

Fakultät Physik Institut für Kern- und Teilchenphysik

Granularity and Photomultiplier studies for Prompt Gamma Spectra in Proton Therapy

Olga Novgorodova, Arno Straessner

21st March 2022

Range problem in particle therapy

DRESDEN

TEILCHENPHYSIK

PETsys Setup

Gd₃Al₂Ga₃O₁₂

(GAGG)

O. Novgorodova | IKTP | DPG22 | March 2022

3/13

DRESDEN

concept

Measurements

O. Novgorodova | IKTP | DPG22 | March 2022

ADC Measurements with CeBr₃

Smaller crystals – less signal \rightarrow no 4.4 MeV and single escape peaks visible

ADC Measurements with GAGG

Small GAGG crystals show poorer energy resolution than bigger crystal

8/13

DRESDE

Energy Resolution CeBr₃

1. ROOT TSpectrum to estimate background (green)

2. After background subtraction (blue)

3. Gaussian fit (red)

4.
$$E_{res} = \sigma/\mu * 2.355$$

5. 2.355 - conversion factor to calculate full width at half maximum (FWHM)

 due to difficulties to estimate background for the full energy range and low statistics at higher energies.

Energy Resolution CeBr₃

Comparison between 3 setups

- ADC + PMT + CeBr₃
- Scope + SiPM + CeBr₃
- PETsys + SiPM + CeBr₃

Energy resolution with 2.355 conversion factor

We loose ~ 3% of energy resolution with PETsys

Time Resolution

ELBE at HZDR Rossendorf Sliced in energies \rightarrow fit the distribution

300

11/13

DRESDEN

concept

INSTITUT FÜR

TEILCHENPHYSIK

KERN- UND

Time Walk

Required time resolution few 100 ps – PETsys ~100 ps Fixed thresholds instead of CFD is a disadvantage:

Time walk up to 500 ps

Conclusions and Plans

Granularity: \rightarrow 5x5x20 mm³ only double escape peaks \rightarrow 10x10x30 mm³ better \rightarrow Increase the width to 1-2 cm and height to 4-5 cm

SiPM: → SensL SiPM matrices are the best available candidates → Hamamatsu 25 µm - ideal

PETsys: \rightarrow easy scalable $\rightarrow \sim 100 \text{ ps time resolution}$ $\rightarrow 3\% \text{ loss in E}_{\text{resolution}}$

- → SensL SiPM matrices
 → Single Hamamatsu SiPM with
 adapter board for the PETsys
 → to avoid crosstalk and alignment
- → Time walk correction

Plans: Measurements at the OncoRay – National Center for Radiation Research in Oncology, located in Dresden

