

Fakultät Physik Institut für Kern- und Teilchenphysik

Optimization of PETsys TOFPET2 ASIC for Prompt Gamma Timing (PGT) Application

Olga Novgorodova

21st September 2022

Range problem in particle therapy

Prompt Gamma Timing

Challenges

High statistics with full acceptance

- ~ $10^6 \dots 10^8 p^+$ / Pencil Beam Spot (PBS)
- ~ 2 x 10⁹ Prompt Gamma's (PG) per second
- Extreme load tolerance

Reduce size of one channel:

- Reduce number of events
- Readout with Silicon Photomultipler (SiPM)
- Optimize PETsys for Prompt Gammas

Optimize the size of crystal:

- Energy spectrum & resolution
- Coincidence Time Resolution (CTR)
- High rates → Dead time → Pile-up

4/13

DRESDE

PETsys Setup

- \rightarrow PETsys: application from PET to PG 3-8 MeV
- \rightarrow Find fitting SiPM array
- The PET Energy Resolution at 511 keV is 10.5 %
- $\rightarrow E_{\text{resolution}} \sim 1/\sqrt{E}$

Coincidence Time Resolution of 119 ps FWHM

PETsys $\mathbf{0}$ for SiPM \rightarrow cost effective → fast → scalable https://www.petsyselectronics.com

DRESDEN

concept

Americium-Beryllium Source

CAEN ADC Measurements with CeBr₃

Smaller crystals – less signal \rightarrow no 4.4 MeV and single escape peaks visible

z

PETsys Measurements

OnSemi ch29 35µm 27V

Hamamatsu 25µm 57V

35

8/13

3.5

Energy [MeV]

Energy Resolution CeBr₃

Comparison between 3 setups

- ADC + PMT + CeBr₃
- Scope + SiPM + CeBr₃
- PETsys + SiPM + CeBr₃

Energy resolution with 2.355 conversion factor

We loose ~ 3% of energy resolution with PETsys

Time Resolution

Coincidence Time Resolution

Rates

• Max channel hit rate: 600 kHz (test pulses).

• ⁶⁰Co and ¹³⁷Cs high rate sources tests – Loss of the events over 100 kcps.

• Pile-up effect \rightarrow shift of the peak positions.

Conclusions

CeBr₃ Granularity:

5x5x20 mm³

- + Fit to SiPM
- + Best Energy & Time resolution
- Double escape peaks

Silicon Photomultipliers (SiPM): SensL 35 µm array best available candidate

- + Good Energy resolution
- Loss in Time resolution

PETsys Readout : + easy scalable

- + ~100 ps time resolution
- + 3% loss in E_{resolution}
- Time walk correction

PEISYSR

TECHNISCHE UNIVERSITÄT DRESDEN

O. Novgorodova | IKTP | DGMP22 | September 2022

10x10x30 mm³

- Loss of Energy and Time resolution
- + Single & double escape peaks

Hamamatsu 25 µm

- + Best Energy and Time resolution
- Single SiPMs (build array)
- + Avoid crosstalk and alignment

CeBr₃ Granularity:

5x5x20 mm³

- + Fit to SiPM
- + Best Energy & Time resolution
- Double escape peaks

10x10x30 mm³

- Loss of Energy and Time resolution
- + Single & double escape peaks

Performance looks promising

Silicon Photomultipliers (SiPM):

SensL 35 µm It appeared to be sufficient for Prompt Gamma Timing measurements

+ Good Energy resolution + Best Energy and Time resolution - Loss in Time Realistic measurements at proton beam to confirm the performance

+ Avoid crosstalk and alignment

PETsys Readout : + easy scalable

- + ~100 ps time resolution
- + 3% loss in E_{resolution}
- Time walk correction

O. Novgorodova | IKTP | DGMP22 | September 2022

Thank you for your attention...

Aknowledgements:

OncoRay TU Dresden ELBE HZDR Rsesondorf – gamma source G. Pausch, T. Kögler, B. Lutz & K. Römer PETsys electronics for support & Scionix for CeBr₃ production

Continue to backup slides....

- Melek Zarifi, "Toward Non-invasive in vivo Dosimetry of Proton Therapeutic Beam Using Prompt Gamma"
- Theresa Werner, "Processing of prompt gamma-ray timing data for proton range measurements at a clinical beam delivery", 2018
- PETsys readout electronics https://www.petsyselectronics.com
- R. Schwengner et al., Nucl. Instr. Meth. A 555, 211 (2005). ELBE at HZDR Rossendorf γ-source with ps time resolution.
- CAEN,V1730 / V1730S 16/8 Channel 14 bit 500 MS/s Digitizer,www.caen.it/products/v1730/
- Hamamatsu,HAMAMATSU MPPC s13360 Series, www.hamamatsu.com/resources/pdf/ssd/s13360_series_kapd1052e.pdf
- OnSemi,Silicon Photomultiplier (SiPM) High Fill-Factor Arrays,www.onsemi.com/pdf/datasheet/arrayjseries-d.pdf

Measurements

Scintillator Characteristics

Characteristics	BGO	LYSO	CeBr3	GAGG(Ce)
τ (ns)	300	41	19	88
Time resolution 4.4 MeV (ps)	980	385	189	600
Energy resolution 662 keV $\%$	9.78	10.3	4.0	6.5
Energy resolution 4.4 MeV %	4.5	4.12	2.2	3.8
Max. Emission (nm)	480	422	358	528
Photons per MeV	8200	32000	60000	32400-57000
Z_{eff}	75	54	45.9	54.4
Density / g cm ³	7.13	5.37	5.1	6.63
Hygroscopic	No	No	Yes	No
Internal activity	No	Yes	No	No

SiPM Characteristics

Name	Pixel Pitch / mm	Pixel Size / μm	N Pixels	Opt. λ / nm
KETEK PA3325-WB-0808	3.36	25	13920	430
Hamamatsu S13360-6025CS	6.0	25	57600	450
Hamamatsu S13360-6050CS	6.0	50	14400	450
Hamamatsu S13361-3050NE-08	3.0	50	3584	450
Sensl ARRAYJ-60035-4P-PCB	6.33	35	22292	420

Time Walk

Required time resolution few 100 ps – PETsys ~100 ps Fixed thresholds instead of CFD is a disadvantage:

Time walk up to 500 ps

Energy Resolution CeBr₃

1. ROOT TSpectrum to estimate background (green)

- 2. After background subtraction (blue)
- 3. Gaussian fit (red)

4.
$$E_{res} = \sigma/\mu * 2.355$$

5. 2.355 - conversion factor to calculate full width at half maximum (FWHM)

 due to difficulties to estimate background for the full energy range and low statistics at higher energies.

AmBe & DAQ125 CeBr

PETsys Evaluation Kit

- \rightarrow cost effective
- → fast
- \rightarrow scalable

PETsys TOFPET2 ASIC

- Designed in standard CMOS 110 nm technology.
- Version 2.d accepts positive or negative input signals;
- Signal amplification and discrimination for each of 64 independent channels.
- Separately configurable t1, t2 and energy thresholds for each channel.
- Rejects dark counts without triggering, allowing to handle large dark counts rates.
- Configurable charge integration time up to two microsecond.
- Quad-buffered TDCs and charge integrators for each channel. The first branch is used for timing measurement. The second branch can either be used for time-overthreshold (ToT) or charge measurement with a Wilkinson ADC.
- Dynamic range: 1500 pC.
- TDC time binning: 30 ps.
- Gain adjustment per channel in the charge branch: 1, 1/2, 1/4, 1/8.
- On-chip charge calibration pulse generator with 6-bit programmable amplitude.
- Main clock frequency: 160-200 MHz.
- Configurable digital data output over 1, 2, or 4 LVDS data links at 2x the main clock frequency and single data rate (SDR) or double data rate (DDR).
- Max output data rate per ASIC: 3.2 Gb/s.
- Max event rate per channel: 500 kevent/s, 80 bits per event.
- Power dissipation per channel: 5 to 8.2 mW, depending on settings.

The Energy Resolution at 511 keV is 10.5 % (LYSO 3x3x5 mm³ crystal with a KETEK-PM3325-WB SiPM at 4 V.) Coincidence Time Resolution of 119 ps FWHM (LYSO 2x2x3 mm³ crystals with two Hamamatsu S13361-30361-3050AE SiPM arrays.)

