

GEFÖRDERT VOM

INSTITUTE OF NUCLEAR AND PARTICLE PHYSICS

Development of an FPGA Implementation of Convolutional Neural Networks for Signal Processing for the Liquid-Argon Calorimeter at ATLAS

Nick Fritzsche

Institute of nuclear and particle physics (IKTP), TU Dresden

23 March, 2022 DPG Spring Meeting Heidelberg

The ATLAS Detector at the LHC

https://cds.cern.ch/record/1295244

The Large Hadron Collider (LHC)

- 27 km circular collider at CERN/Geneva
- achievements: Higgs-Boson, quark-gluon plasma and many more
- 25 ns spacing between proton bunches (40 MHz)

The ATLAS Detector

- inner detector with tracking system
- calorimeters
- muon spectrometer

https://cds.cern.ch/record/1095924

Signal Readout of the ATLAS LAr Calorimeter

LAr Calorimeter

- absorber material (Pb, Cu, W) and electrodes in accordion geometry
- in between liquid argon as active medium

Signals

- energy deposits raise a triangular pulse
- shaped into bipolar pulse and digitized
- amplitude proportional to deposited energy
- energy reconstruction using Optimal Filter: $E_t = \sum_i w_i \cdot S_{t-i}$

High Luminosity LHC

THE REAL PROPERTY OF

Digital Signal Processing on Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs)

- integrated circuit configurable by the designer after manufacturing
- reconfigurable hardware allows testing of different firmware
- use Intel Stratix 10

https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution https://indico.cern.ch/event/773049/contributions/3474297

Advantages of Implementation on FPGAs

- real time data processing with high frequencies (100 MHz 1 GHz)
- parallel data processing
- signal processing algorithm can be reconfigured

Requirements

THE REAL PROPERTY OF

- \bullet signal processing algorithm should be designed such that parameters are kept at a minimum (\approx 50-100)
- $\bullet\,$ aim core frequency for Phase II data processing of 480 MHz = 12 $\times\,40\,\text{MHz}$
- minimize latency (< 150 ns): results are input to trigger system
- meet resource limitations of FPGA
- \longrightarrow set pipeline registers as a compromise of the factors above

Energy Reconstruction by Convolutional Neural Networks

Our Approach

2-step convolutional neural network for energy reconstruction

() LEADER

Connections subcomponent

- general connection component for all operations between neighboring layers of ANN
 - configurable #inputs, #outputs, activation functions
- multi-layer network component chains *connection* instances

THE REAL PROPERTY OF

- capable to implement different kernel sizes, #feature maps and dilated CNNs
- configurable with file produced after training (json)

Optimization of calculations: DSP Chain

DSP Chain

- DSPs are chained up to accumulate products over whole kernel
- match timing of input ports to process data from multiple cells in one DSP chain instance
- load weights from RAM without recompilation

THE REAL PROPERTY OF

 $\tt https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf$

FPGA Resource Usage

Process 384 to 512 calorimeter cells per FPGA \rightarrow In total 400 to 550 FPGAs needed

Single Chan	nel	Time-multiplexed			
	3-Conv CNN	4-Conv CNN		3-Conv CNN	4-Conv CNN
		 	Multiplicity	6	6
Frequence F _{max} [MHz	-y] 493	480	Frequency F _{max} [MHz]	344	334
Latency clk _{core} cycl	es 62	58	Latency clk _{core} cycles	81	62
Resource Usage	2		Max. Channels	390	352
DSPs	46 0.8%	42 0.7%	Resource Usage DSPs	46 0.8%	42 0.7%
Adaptive logic modu	1les 5684	5702 0.6%	Adaptive logic modules	14235 1.5%	15627 1.7%

 \longrightarrow Resource-efficient and short latency, but low execution frequency

- integrate CNNs in data processing core of LAr signal processor firmware
- output interfaces to trigger, readout and monitoring path

C INCREMENT

https://gitlab.cern.ch/atlas-lar-be-firmware/LASP/LASP-doc/

CNNs for Energy Reconstruction

- electronics of ATLAS LAr Calorimeters will be upgraded for HL-LHC until end of 2028
- harsh environment with up to 200 pile-up events
- energy reconstruction by convolutional neural networks shows promising results
- CNN implementation in FPGA successful
- next steps:
 - integrate CNNs in LAr signal processor data core firmware
 - perform hardware tests in test bench
 - create high level synthesis implementation and compare performance