus on a separate parameter space. Isolating
certain physical quantities and comparing parameters of the same dimension to it, is the first
step of getting a reasonable approximation around the desired quantity. Setting relatively large
parameters to infinity and neglectable ones to zero leaves a range of parameters with finite
effects, that can be treated as perturbations (cf.[5]). An effective theory simplifies calculations
because of its limitations to a well defined range.
When describing a non-relativistic spin 1

2
-particle interacting with an electromagnetic field, the
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predominant quantity is the particles rest mass 𝑀 . We can make the following approximations

𝐸 ≈𝑀 =⇒ |p| ≪𝑀

|𝜕𝑡𝐴𝜇| ≪ |𝑀𝐴𝜇|
(2.1)

This means that only particles with small momenta relative to the rest mass are allowed and
that the particles cannot obtain relativistic properties by interacting with the electromagnetic
field. Phenomena like pair production are therefore not possible.
The NRQED Lagrangian for the spin 1

2
-particle field is constructed in the folloing way

ℒ𝜓 =
∑︁
𝑛

𝜓†
𝑂𝑛

𝑀𝑛
𝜓 𝑛 = 0, 1, 2, ... (2.2)

The effective theory approach is applied by comparing the finite effects of the Operators 𝑂𝑛

with mass dimension 𝑛+ 1 to the particles rest mass at power 𝑛. The spinors 𝜓 and 𝜓† have
mass dimension 3

2
. The Lagrangian has mass dimension 4. In this way, this expansion does

not diverge and can be continued to an arbitrary order to reach desired precision. (2.2) is
however not the full NRQED Lagrangian ℒ𝑁𝑅𝑄𝐸𝐷. We can write ℒ𝑁𝑅𝑄𝐸𝐷 as

ℒ𝑁𝑅𝑄𝐸𝐷 = ℒ𝜓 + ℒ𝜓𝜒 + ℒ𝐴 (2.3)

The other terms beside ℒ𝜓 are discussed below and in chapter 2.4.

Symmetries of ℒ𝜓

So far, no constraints, besides the structure of (2.2) have been imposed on ℒ𝜓. In (1.1.1),
symmetries of the QED Lagrangian ℒ𝑄𝐸𝐷 have been discussed. It is well worth to discuss how
these change in the non-relativistic case.
Gauge-invariance and hermicity are necessary demands for a physical description and therefore
cannot change. Parity and Time invariance also remain vaild. Since a non relativistic the-
ory does not produce covariant equations, Lorentz-invariance cannot be achieved. Rotational
invariance is however a reasonable demand. NRQED disregards the description of antiparti-
cles. Since charge-conjungation-invariance relies on the exchange of particles and antiparticles,
NRQED is not invariant under charge conjungation.

Building blocks of ℒ𝜓

Combining (2.2) with the symmetries, we have obtained a set of powerful demands for con-
structing the Lagrangian in terms of mass dimension of the Operators 𝑂̂𝑛 and behavior under
said symmetry-transformations.
According to (1.9), ℒ𝑄𝐸𝐷 is ℒ𝑄𝐸𝐷 = ℒ𝐷,𝑖𝑛𝑡 + ℒ𝐴. Since NRQED describes the interaction of
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a non-relativistic 1
2
-particle field with an electromagnetic field, electromagnetism according to

ℒ𝐴 has to be described as well. ℒ𝐴 has to be included in the full NRQED Lagrangian in an
unchanged way, beacause there is no non-relativistic description for photons. The components
of ℒ𝐷,𝑖𝑛𝑡 change in the non-relativistic case in the following way. Since there is no demand for
Lorentz-invariance, the temporal and spacial components of 4-vectors can be treated seper-
ately. 𝐷𝜇 splits into 𝐷𝑡 := 𝜕𝑡 + 𝑖𝑄𝑒𝐴0 and D := ∇− 𝑖𝑄𝑒A. Both 𝑖𝐷𝑡 and 𝑖D are hermitian
operators. This can be easily shown by relating to the energy and momentum operators, which
are both hermitian.
Since there is no longer a need to represent 4-dimensional Lorentz-transformations, the 4-
dimensional Dirac spinors change into 2-dimensional Pauli spinors, which are sufficient in
order to represent 3-dimensional rotations of a spin 1

2
system. Therefore, 𝛾 matrices change

into the hermitian, complex 2x2-Pauli matrices 𝜎𝑖 (𝜎 = (𝜎1, 𝜎2, 𝜎3)⊺).
The properties of the discussed quantities are listed in table (2.1). At higher orders, combina-

quantity 𝑖𝐷𝑡 𝑖D 𝜎

mass dim. 1 1 0
𝒫 + - +
𝒯 + - -

hermicity + + +
gauge cov. ✓ ✓ ✓

Table 2.1: Properties of NRQED building blocks.

tions involving powers of 𝑖D, 𝑖𝐷𝑡 and 𝜎 appear. (𝑖D)𝑛 and (𝑖𝐷𝑡)
𝑛 are gauge covariant for any

given 𝑛 ∈ N
𝜓 → 𝜓

′
= 𝑒𝑖𝑄𝑒𝜃(x,t)𝜓 𝐷𝑡𝜓 → 𝑒𝑖𝑄𝑒𝜃(x,t)𝐷𝑡𝜓

(𝑖𝐷𝑡)
𝑛𝜓 = 𝑖𝐷𝑡𝑖𝐷𝑡...𝑖𝐷𝑡⏟  ⏞  

n-times

𝜓 → 𝑖𝐷𝑡𝑖𝐷𝑡...𝑖𝐷𝑡⏟  ⏞  
n-1-times

𝑒𝑖𝑄𝑒𝜃(x,t) 𝑖𝐷𝑡𝜓⏟  ⏞  
𝜒

→ 𝑒𝑖𝑄𝑒𝜃(x,t) 𝑖𝐷𝑡𝑖𝐷𝑡...𝑖𝐷𝑡⏟  ⏞  
n-times

𝜓

= 𝑒𝑖𝑄𝑒𝜃(x,t)(𝑖𝐷𝑡)
𝑛𝜓

(2.4)

𝜓 → 𝜓
′
= 𝑒𝑖𝑄𝑒𝜃(x,t)𝜓 𝑖D𝜓 → 𝑒𝑖𝑄𝑒𝜃(x,t)𝑖D𝜓

(𝑖D)𝑛𝜓 = 𝑖D𝑖D...𝑖D⏟  ⏞  
n-times

𝜓 → 𝑖D𝑖D...𝑖D⏟  ⏞  
n-1-times

𝑒𝑖𝑄𝑒𝜃(x,t) 𝑖D𝜓⏟ ⏞ 
𝜒

→ 𝑒𝑖𝑄𝑒𝜃(x,t) 𝑖D𝑖D...𝑖D⏟  ⏞  
n-times

𝜓

= 𝑒𝑖𝑄𝑒𝜃(x,t)(𝑖D)𝑛𝜓

(2.5)

(𝑖𝐷𝑡)
𝑛𝜓 = 𝑖𝐷†𝑡 𝑖𝐷

†
𝑡 ...𝑖𝐷

†
𝑡⏟  ⏞  

n-times

𝜓 = (𝑖𝐷𝑡𝑖𝐷𝑡...𝑖𝐷𝑡)
†⏟  ⏞  

n-times

𝜓 = (𝑖𝐷𝑡)
𝑛†𝜓 (2.6)

(𝑖D)𝑛𝜓 = 𝑖D†𝑖D†...𝑖D†⏟  ⏞  
n-times

𝜓 = (𝑖D𝑖D...𝑖D)†⏟  ⏞  
n-times

𝜓 = (𝑖D)𝑛†𝜓 (2.7)

Note that the † operation reverses the order of operators in (2.6) and (2.7). When applied
to any product of hermitian operators 𝑂†𝑘 = 𝑂𝑘, there are in general two hermitian product-
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combinations

(𝑂1𝑂2...𝑂𝑛 +𝑂𝑛𝑂𝑛−1...𝑂1) & 𝑖(𝑂1𝑂2...𝑂𝑛 −𝑂𝑛𝑂𝑛−1...𝑂1) (2.8)

(2.4) and (2.5) are also valid for any multiplicative combination of 𝑖D and 𝑖𝐷𝑡.
The electromagnetic field E and B can be obtained by the electromagnetic field tensor 𝐹 𝜇𝜈

via 𝐸𝑖 = 𝐹 0𝑖 and 𝐵𝑖 = 1
2
𝜖𝑖𝑗𝑘𝐹𝑗𝑘 . These expressions can also be formed using the covariant

derivatives

𝐸𝑗 = − 𝑖
𝑄𝑒

[︀
𝐷𝑡, 𝐷

𝑗
]︀
= − 𝑖

𝑄𝑒
(
[︀
𝜕𝑡 + 𝑖𝑄𝑒𝐴0, 𝜕𝑗 − 𝑖𝑄𝑒𝐴𝑗

]︀
)

= − 𝑖
𝑄𝑒
(
[︀
𝜕𝑡, 𝜕

𝑗
]︀⏟  ⏞  

0

−
[︀
𝜕𝑡, 𝑖𝑄𝑒𝐴

𝑗
]︀⏟  ⏞  

𝑖𝑄𝑒𝜕𝑡𝐴𝑗

+
[︀
𝑖𝑄𝑒𝐴0, 𝜕𝑗

]︀⏟  ⏞  
−𝑖𝑄𝑒𝜕𝑗𝐴0

−
[︀
𝑖𝑄𝑒𝐴0, 𝑖𝑄𝑒𝐴𝑗

]︀
)⏟  ⏞  

0

= − 𝑖
𝑄𝑒
(−𝑖𝑄𝑒 𝜕𝑡⏟ ⏞ 

𝜕𝑡

𝐴𝑗 − 𝑖𝑄𝑒 𝜕𝑗⏟ ⏞ 
−𝜕𝑗

𝐴0)

= 𝐹 0𝑗

(2.9)

𝐵𝑖 = 𝜖𝑖𝑗𝑘 𝑖
2𝑄𝑒

[︀
𝐷𝑗, 𝐷𝑘

]︀
= 𝜖𝑖𝑗𝑘 𝑖

2𝑄𝑒
(
[︀
𝜕𝑗 − 𝑖𝑄𝑒𝐴𝑗, 𝜕𝑘 − 𝑖𝑄𝑒𝐴𝑘

]︀
)

= 𝜖𝑖𝑗𝑘 𝑖
2𝑄𝑒

([𝜕𝑗, 𝜕𝑘]⏟  ⏞  
0

−
[︀
𝜕𝑗, 𝑖𝑄𝑒𝐴

𝑘
]︀⏟  ⏞  

𝑖𝑄𝑒𝜕𝑗𝐴
𝑘

−
[︀
𝑖𝑄𝑒𝐴𝑗, 𝜕𝑘

]︀⏟  ⏞  
−𝑖𝑄𝑒𝜕𝑘𝐴𝑗

+
[︀
𝑖𝑄𝑒𝐴𝑗, 𝑖𝑄𝑒𝐴𝑘

]︀
)⏟  ⏞  

0

= 𝜖𝑖𝑗𝑘 𝑖
2𝑄𝑒

(−𝑖𝑄𝑒 𝜕𝑗⏟ ⏞ 
−𝜕𝑗

𝐴𝑘 + 𝑖𝑄𝑒 𝜕𝑘⏟ ⏞ 
−𝜕𝑘

𝐴𝑗)

= 𝜖𝑖𝑗𝑘 1
2
𝐹𝑗𝑘

(2.10)

We use E and B to simplify terms and calculations at higher orders.
Because (𝜎𝑖)2 = I, powers of 𝜎𝑖 can be traced back to 𝜎1 or 𝜎2. In order to achieve rotational
invariance, all occuring indices of vector-like objects, such as 𝑖D and 𝜎 need to be contracted
by either 𝛿𝑖𝑗 or 𝜖𝑖𝑗𝑘.
The construction of the Lagrangian according to (2.2) is described in [9] up to 1/𝑀2-order.
[8] and [6] present the NRQED/NRQCD Lagrangian at 1/𝑀3- and 1/𝑀4-order, respectively.
In the following, we present a systematic approach to constructing each term of ℒ𝜓 up to any
desired order and explicitly show the calculations for each term up to 1/𝑀3-order.

2.2 Derivation of the leading power term

Beginning the construction of ℒ𝜓, we consider the first order of (2.2) ∝ 1/𝑀0. The Lagrangian
consists of all valid combinations of 𝑖D, 𝑖𝐷𝑡 and 𝜎 according to the symmetries discussed above.
By design, 𝑂0 has mass dimension 1, therefore it can only be constructed using one covariant
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derivative. 𝑖𝐷𝑡 meets all criteria1 and is therefore a valid option. The introduction of a mass
term 𝜓†𝑀𝜓, though not permitted, needs further consideration. Preliminarily we achieve the
following result

ℒ𝜓 = 𝜓†𝑀𝜓 + 𝜓†𝑐1𝑖𝐷𝑡𝜓 +𝒪(1/𝑀) (2.11)

Elimination of the mass term

The implications of field redefinitions are explained in the next chapter. For convenience, the
elimination of the mass term is demonstrated here since it belongs to this order. We only
demonstrate the calculation.
The elimination of the mass term can be interpreted as shifting the zero point energy. This
is useful because according to (2.1), only finite perturbations relative to the rest mass are
discussed and these are not affected by this shift. The mass term is eliminated by the field
redefinition 𝜓 → 𝑒𝑖𝑀𝑡𝜓.

𝜓†𝑀𝜓 + 𝜓†𝑐1𝑖𝐷𝑡𝜓 →𝜓†𝑒−𝑖𝑀𝑡𝑀𝑒𝑖𝑀𝑡𝜓 + 𝜓†𝑒−𝑖𝑀𝑡𝑐1𝑖𝐷𝑡𝑒
𝑖𝑀𝑡𝜓

= 𝜓†𝑀𝜓 + 𝜓†𝑒−𝑖𝑀𝑡𝑐1𝑖𝐷𝑡𝑒
𝑖𝑀𝑡𝜓⏟  ⏞  

−𝜓†𝑀𝜓 + 𝜓†𝑐1𝑖𝐷𝑡𝜓

= 𝜓†𝑐1𝑖𝐷𝑡𝜓

(2.12)

This operation is only possible in the non relativistic realm because it relies on an absolute
time 𝑡 instead of a proper time 𝜏 . Without the mass term, power counting in 1/𝑀 is well
defined.
Because 𝜓†𝑐1𝑖𝐷𝑡𝜓 is the unique leading power term, 𝑐1 is normalized to 1. We arrive at

ℒ𝜓 = 𝜓†𝑖𝐷𝑡𝜓 +𝒪(1/𝑀) (2.13)

2.3 1/𝑀-order construction

At the next order, 1/𝑀 , 𝑂1 has mass dimension 2. The following procedure proposes a general
approach to find all valid terms for the Lagrangian and can be applied to any order.

Mass dimension and parity conservation

At mass dimension 2, two covariant derivatives are required. Both, two 𝑖D and (𝑖𝐷𝑡)
2, are

parity conserving. Combinations containing one of each are ruled out by parity, which cannot
be restored. The conservation of time reversal invariance can be postponed to the next step
because it is intertwined with hermicity. (𝑖𝐷𝑡)

2 will be discussed in detail below.

1𝑖D violates parity and time reversal and 𝜎 · 𝑖D is also ruled out because of parity.
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Intermezzo - Field redefinitions

Field redefinitions of the form 𝜓 → 𝜓 + 𝑎𝜖𝜓 are allowed to apply, since they do not change
the observables (cf.[1],[7]). By appropriately choosing the redefinition, this allows to drop
certain terms from the Lagrangian. We will demonstrate, that applying a field redefinition is
equivalent to using the classical equation of motion for 𝜓 and thus legitimating the application
of said equation of motion.
Suppose that the Lagrangian at order 1/𝑀 is

ℒ𝜓 = 𝜓†𝑖𝐷𝑡𝜓 +
𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓 + ... (2.14)

We can apply the following field redefinitions

𝜓 → 𝜓 + 𝑎𝑖𝐷𝑡𝜓 & 𝜓† →
(︀
𝜓 + 𝑎𝑖𝐷𝑡𝜓

)︀† (2.15)

Note, that 𝑎 ∝ 1/𝑀 . By inserting these into the Lagrangian, we get

ℒ′
𝜓 =(𝜓 + 𝑎𝑖𝐷𝑡𝜓)

†𝑖𝐷𝑡(𝜓 + 𝑎𝑖𝐷𝑡𝜓) +
𝑐

𝑀
(𝜓 + 𝑎𝑖𝐷𝑡𝜓)

†(𝑖𝐷𝑡)
2(𝜓 + 𝑎𝑖𝐷𝑡𝜓)

=𝜓†𝑖𝐷𝑡𝜓 + 𝜓†𝑎(𝑖𝐷𝑡)
2𝜓 + 𝜓†𝑎(𝑖𝐷𝑡)

2𝜓 + 𝑎2𝜓†(𝑖𝐷𝑡)
2𝜓 +

𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓

+
𝑎𝑐2

𝑀
𝜓†(𝑖𝐷𝑡)

3𝜓 +
𝑎𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

3𝜓 +
𝑎2𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

4𝜓

=ℒ𝜓 + 2𝑎𝜓†(𝑖𝐷𝑡)
2𝜓 +𝒪(1/𝑀2)

(2.16)

We generated a term that is proportional to 𝜓†(𝑖𝐷𝑡)
2𝜓 and some contributions that can be

neglected, since they do not belong to this order. The real prefactor 𝑎 is yet to be determined.
When applying the Euler-Lagrange-equations to (2.14), we get

𝜕ℒ𝜓
𝜕𝜓†

= 𝜕𝜇
𝜕ℒ𝜓

𝜕(𝜕𝜇𝜓†)
=⇒ 𝑖𝐷𝑡𝜓 +

𝑐

𝑀
(𝑖𝐷𝑡)

2𝜓 = 0

⇔ 𝑖𝐷𝑡𝜓 = − 𝑐

𝑀
(𝑖𝐷𝑡)

2𝜓

(2.17)

Since the term on the right side of the equation of motion is also proportional 𝜓†(𝑖𝐷𝑡)
2𝜓, we

can set the terms equal and determine 𝑎.

− 𝑐

𝑀
(𝑖𝐷𝑡)

2𝜓
!
= 2𝑎𝜓†(𝑖𝐷𝑡)

2𝜓 =⇒ 𝑎 = − 𝑐

2𝑀
(2.18)

We insert the determined prefactor back into (2.16).

ℒ′
𝜓 = ℒ𝜓 − 𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓 +𝒪(1/𝑀2)

= 𝜓†𝑖𝐷𝑡𝜓 +𝒪(1/𝑀2)
(2.19)
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With this we have shown, that a field redefinition of the form 𝜓 → 𝜓 + 𝑎𝑖𝐷𝑡𝜓 is equivalent
to applying the equation of motion 𝑖𝐷𝑡𝜓 and it is therefore allowed to use the equation of
motion for every term that has an 𝑖𝐷𝑡 acting on 𝜓. We can also express the elimination of
𝑐
𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓 by using the equation of motion in a more general form

𝜕ℒ𝜓
𝜕𝜓†

= 𝜕𝜇
𝜕ℒ𝜓

𝜕(𝜕𝜇𝜓†)
=⇒ 𝑖𝐷𝑡𝜓 +

1

𝑀

𝜕

𝜕𝜓†
𝜓†
∑︁
𝑖

𝑂𝑖
1𝜓 +𝒪(1/𝑀2) = 0

⇔ 𝑖𝐷𝑡𝜓 = − 1

𝑀

𝜕

𝜕𝜓†
𝜓†
∑︁
𝑖

𝑂𝑖
1𝜓 +𝒪(1/𝑀2)

(2.20)

=⇒ 𝑐

𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓
(2.20)
=

𝑐

𝑀
𝜓†𝑖𝐷𝑡

(︃
− 1

𝑀

𝜕

𝜕𝜓†
𝜓†
∑︁
𝑖

𝑂𝑖
1𝜓 +𝒪(1/𝑀2)

)︃
𝜓 ∝ 1

𝑀2
(2.21)

The same argumentation can be made for 𝜓†𝑖𝐷𝑡 by using the equation of motion for 𝜓†. All
terms of this form can therefore be removed from the Lagrangian without changing the physical
content.

Hermitian combinations

According to (2.8), two hermitian combinations can be formed with 𝑖𝐷𝑖 and 𝑖𝐷𝑗.

1 (𝑖𝐷𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖) & 2 𝑖((𝑖𝐷𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)) (2.22)

Note, that the introduction of 𝑖 in 2 causes time-reversal violation. This can be fixed by
introducting 𝜎𝑘.

2 𝑖((𝑖𝐷𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗) → 𝑖𝜎𝑘((𝑖𝐷𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)) (2.23)

Rotational invariance

All spacial indices need to be contracted in order to gain rotational-invariant combinations of
the vector-like objects. For 1 , the choice is contraction by 𝛿𝑖𝑗 (dot-product). 2 is contracted
via 𝜖𝑖𝑗𝑘 (triple product).

1 𝛿𝑖𝑗((𝑖𝐷𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)) = 2(𝑖D)2 (2.24)

2 𝑖𝜖𝑖𝑗𝑘𝜎𝑘((𝑖𝐷𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)⏟  ⏞  [︀
𝑖𝐷𝑖, 𝑖𝐷𝑗

]︀ ) = −𝑖𝜖𝑖𝑗𝑘𝜎𝑘
[︀
𝐷𝑖, 𝐷𝑗

]︀
(2.10)
= −2𝑄𝑒𝜎 · B

(2.25)
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Results

Since 𝑐
𝑀
𝜓†(𝑖𝐷𝑡)

2𝜓 can be eliminated, we arrive at

ℒ𝜓 = 𝜓†
(︂
𝑖𝐷𝑡 + 𝑐2

D2

𝑀
+ 𝑐3𝑄𝑒

𝜎 · B
𝑀

)︂
𝜓 +𝒪(1/𝑀2) (2.26)

Physical Interpretation of ℒ𝜓

The equation of motion for 𝜓 at this order produces very familiar results.

𝑖𝐷𝑡𝜓
(2.20)
= −𝑐2

D2𝜓

𝑀
− 𝑐3𝑄𝑒

(𝜎 · B)𝜓

𝑀
+𝒪(1/𝑀2) (2.27)

Which is the Pauli equation. Without an external electromagnetic field, this equation reduces
to the Schrödinger equation.

𝑖𝜕𝑡𝜓 + 𝑐2
∇2𝜓

𝑀
= 0 (2.28)

2.4 1/𝑀 2-order construction

At this order, 1/𝑀2, 𝑂2 has mass dimension 3. Following the procedure proposed above, we
find all valid terms.

Mass dimension and parity conservation

In order to achieve mass dimension 3, three covariant derivatives are needed. The two valid
options are: either three 𝑖𝐷𝑡 and one 𝑖𝐷𝑡 combined with two 𝑖D. Three 𝑖D, one 𝑖𝐷𝑡 combined
with two 𝑖D and one 𝑖D combined with two 𝑖𝐷𝑡 are at least ruled out because of parity. The
elimination of (𝑖𝐷𝑡)

𝑛 has been discussed in the construction of the previous order. Considering
the case of one 𝑖𝐷𝑡 combined with two 𝑖𝐷𝑖 and 𝑖𝐷𝑗 we have three unique operators. This leads
to 3! = 6 occurring combinations.

1 (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗) 4 (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)

2 (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖) 5 (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

3 (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) 6 (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

(2.29)

At first, we evaluate the terms, in which (𝑖𝐷𝑡) appears either on the left or right, denoted as
the first case. We can then use these results in order to analyse the second case, in which (𝑖𝐷𝑡)

appears in the middle.
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2.4.1 Evaluation of the 1st case

Hermitian combinations

1 & 6 and 2 & 5 form two hermitian conjungate pairs that can each be combined into two
hermitian combinations according to (2.8).

1 + 6 & 𝑖𝜎𝑘( 1 − 6 )

2 + 5 & 𝑖𝜎𝑘( 2 − 5 )
(2.30)

Again, 𝜎𝑘 is introduced to restore time-reversal invariance as seen above.

Rotational invariance

𝛿𝑖𝑗( 1 + 6 ) ⇔ 𝛿𝑖𝑗( 2 + 5 ) ⇔ 𝛿𝑖𝑗((𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)) (2.31)

𝛿𝑖𝑗
(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)
)︀
= (𝑖𝐷𝑡)(𝑖D)2 + (𝑖D)2(𝑖𝐷𝑡)

= −
(︀
(𝑖𝐷𝑡)(D)2 + (D)2(𝑖𝐷𝑡)

)︀ (2.32)

After contraction with 𝛿𝑖𝑗, combinations 1 + 6 and 2 + 5 produce equal results. The same
applies for the contraction with 𝜖𝑖𝑗𝑘, because two indices are equally paired with covariant
derivatives.

𝑖𝜖𝑖𝑗𝑘𝜎𝑘( 1 − 6 ) ⇔ 𝑖𝜖𝑖𝑗𝑘𝜎𝑘( 2 − 5 ) ⇔ 𝑖𝜖𝑖𝑗𝑘𝜎𝑘((𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡))

(2.33)

𝑖𝜖𝑖𝑗𝑘𝜎𝑘
(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)
)︀
= 𝑖𝜖𝑖𝑗𝑘𝜎𝑘

(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)⏟  ⏞  
𝜖𝑖𝑗𝑘 = −𝜖𝑗𝑖𝑘

)︀
=
𝑖

2
𝜖𝑖𝑗𝑘𝜎𝑘

(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)

+ (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)
)︀

=
𝑖

2
𝜖𝑖𝑗𝑘𝜎𝑘

(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)

+ (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)− (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)
)︀

=
𝑖

2
𝜖𝑖𝑗𝑘𝜎𝑘

(︀
(𝑖𝐷𝑡)

[︀
(𝑖𝐷𝑖), (𝑖𝐷𝑗)

]︀
+
[︀
(𝑖𝐷𝑖), (𝑖𝐷𝑗)

]︀
(𝑖𝐷𝑡)

)︀
(2.10)
= −𝑄𝑒𝜎𝑘

(︀
(𝑖𝐷𝑡)𝐵

𝑘 +𝐵𝑘(𝑖𝐷𝑡)
)︀

= −𝑄𝑒
(︀
(𝑖𝐷𝑡)𝜎 · B + 𝜎 · B(𝑖𝐷𝑡)

)︀
(2.34)

Both, (2.33) and (2.34) can be eliminated from the Lagrangian as discussed in the previous
order.
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2.4.2 Evaluation of 2nd case

We now turn to the analysis of terms with (𝑖𝐷𝑡) in the middle. Considering 3 , we can use
the commutator to commute 𝑖𝐷𝑡 to the left or right side.

(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) =

[︀
(𝑖𝐷𝑖), (𝑖𝐷𝑡)

]︀⏟  ⏞  
=

[︀
𝐷𝑡, 𝐷𝑖

]︀ (𝑖𝐷𝑗) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)

= 𝑖𝑄𝑒𝐸𝑖(𝑖𝐷𝑗) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)

(2.35)

(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) = (𝑖𝐷𝑖)

[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑗)
]︀⏟  ⏞  

= −
[︀
𝐷𝑡, 𝐷𝑗

]︀ +(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

= −𝑖𝑄𝑒(𝑖𝐷𝑖)𝐸𝑗 + (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

(2.36)

The same can be applied to 4 .

(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖) =

[︀
(𝑖𝐷𝑗), (𝑖𝐷𝑡)

]︀⏟  ⏞  
=

[︀
𝐷𝑡, 𝐷𝑗

]︀ (𝑖𝐷𝑖) + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)

= 𝑖𝑄𝑒𝐸𝑗(𝑖𝐷𝑖) + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)

(2.37)

(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖) = (𝑖𝐷𝑗)

[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑖)
]︀⏟  ⏞  

= −
[︀
𝐷𝑡, 𝐷𝑖

]︀ +(𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

= −𝑖𝑄𝑒(𝑖𝐷𝑗)𝐸𝑖 + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

(2.38)

This means, that we can construct terms of the form (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) with 𝐸𝑖(𝑖𝐷𝑗) and

(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗), of which we have already analysed the latter. We can thus use all com-

binations of the new basis elements 𝐸𝑖(𝑖𝐷𝑗) and apply the same procedure as shown above.
There are two hermitian and time-reversal invariant combinations.

𝜎𝑘
(︀
(𝑖𝐷𝑖)𝐸𝑗 + 𝐸𝑗(𝑖𝐷𝑖)

)︀
& 𝑖

(︀
(𝑖𝐷𝑖)𝐸𝑗 − 𝐸𝑗(𝑖𝐷𝑖)

)︀
(2.39)

Rotational invariance is achieved via contraction of all indices.

𝜖𝑖𝑗𝑘𝜎𝑘
(︀
(𝑖𝐷𝑖)𝐸𝑗 + 𝐸𝑗(𝑖𝐷𝑖)

)︀
= 𝜖𝑖𝑗𝑘𝜎𝑘

(︀
(𝑖𝐷𝑖)𝐸𝑗 − 𝐸𝑖(𝑖𝐷𝑗)⏟  ⏞  

𝜖𝑖𝑗𝑘 = −𝜖𝑗𝑖𝑘

)︀
= 𝑖𝜎 ·

(︀
D × E − E × D

)︀ (2.40)

𝛿𝑖𝑗𝑖
(︀
(𝑖𝐷𝑖)𝐸𝑗 − 𝐸𝑗(𝑖𝐷𝑖)

)︀
= −𝛿𝑖𝑗

[︀
(𝐷𝑖), 𝐸𝑗

]︀
= −𝛿𝑖𝑗

(︀ [︀
𝜕𝑖, 𝐸𝑗

]︀⏟  ⏞  
𝜕𝑖𝐸𝑗

−
[︀
𝑒𝑄𝐴𝑖, 𝐸𝑗

]︀⏟  ⏞  
0

)︀
= −

[︀
𝜕 · E

]︀ (2.41)

Note, that the derivative acts only on E and not on the spinor 𝜓.
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Results

We arrive at

ℒ𝜓 = 𝜓†
(︂
𝑖𝐷𝑡 + 𝑐2

D2

𝑀
+ 𝑐3𝑄𝑒

𝜎 · B
𝑀

+ 𝑐4𝑄𝑒
𝑖𝜎 ·

(︀
D × E − E × D

)︀
𝑀2

+ 𝑐5𝑄𝑒

[︀
𝜕 · E

]︀
𝑀2

)︂
𝜓

+𝒪(1/𝑀3)

(2.42)

Intermezzo - ℒ𝜓𝜒

Mass dimension 3 can also be achieved by the introduction of another spinor field 𝜒, that can
be different from 𝜓. The interaction terms between the two spinor fields are included in ℒ𝜓𝜒.

ℒ𝜓𝜒 = 𝑑1
𝜓†𝜓𝜒†𝜒

𝑀2
+ 𝑑2

𝜓†𝜎𝑖𝜓𝜒†𝜎𝑖𝜒

𝑀2
+𝒪(1/𝑀4) (2.43)

To show that the terms in ℒ𝜓𝜒 are the only linear independent ones, we use the Fierz identities.
In order to use the Fierz identities, some requirements have to be met. See [7] for a detailed
discussion. The following set Γ spans the space of complex 2× 2 matrices.

Γ =
{︀
𝐼, 𝜎1, 𝜎2, 𝜎3

}︀
(2.44)

Since 𝜎𝑖𝜎𝑗 = 𝛿𝑖𝑗𝐼 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘, the following orthogonality relation is fulfilled

𝑇𝑟(Γ𝐴Γ𝐵) = 𝑛Γ𝛿
𝐴𝐵 (2.45)

With 𝑛Γ = 2, since (𝜎𝑖)2 = 𝐼 and 𝑇𝑟(𝐼) = 2. We now apply the Fierz rearrangement formula
in order to investigate the relations between products of four spinors with different ordering.

𝑎⟨Γ𝐴⟩𝑏 𝑐⟨Γ𝐵⟩𝑑 =
∑︁
𝐶,𝐷

1
𝑛2
Γ
𝑇𝑟(Γ𝐴Γ𝐶Γ𝐵Γ𝐷)𝑎⟨Γ𝐶⟩𝑑 𝑐⟨Γ𝐷⟩𝑏 (2.46)

The following notation can be adapted to the case at hand

𝑎⟨Γ𝐴⟩𝑏 𝑐⟨Γ𝐵⟩𝑑 ⇔
(︀
𝜓†Γ𝐴𝜓

)︀(︀
𝜒†Γ𝐵𝜒

)︀
(2.47)

Since rotational invariance is demanded, we only consider (2.46) with Γ𝐴 = Γ𝐵. (2.46) then
deliveres the following results

𝜓†𝐼𝜓𝜒†𝐼𝜒⏟  ⏞  
𝜓†𝜓𝜒†𝜒

= 1
2
𝜓†𝐼𝜒𝜒†𝐼𝜓⏟  ⏞  
𝜓†𝜒𝜒†𝜓

+1
2
𝜓†𝜎𝑖𝜒𝜒†𝜎𝑖𝜓

𝜓†𝜎𝑗𝜓𝜒†𝜎𝑗𝜒 = 1
2
𝜓†𝜒𝜒†𝜓 + 1

2
𝜓†𝜎𝑗𝜒𝜒†𝜎𝑗𝜓 − 1

2

∑︁
𝑖 ̸=𝑗

𝜓†𝜎𝑖𝜒𝜒†𝜎𝑖𝜓
(2.48)
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In the second equation, the implicit sum notation is violated, since there is no sum over j but
a sum over i, this is only the case in this equation.
With (2.48) we have demonstrated, that (2.43) consists of linear independent terms and all
other combinations can be related to with Fierz identities.
New contributions to ℒ𝜓𝜒 arise at order 1/𝑀4, since terms at order 1/𝑀3 introduce only 𝑖𝐷𝑡

that act on the spinors and can therefore be dropped from the Lagrangian.

Physical Interpretation of ℒ𝜓

When discussing pertubations to the hydrogen spectrum, the term 𝑐5𝑄𝑒
[︀
𝜕 ·E

]︀
/𝑀2 corresponds

to the known Darwin correction term (cf. [9]). In literature, 𝑐5 is often denoted as 𝑐𝐷.

2.5 1/𝑀 3-order construction

General selection

At this order, 4 covariant derivatives are required. Parity is conserved by either (𝑖𝐷𝑡)
4, four

(𝑖D) or two (𝑖D) combined with two (𝑖𝐷𝑡). (𝑖𝐷𝑡)
4 can be treated analogously as in the previous

orders. The other two cases are discussed separately.

2.5.1 Evaluation of the 1st case

All possible combinations of four (𝑖𝐷𝑖) operators correspond to 4! = 24 permutations.

1 (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) 13 (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

2 (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑙)(𝑖𝐷𝑘) 14 (𝑖𝐷𝑘)(𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

3 (𝑖𝐷𝑖)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑙) 15 (𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑖)

4 (𝑖𝐷𝑖)(𝑖𝐷𝑘)(𝑖𝐷𝑙)(𝑖𝐷𝑗) 16 (𝑖𝐷𝑗)(𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑖)

5 (𝑖𝐷𝑖)(𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑘) 17 (𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑙)(𝑖𝐷𝑖)

6 (𝑖𝐷𝑖)(𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗) 18 (𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)(𝑖𝐷𝑖)

7 (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑘)(𝑖𝐷𝑙) 19 (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑖)(𝑖𝐷𝑗)

8 (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑙)(𝑖𝐷𝑘) 20 (𝑖𝐷𝑘)(𝑖𝐷𝑙)(𝑖𝐷𝑖)(𝑖𝐷𝑗)

9 (𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑖)(𝑖𝐷𝑙) 21 (𝑖𝐷𝑙)(𝑖𝐷𝑖)(𝑖𝐷𝑘)(𝑖𝐷𝑗)

10 (𝑖𝐷𝑗)(𝑖𝐷𝑙)(𝑖𝐷𝑖)(𝑖𝐷𝑘) 22 (𝑖𝐷𝑘)(𝑖𝐷𝑖)(𝑖𝐷𝑙)(𝑖𝐷𝑗)

11 (𝑖𝐷𝑘)(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑙) 23 (𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑘)

12 (𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑙) 24 (𝑖𝐷𝑙)(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)

(2.49)

The inclusion of all permutations means, that for each combination its hermitian conjugate is
also contained. Hermitian conjungate pairs are listed next to each other above. Only one pair
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needs to be thoroughly analysed, since they all act equally after contraction. We analyse the
following two hermitian combinations.

(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

𝑖𝜎𝑚
(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀ (2.50)

Since we need to contract all four spacial indices, we now have several options available.

𝛿𝑖𝑗𝛿𝑘𝑙
(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=(𝑖D)2(𝑖D)2 + (𝑖D)2(𝑖D)2 = 2D4

𝜖𝑘𝑙ℎ𝜖ℎ𝑖𝑗
(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
= 𝜖𝑘𝑙ℎ𝜖ℎ𝑖𝑗

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑖)(𝑖𝐷𝑗)

)︀
=− 1

2
𝜖𝑘𝑙ℎ𝜖ℎ𝑖𝑗

(︀ [︀
(𝐷𝑖), (𝐷𝑗)

]︀
(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)

[︀
(𝐷𝑖), (𝐷𝑗)

]︀ )︀
= 𝑖𝑄𝑒𝜖𝑘𝑙ℎ

(︀
𝐵ℎ(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)𝐵ℎ

)︀
= 𝜖𝑘𝑙ℎ𝑖𝑄𝑒1

2

(︀
𝐵ℎ
[︀
(𝐷𝑘), (𝐷𝑙)

]︀
+
[︀
(𝐷𝑘), (𝐷𝑙)

]︀
𝐵ℎ
)︀

=− (𝑄𝑒)2
(︀
𝐵ℎ𝐵ℎ +𝐵ℎ𝐵ℎ

)︀
=− 2(𝑄𝑒)2B2

𝜖𝑖ℎ𝑙𝜖ℎ𝑗𝑘
(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
= 𝜖𝑖ℎ𝑙𝜖ℎ𝑗𝑘

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑖)

)︀
=− 1

2
𝜖𝑖ℎ𝑙𝜖ℎ𝑗𝑘

(︀
(𝑖𝐷𝑖)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑙)− (𝑖𝐷𝑙)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑖)

)︀
= 𝑖𝑄𝑒𝜖𝑖ℎ𝑙

(︀
(𝑖𝐷𝑖)𝐵ℎ(𝑖𝐷𝑙)− (𝑖𝐷𝑙)𝐵ℎ(𝑖𝐷𝑖)

)︀
= 𝑖𝑄𝑒𝜖𝑖ℎ𝑙

(︀
(𝑖𝐷𝑖)𝐵ℎ(𝑖𝐷𝑙) + (𝑖𝐷𝑖)𝐵ℎ(𝑖𝐷𝑙)

)︀
= − 2𝑖𝑄𝑒D · (B × D)

(2.51)

Note, that the difference between the last two contractions is the choice of indices for the
𝜖-contractions and therefore the different placements of the commutators. For the other her-
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mitian combination, we also need to pay close attention to all possible contractions.

𝛿𝑖𝑗𝜖𝑘𝑙𝑚𝑖𝜎𝑚
(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=𝛿𝑖𝑗𝜖𝑘𝑙𝑚𝑖𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑘)(𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=− 𝑖1

2
𝛿𝑖𝑗𝜖𝑘𝑙𝑚𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)

[︀
(𝐷𝑘), (𝐷𝑙)

]︀
+
[︀
(𝐷𝑘), (𝐷𝑙)

]︀
(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=𝑄𝑒

{︀
D2,𝜎 · B

}︀
𝛿𝑖𝑙𝜖𝑗𝑘𝑚𝑖𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=𝛿𝑖𝑙𝜖𝑘𝑙𝑚𝑖𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑖)

)︀
=− 𝑖1

2
𝛿𝑖𝑙𝜖𝑘𝑙𝑚𝜎𝑚

(︀
(𝑖𝐷𝑖)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑙) + (𝑖𝐷𝑙)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑖)

)︀
=𝑄𝑒

{︀
D2,𝜎 · B

}︀
=𝑄𝑒𝛿𝑖𝑗

(︀
(𝐷𝑖)𝜎 · B(𝐷𝑙) + (𝐷𝑙)𝜎 · B(𝐷𝑖)

)︀
=2𝑄𝑒

(︀
(𝐷𝑖)𝜎 · B(𝐷𝑖)

)︀
𝛿𝑚𝑙𝜖𝑖𝑗𝑘𝑖𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙)− (𝑖𝐷𝑙)(𝑖𝐷𝑘)(𝑖𝐷𝑗)(𝑖𝐷𝑖)

)︀
=𝛿𝑚𝑙𝜖𝑖𝑗𝑘𝑖𝜎𝑚

(︀
(𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑙) + (𝑖𝐷𝑙)(𝑖𝐷𝑗)(𝑖𝐷𝑘)(𝑖𝐷𝑖)

)︀
=− 𝑖1

2
𝛿𝑚𝑙𝜖𝑖𝑗𝑘𝜎𝑚

(︀
(𝑖𝐷𝑖)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑙) + (𝑖𝐷𝑙)

[︀
(𝐷𝑗), (𝐷𝑘)

]︀
(𝑖𝐷𝑖)

)︀
=𝑄𝑒

(︀
(D · B)(𝜎 · D) + (𝜎 · D)(D · B)

)︀

(2.52)

2.5.2 Evaluation of the 2nd case

When combining two (𝑖𝐷𝑖) and two (𝑖𝐷𝑡), the number of combinations is 4!
2
= 12, because the

two (𝑖𝐷𝑡) are identical.

1 (𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗) 7 (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑗)

2 (𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖) 8 (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)

3 (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)(𝑖𝐷

𝑗) 9 (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)

4 (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖) 10 (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)

5 (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡) 11 (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)

6 (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡) 12 (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)

(2.53)

The analysis of these operators requires a more systematic approach. It is useful to regroup
the permutations into different subcases.

𝐴

⎧⎨⎩(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗) (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)

(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖) (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)

(2.54)
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𝐵 (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡) (𝑖𝐷𝑡)(𝑖𝐷

𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡) (2.55)

𝐶

⎧⎨⎩ (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)(𝑖𝐷

𝑗) (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)

(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖) (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)

(2.56)

𝐷 (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑖) (2.57)

Subcase A

At first, we analyse the combinations, in which two (𝑖𝐷𝑡) are at the left or at the right.
Following the steps practiced above, we get

𝛿𝑖𝑗
(︀
(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)
)︀

=(𝑖𝐷𝑡)
2(𝑖D)2 + (𝑖D)2(𝑖𝐷𝑡)

2

𝜖𝑖𝑗𝑘𝑖𝜎𝑘
(︀
(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)− (𝑖𝐷𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)
)︀

=𝜖𝑖𝑗𝑘𝑖𝜎𝑘
(︀
(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗) + (𝑖𝐷𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)
)︀

=− 1
2
𝜖𝑖𝑗𝑘𝑖𝜎𝑘

(︀
(𝑖𝐷𝑡)(𝑖𝐷𝑡)

[︀
(𝐷𝑖), (𝐷𝑗)

]︀
+
[︀
(𝐷𝑖), (𝐷𝑗)

]︀
(𝑖𝐷𝑡)(𝑖𝐷𝑡)

)︀
=𝑄𝑒

(︀
(𝑖𝐷𝑡)

2𝜎 · B + B · 𝜎(𝑖𝐷𝑡)
2
)︀

(2.58)

As discussed in order 1/M, these terms can be removed from the Lagrangian.

Subcase B

Next, we consider the combinations that have one 𝑖𝐷𝑡 at the left and the right. We find the
following results

𝛿𝑖𝑗
(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

)︀
=2(𝑖𝐷𝑡)(𝑖D)2(𝑖𝐷𝑡)

𝜖𝑖𝑗𝑘𝑖𝜎𝑘
(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)− (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

)︀
=𝜖𝑖𝑗𝑘𝑖𝜎𝑘

(︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

)︀
=− 1

2
𝜖𝑖𝑗𝑘𝑖𝜎𝑘

(︀
(𝑖𝐷𝑡)

[︀
(𝐷𝑖), (𝐷𝑗)

]︀
(𝑖𝐷𝑡) + (𝑖𝐷𝑡)

[︀
(𝐷𝑖), (𝐷𝑗)

]︀
(𝑖𝐷𝑡)

)︀
=𝑄𝑒

(︀
(𝑖𝐷𝑡)𝜎 · B(𝑖𝐷𝑡) + (𝑖𝐷𝑡)B · 𝜎(𝑖𝐷𝑡)

)︀
(2.59)

These terms can also be removed from the Lagrangian.

Subcase C

The combinations with one 𝑖𝐷𝑡 in between two 𝑖𝐷𝑖, can be rewritten into terms containing a
commutator and residual terms in which 𝑖𝐷𝑡 is commuted to the outside, analogous to chapter
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(2.4.2).

(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)(𝑖𝐷

𝑗) = (𝑖𝐷𝑡)(𝑖𝐷
𝑖)
[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑗)
]︀
+ (𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

= 𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗 + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

(2.60)

(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖) = (𝑖𝐷𝑡)(𝑖𝐷
𝑗)
[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑖)
]︀
+ (𝑖𝐷𝑡)(𝑖𝐷

𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

= 𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑗)𝐸𝑖 + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

(2.61)

(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡) =

[︀
(𝑖𝐷𝑗), (𝑖𝐷𝑡)

]︀
(𝑖𝐷𝑖)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷

𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

= 𝑄𝑒
−𝑖𝐸

𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑖)(𝑖𝐷𝑡)

(2.62)

(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡) =

[︀
(𝑖𝐷𝑖), (𝑖𝐷𝑡)

]︀
(𝑖𝐷𝑗)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

= 𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑗)(𝑖𝐷𝑡)

(2.63)

Since the residual terms are of the form which has already been discussed in the previous
subcase, they can be disregarded. This leaves the terms containing electric field.

𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗 𝑄𝑒
−𝑖𝐸

𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡)

𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑗)𝐸𝑖 𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)
(2.64)

When considering time reversal invariance in the following combinations, it is crucial to take
into account, that the electric field picks up a minus sign. The first combination below is
therefore time reversal invariant since 𝐸𝑖 comes with a prefactor containing 𝑖. In the second
combination 𝜎𝑘 has to be introduced to ensure said invariance.

𝛿𝑖𝑗
(︀
𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗 + 𝑄𝑒
−𝑖𝐸

𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡)
)︀

=𝛿𝑖𝑗𝑖𝑄𝑒
(︀
𝐸𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡)− (𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗
)︀

=𝑄𝑒
(︀
(𝑖𝐷𝑡)(D · E)− (E · D)(𝑖𝐷𝑡)

)︀
𝜖𝑖𝑗𝑘𝜎𝑘𝑖

(︀
𝑄𝑒
𝑖
(𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗 + 𝑄𝑒
𝑖
𝐸𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡)

)︀
=𝑄𝑒𝜖𝑖𝑗𝑘𝜎𝑘((𝑖𝐷𝑡)(𝑖𝐷

𝑖)𝐸𝑗 + 𝐸𝑗(𝑖𝐷𝑖)(𝑖𝐷𝑡))

=−𝑄𝑒
(︀
(𝑖𝐷𝑡)𝜎 · (D × E) + 𝜎 · (E × D)(𝑖𝐷𝑡)

)︀
(2.65)

Once more, these terms can be removed from the Lagrangian.

Subcase D

For these combinations, we can introduce commutators in the same way as we did above.

(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) =

[︀
(𝑖𝐷𝑖), (𝑖𝐷𝑡)

]︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑗) + (𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)(𝑖𝐷

𝑗)

= 𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑡)(𝑖𝐷
𝑗) + (𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)

(2.66)
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(𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑗) = (𝑖𝐷𝑖)(𝑖𝐷𝑡)

[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑗)
]︀
+ (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷

𝑗)(𝑖𝐷𝑡)

= 𝑄𝑒
𝑖
(𝑖𝐷𝑖)(𝑖𝐷𝑡)𝐸

𝑗 + (𝑖𝐷𝑖)(𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)

(2.67)

(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑖) =

[︀
(𝑖𝐷𝑗), (𝑖𝐷𝑡)

]︀
(𝑖𝐷𝑡)(𝑖𝐷

𝑖) + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)

= 𝑄𝑒
−𝑖𝐸

𝑗(𝑖𝐷𝑡)(𝑖𝐷
𝑖) + (𝑖𝐷𝑡)(𝑖𝐷

𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)

(2.68)

(𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷𝑡)(𝑖𝐷
𝑖) = (𝑖𝐷𝑗)(𝑖𝐷𝑡)

[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑖)
]︀
+ (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷

𝑖)(𝑖𝐷𝑡)

= 𝑄𝑒
𝑖
(𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸

𝑖 + (𝑖𝐷𝑗)(𝑖𝐷𝑡)(𝑖𝐷
𝑖)(𝑖𝐷𝑡)

(2.69)

The residual combinations can be disregarded again, since they match the combinations anal-
ysed in the previous subcase.

𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑡)(𝑖𝐷
𝑗) 𝑄𝑒

𝑖
(𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸

𝑖

𝑄𝑒
𝑖
(𝑖𝐷𝑖)(𝑖𝐷𝑡)𝐸

𝑗 𝑄𝑒
−𝑖𝐸

𝑗(𝑖𝐷𝑡)(𝑖𝐷
𝑖)

(2.70)

The following valid terms arise

𝛿𝑖𝑗
(︀
𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑡)(𝑖𝐷
𝑗) + 𝑄𝑒

𝑖
(𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸

𝑖
)︀

=𝑖𝑄𝑒𝛿𝑖𝑗
(︀
𝐸𝑖(𝑖𝐷𝑡)(𝑖𝐷

𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸
𝑖
)︀

=𝑖𝑄𝑒𝛿𝑖𝑗
(︀
𝐸𝑖
[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑗)
]︀
+ 𝐸𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)−

[︀
(𝑖𝐷𝑗), (𝑖𝐷𝑡)

]︀
𝐸𝑖 − (𝑖𝐷𝑡)(𝑖𝐷

𝑗)𝐸𝑖
)︀

=𝑖𝑄𝑒𝛿𝑖𝑗
(︀
𝐸𝑖 𝑄𝑒

𝑖
𝐸𝑗 + 𝐸𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)− (𝑄𝑒−𝑖𝐸

𝑗)𝐸𝑖 − (𝑖𝐷𝑡)(𝑖𝐷
𝑗)𝐸𝑖

)︀
=𝑖𝑄𝑒𝛿𝑖𝑗

(︀
𝑄𝑒
𝑖
𝐸𝑖𝐸𝑗 + 𝑄𝑒

𝑖
𝐸𝑗𝐸𝑖 + 𝐸𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)− (𝑖𝐷𝑡)(𝑖𝐷

𝑗)𝐸𝑖
)︀

=2(𝑄𝑒)2E2 −
(︀
(E · D)(𝑖𝐷𝑡)− (𝑖𝐷𝑡)(D · E)

)︀
𝜖𝑖𝑗𝑘𝜎𝑘𝑖

(︀
𝑄𝑒
−𝑖𝐸

𝑖(𝑖𝐷𝑡)(𝑖𝐷
𝑗)− 𝑄𝑒

𝑖
(𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸

𝑖
)︀

=−𝑄𝑒𝜖𝑖𝑗𝑘𝜎𝑘
(︀
𝐸𝑖(𝑖𝐷𝑡)(𝑖𝐷

𝑗) + (𝑖𝐷𝑗)(𝑖𝐷𝑡)𝐸
𝑖
)︀

=−𝑄𝑒𝜖𝑖𝑗𝑘𝜎𝑘
(︀
𝐸𝑖
[︀
(𝑖𝐷𝑡), (𝑖𝐷

𝑗)
]︀
+ 𝐸𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)

[︀
(𝑖𝐷𝑗), (𝑖𝐷𝑡)

]︀
𝐸𝑖 + (𝑖𝐷𝑡)(𝑖𝐷

𝑗)𝐸𝑖
)︀

=−𝑄𝑒𝜖𝑖𝑗𝑘𝜎𝑘
(︀
𝐸𝑖 𝑄𝑒

𝑖
𝐸𝑗 + 𝐸𝑖(𝑖𝐷𝑗)(𝑖𝐷𝑡)

𝑄𝑒
−𝑖𝐸

𝑗𝐸𝑖 + (𝑖𝐷𝑡)(𝑖𝐷
𝑗)𝐸𝑖

)︀
=− 2 (𝑄𝑒)2

𝑖
𝜎 · (E × E)⏟  ⏞  

0

+𝑄𝑒
(︀
(𝑖𝐷𝑡)𝜎 · (D × E) + 𝜎(E × D)(𝑖𝐷𝑡)

)︀

(2.71)

The term ∝ E2 is the only one that cannot be removed from the Lagrangian.
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2.5.3 Results

For the final Lagrangian up to order 1/𝑀3, we have

ℒ𝜓 = 𝜓†
(︂
𝑖𝐷𝑡 + 𝑐2

D2

𝑀
+ 𝑐3𝑄𝑒

𝜎 · B
𝑀

+ 𝑐4𝑄𝑒
𝑖𝜎 ·

(︀
D × E − E × D

)︀
𝑀2

+ 𝑐5𝑄𝑒

[︀
𝜕 · E

]︀
𝑀2

+ 𝑐6
D4

𝑀3
+ 𝑐7(𝑄𝑒)

2 B2

𝑀3
+ 𝑐8𝑖𝑄𝑒

(︀
D · (B × D)

)︀
𝑀3

+ 𝑐9𝑄𝑒
{D2,𝜎 · B}

𝑀3

+ 𝑐10𝑄𝑒

(︀
(𝐷𝑖)𝜎 · B(𝐷𝑖)

)︀
𝑀3

+ 𝑐11𝑄𝑒

(︀
(D · B)(𝜎 · D) + (𝜎 · D)(D · B)

)︀
𝑀3

+ 𝑐12(𝑄𝑒)
2 E2

𝑀3

)︂
𝜓 +𝒪(1/𝑀4)

(2.72)

This result is confirmes the Lagrangian determined in [6].

Physical Interpretation of ℒ𝜓

The term 𝑐6D4/𝑀3 is also known from the discussion of the hydrogen spectrum. It corresponds
to the relativistic correction (p)4 (cf.[9]).



3 Conclusions

We have investigated the symmetries of ℒ𝑄𝐸𝐷 and described the effective theory approach to
NRQED. In order to construct the NRQED Lagrangian we have introduced a procedure, which
relies on the conservation of demanded symmetries and explicitly shown the calculations of all
terms. The obtained result is backed by [6].
This work leaves out some very interesting aspects of NRQED. The coefficients for all terms
in the Lagrangian are yet to be determined. This is done by comparing results of high pre-
cision QED calculations with NRQED calculations applied to the same processes (matching
calculations) (cf.[3]). Interesting connections between NRQED and other EFT’s like HQET
(heavy quark effective field theory) have also not been discussed (cf.[9],[6]).
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