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Abstract
From 2026 to 2028 the large particle accelerator LHC at CERN will get an upgrade.
The number of simultaneous proton-proton-collisions will be increased to make
rare processes or even new physics discoverable.
Increasing the amount of simultaneous collisions will be a big challenge for the
signal processing and triggers. The so called Optimal Filter, which is currently
used at the ATLAS Liquid Argon calorimeter for the energy reconstruction, will
reach its limits. For a reliable energy reconstruction alternative algorithms are
needed. A possible alternative is the usage of artificial neural networks.
In this thesis the energy reconstruction using convolutional neural networks is in-
vestigated. Especially approaches of resource-saving optimizations of previously
developed networks are presented. It is being studied how time shifted pulses influ-
ence the energy reconstruction and how these negative influences can be reduced.
Additionally, convolutional neural networks which reconstruct the hit times are
presented.

Kurzfassung
Von 2026 bis 2028 soll der große Teilchenbeschleuniger LHC am CERN ein Up-
grade erhalten. Die Zahl gleichzeitiger Proton-Proton-Kollisionen soll gesteigert
werden, um seltene Prozesse oder sogar neue Physik entdeckbar zu machen.
Das Erhöhen der Anzahl simultaner Kollisionen, stellt eine große Herausforderung
für die Signalverarbeitung und Trigger dar. Der sogenannte Optimal Filter, der
momentan am Liquid Argon Kalorimeter des ATLAS Detektors zur Energierekon-
struktion genutzt wird, wird nach dem LHC-Upgrade an seine Grenzen kom-
men. Für eine zuverlässige Energierekonstruktion sind alternative Algorithmen
notwenig. Eine solche Alternative können künstliche Neuronale Netze darstellen.
In dieser Arbeit wird die Energierekonstruktion unter Nutzung von sogennanten
Convolutional Neural Networks untersucht. Insbesondere verschiedene Ansätze
für eine ressourcenschonende Optimierung bisherig untersuchter Netze werden
vorgestellt. Des Weiteren wird betrachtet, wie zeitlich verschobene Pulse die En-
ergierekonstruktionsalgorithmen beeinflussen und wie diese negativen Auswirkun-
gen reduziert werden können. Außerdem werden neuronale Netze vorgestellt, die
die Zeit der Energiedeposition rekonstruieren können.
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1 Introduction

1.1 Motivation

The desire for a better understanding of the universe and the nature of particles
leads humanity to more and more complex, extreme and technically challenging
experiments. In the context of particle physics the Large Hadron Collider (LHC)
at CERN is definitely a peak of physics and engineering performances so far.
Driven by the will to validate the predictions of the Standard Model of particle
physics (SM) [16] the LHC achieved major accomplishments having an outstanding
highlight with proving the existence of the Higgs Boson in 2012 [10] [22].

But even after finding this last main component of the SM and validating many
other predictions with an impressive precision, the search for new physics is still
going on at the LHC. Physics beyond the Standard Model do not only exist
in theory, but they are necessary for explaining some of the unsolved problems
of modern science. The existence of dark matter, the hierarchy problem or the
neutrino masses are such phenomena to name some of the most famous ones. Many
of these problems could be explained with theories in which additional particles
occur [38].

However, the physics community was not able to find indications for the existence
of such particles at LHC experiments like ATLAS or CMS, yet. This does not
necessarily mean, that those particles do not exist, but better techniques might
be needed to find them [38].

Additionally, there are still some SM parameters with large uncertainties and
unobserved SM processes. This is why it is worth thinking about possibilities of
improving the performance of the LHC and its particle detectors even further [38].
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1 Introduction

1.2 The Large Hadron Collider
The LHC [24] at CERN is the largest particle accelerator ever build and also the
one with the highest invariant mass. It accelerates two proton beams in opposite
direction with 6.8 GeV for each beam resulting in an invariant mass of 13.6 GeV in
the ongoing Run 3. Expressed in velocity this means that the protons travel with
99.9999991% of the speed of light [17] in the circular collider with an circumference
of 27 km which takes just about 90 µs.
The beams are not continuously filled with protons but they consist of so-called
bunches. These are gaussian distributed packages of protons with around 1011

protons per bunch. The spatial extend differs between the beam direction 𝑧 and
radial direction. The standard deviation of the 𝑧-distribution is in the order of
cm while in radial direction it is only in the order of µm.
The LHC was built in the tunnel of the Large Electron-Positron Collider (LEP),
which was the predecessor of the LHC. Since the amount of synchrotron radiation
caps the reachable centre of mass energy for circular electron colliders massively, a
proton collider was chosen to reach higher energies. To reach 13.6 GeV of invariant
mass, also some pre-accelerators are needed, which are shown in figure 1.1.
One bunch is injected every 25 ns with some larger gaps following a specific pat-
tern. This difference between two injections also defines the frequency of crossings
at the interaction points (IP). This time difference also defines the commonly used
time unit for LHC experiments: the bunch crossing (BC) which is correspondingly
25 ns.
The combination of the very dense proton packages and the high number of pro-
tons per bunch results in about 20 proton-proton-collisions at a single bunch cross-
ing at an interaction point fore the design LHC luminosity of 1 × 10−34 cm−2s−1.
This and the extremely high frequency of 40 MHz lead to a total integrated lumi-
nosity of 190 fb−1 at the end of run 2 and it is expected to reach 390 fb−1 at the
end of run 3 in 2025.
The two beams cross each other at four different IPs where the main experiments
of the LHC are located: ALICE [7], ATLAS [9], CMS [21] and LHCb [15] with
their big detector systems placed centered around the IPs. While ALICE and
LHCb are detectors specialized for specific events, ATLAS and CMS are so-called
general-purpose detectors.
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1.2 The Large Hadron Collider

Figure 1.1: Scheme of the LHC including all the pre-accelerators and other
accelerators located at CERN. Also the positions of the four main experiments
at the LHC, ALICE, ATLAS, CMS and LHCb, are marked. [33]
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1 Introduction

1.3 The ATLAS Experiment

The ATLAS detector [9], an acronym for A Toroidal LHC ApparatuS, is currently
the largest particle detector ever built. Like most modern particle detectors,
ATLAS consists of multiple subsystems aligned in layers around the beam pipe.
Every subdetector is specialized for its specific purpose and also their positions in
ATLAS is optimized for these tasks. Since the LHC is a proton-proton-collider, the
detector is mirror symmetrical with respect to the 𝑥𝑦-plane and radial symmetrical
around the beam line. Normally instead of 𝑧 or the angle to the 𝑧-axis Θ, the
so-called pseudorapidity 𝜂 is used to define the position of detector parts. This
pseudorapidity is defined as 𝜂 = − ln

(︁
tan Θ

2

)︁
which means that 𝜂 = ∞ along the

positive 𝑧-axis, 𝜂 = −∞ for the negative 𝑧-axis and 𝜂 = 0 in the 𝑥𝑦-plane.
The most inner detector part is a tracking detector which again consists of different
detector types. Silicon and straw tube detectors measure the trajectory of charged
particles. Due to a strong magnetic field created by large solenoid and toroid
electromagnets, charged particles will have curved tracks. This will not only give
information on the charge of particles but also allows to calculate the momentum
by measuring the radii of the tracks.
After the measurement of the direction of flight and the momentum is finished, the
energy of the particles should be determined. ATLAS has two different calorime-
ter systems. The one closer to the center is the Liquid Argon Calorimeter (LAr)
which will be described further in the next section. The LAr calorimeter also
consists of different detector regions. It is mainly an electromagnetic calorime-
ter measuring the energy of electromagnetically interacting particles, focusing on
electrons and photons, while the LAr calorimeter end-caps are also part of the
hadronic calorimeter of ATLAS.
The rest of the hadronic calorimeter is the so-called Tile calorimeter. It uses
scintillators and steel absorbers to measure the energy of hadronically interact-
ing particles such as baryons and mesons. Because of the proton-proton-collision,
hadronic processes are quite dominant in ATLAS. Measuring the energy of these
particles is therefore very important and so-called jet reconstruction is an impor-
tant task for the data analysis.
The Tile calorimeter should stop all remaining particles besides muons and neu-
trinos. To measure the muon momenta, so-called muon spectrometers are placed
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1.4 The ATLAS Liquid Argon Calorimeter

Figure 1.2: Scheme of the ATLAS detector with its different subdetectors.
[34]

at the outer part of ATLAS. In the forward regions this subdetector has the iconic
wheel shape which can be seen in figure 1.2
The remaining particles, the neutrinos, can not be measured directly. However it
is still important to observe the neutrinos and determine their energy. To make
this possible, ATLAS is constructed as a nearly hermetic detector which means
that particles besides neutrinos can not escape ATLAS without being measured.
Knowing the initial properties of the protons and using the information of the ob-
servable particles, it is possible to calculate the missing transverse energy (MET)
induced by the neutrinos which is a key part of LHC and ATLAS physics. There-
fore, the energy of every final state should be determined as exactly as possible.

1.4 The ATLAS Liquid Argon Calorimeter

Although the LHC collides protons and hadronic processes are dominant, electrons
and photons are important for the data analysis for multiple reasons. Interesting
events often include electromagnetic and weak interactions. For example Higgs
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1 Introduction

Bosons or 𝑊 ± Bosons often decay to electrons or to particles which will decay
to electrons later [28]. The Higgs Boson for example was even discovered in 2012
with the 𝐻 → 𝛾𝛾 and 𝐻 → 𝑍𝑍 → 4𝑙 processes [10]. Also, hadronic particles like
pions and kaons will decay into electrons, photons and muons [28]. Therefore an
excellent working electromagnetic calorimeter is extremely important. The Liquid
Argon Calorimeter [8] of ATLAS was developed to fulfill this task.

The main parameter which characterizes the performance of the calorimeter is the
energy resolution which is given by:

Δ𝐸

𝐸
= 𝑎√︁

𝐸
[𝐺𝑒𝑉 ]

⊕ 𝑏
𝐸

[𝐺𝑒𝑉 ]
⊕ 𝑐 (1.1)

where 𝑥⊕𝑦 =
√

𝑥2 + 𝑦2. The first term is called sampling term caused by Poisson
statistics of the number of free charges in the calorimeter cell. The second term
is caused by noise and the third term is a constant defined by the calorimeter’s
architecture. The parameters 𝑎, 𝑏 and 𝑐 can be measured. Sometimes the resolu-
tion is only handled with the sampling term since especially for higher energies it
dominates the noise term and the constant term is relativly small. For the LAr 𝑎

is about 10 % for the electromagnetic parts and 20 % for the hadronic parts.

The electromagnetic and hadronic parts have different architectural features to
meet the requirements for reaching the desired resolutions. Additionally, the par-
ticles resulting from the proton-proton-collisions have a specific 𝜂-direction distri-
bution, so different detector regions with specific requirements are needed.

The main parts are the electromagnetic barrel (EMB), the electromagnetic end-
cap (EMEC), hadronic end-cap (HEC) and the forward calorimeter (FCAL),
which has electromagnetic and hadronic parts. The different regions are shown in
figure 1.3. All of them have in common that they are using liquid argon as the
active material. Charged particles will traverse the liquid argon and produce free
charge due to ionization which can then be collected by electrodes. Afterwards
the electronic signal is proportional to the energy deposit. The liquid Argon is
used because of its well fitting properties on the one hand and its relatively low
costs on the other hand. Especially the costs are a big advantage over alternative
gases like Krypton.
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1.4 The ATLAS Liquid Argon Calorimeter

Figure 1.3: Scheme of the LAr calorimeter with its different detector regions.
[8]

The whole LAr calorimeter is embedded in multiple cryostats, since the detector
has to be cooled down to 89.3 K to reach the liquid state of Argon and optimal
conditions.
The electromagnetic calorimeter includes the pseudorapidity range of |𝜂| < 3.2
and 3.0 < |𝜂| < 4.9 for the electromagnetic part of the FCAL. The EMB and
EMEC have a characteristical accordion structure to minimize the appearance of
gaps without active material in azimuth direction. This is important to make
sure that the MET is indeed treatable as equivalent with the neutrino energy. A
scheme of the EMB with its different layers and accordion structure is shown in
figure 1.4 and the accordion structure can be viewed in detail in 1.5.
To shorten the radiation length, absorption material is placed between the LAr
layers. Electrons, positrons and photons will interact with the atoms of this ma-
terial and produce electromagnetic showers. Electrons and positrons will emit
photons due to bremsstrahlung while high energetic photons, also those produced
by bremsstrahlung, will produce electron-positron pairs. These processes are re-
peated until the photon energy is too small for pair production. For the EMB
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1 Introduction

Figure 1.4: Scheme of a section of the EMB with the typical accordion struc-
ture of the LAr calorimeter. The three sampling layers with different granu-
larities are displayed. [8]

Figure 1.5: Scheme of the accordion strcture of the LAr calorimeter with the
readout electrodes, absorber and active material. [8]
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1.5 The ATLAS Liquid Argon Calorimeter Readout Electronics and Signal
Processing

and EMEC, lead is used as the absorber material and steel is used to stabilize the
detector but also works like an absorber material. The electromagnetic module
of the FCAL is using copper as the absorber. The electrodes for the readout are
made of copper-kapton board. The structure and the used materials are shown in
1.5.
The EMB and its cryostat is 6.8 m long with an outer radius of 2.25 m and an inner
radius of 1.15 m. It consists of different layers. The first layer called presampler is
used to correct the energy loss of particles which is created by interactions before
reaching the LAr calorimeter.
The presampler is followed by three sampling layers with different properties. The
first layer has a very fine granularity in 𝜂 direction as shown in 1.4. This results in
a good spatial and temporal resolution. To limit the number of readout channels
the granularity in the following layers is less fine. The second sampling layer is the
longest one in radial direction so the biggest part of the energy is deposited here.
The last sampling layer got an even coarser granularity and covers less radiation
length than the first two sampling layers.
The hadronic end-caps cover the pseudorapidity range of 1.5 < |𝜂| < 3.2 and the
FCAL reaches up to |𝜂| = 4.9. The absorber material of the HEC is copper which
is also used in specific parts of the FCAL. However the main parts of the hadronic
modules of FCAL are using tungsten for the absorber material which was a quite
new technique for calorimeters when the LAr calorimeter was constructed.
All the different detector regions have a total count of 182,468 cells with one
readout channel each [12].

1.5 The ATLAS Liquid Argon Calorimeter Readout
Electronics and Signal Processing

The extreme conditions of the LHC do not only set high requirements for the de-
tector itself but also for the readout electronics [11]. The high event rate of 40 MHz
with up to 20 proton-proton-collisions per BC results in a enormous amount of
data which is produced at ATLAS. Since the data which can be collected and
saved are limited, very fast data processing and decision making is needed.
The readout electronics need to handle a lot of tasks like pulse shaping, digitiza-
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1 Introduction

tion, gain selection, noise reduction and trigger decisions. The schematic block
diagram of the currently installed readout electronics for Run 3 is shown in figure
1.6. The electronics can be divided into two categories: Front-end and Back-end
electronics. The Front-end electronics with the Front-end Boards (FEB) are lo-
cated directly at the calorimeter’s cryostats and perform first necessary operations
before the preprocessed data can be sent to the Back-end electronics. There the
signal processing, which is important for the global trigger system, is performed.
The signals have the shape of a triangular pulse, what is a consequence of the
homogeneous magnetic fields with parallel field lines in the detector cells. Since
the exact arrival time of particles in each detector cell is unknown, the triangular
pulse shapes are not suited well for the signal processing, the pulses are reshaped
to bipolar pulses as shown in 1.7. Therefore a so-called 𝐶𝑅 − 𝑅𝐶2 filter is used.
Afterwards an analog-to-digital converter (ADC) converts the continuous cell out-
put to a discrete signal which can be used for digital calculations. The sampling
rate of 40 MHz is chosen to match exactly to the times of the bunch crossings.
The amplitude of the pulses is proportional to the deposited energy and the value
at the peak could be used as the reconstructed energy if there were no noise and
pileup effects. However there is noise, especially electronic noise and pileup, which
has to be reduced before the actual energy reconstruction.
Therefore a digital filter called Optimal Filter (OF) [6] is used, which is a rather
simple but efficient algorithm to minimize the signal-to-noise ratio using linear
combinations of values of the data sequence. Let 𝑥(𝑡) be the value of the ADC
output at the BC 𝑡 and 𝑛 is the filter depth. The output of the OF at the BC t
is defined by

𝑂𝐹 (𝑡) =
𝑛−1∑︁
𝑖=0

𝑎𝑖 · 𝑥(𝑡 − 𝑖) (1.2)

with the filter coefficients 𝑎0, ..., 𝑎𝑛−1. In theory the number of these coefficients
is infinite for a perfect signal-to-noise ratio. At the LAr calorimeter data taking is
done with 4 samples since Run 2 due to limited on-detector buffering capabilities.
But 𝑛 = 5 is a better value for noise suppression [11]. The coefficients can be
calculated mathematically as described in [6] knowing the noise pattern and ideal
pulse shape 𝑔(𝑡) which is digitized to discrete values 𝑔𝑖. The thermal noise and
pile-up noise define the noise autocorrelation matrix 𝑅. With 𝑔𝑖, the derivative of
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1.5 The ATLAS Liquid Argon Calorimeter Readout Electronics and Signal
Processing

Figure 1.6: Schematic block diagram of the Phase I upgrade readout elec-
tronics for Run 3. [11]

ATLAS

Figure 3. Shapes of the LAr calorimeter current pulse in the detector and of the signal output from the
shaper chip. The dots indicate an ideal position of samples separated by 25 ns.

3. Pulse reconstruction and calibration

As depicted in Figure 3, a triangular current pulse is produced when charged particles ionize the
liquid argon in the high-voltage potential present in the gap between two absorber plates. Once the
signal reaches the FEB, a bipolar shaping function is applied and the shaped signal is sampled at
the LHC bunch crossing of 40 MHz. For triggered events, a number of samples Nsamples per chan-
nel is read out. Reading out and utilizing multiple samples provides several advantages, including
improving the precision of the energy measurement (as shown below), making the energy mea-
surement insensitive to how accurately a sample can be placed at the top of the peak, and allowing
the calculation of other quantities, such as the time and quality factor, in addition to the deposited
energy. The typical choice of five samples represents a compromise between the noise reduction
achieved and the amount of data that must be digitized and processed in real time.

The ROD reconstructs the amplitude (A) of the signal pulse in ADC counts, as well as the time
offset of the deposition (t), by applying a digital filter to the recorded samples (s j) according to the
following equations:

A=
Nsamples

!
j=1

a j(s j− p) (3.1)

and

– 6 –

Figure 1.7: Triangular pulse shape as obtained from the detector, the re-
shaped bipolar pulse and discrete data points after digitization. [8]
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the pulse shape 𝑔′
𝑖 and the inverse of the noise autocorrelation matrix 𝑉 = 𝑅−1,

the following parameters can be defined:

𝑄1 =
∑︁
𝑖𝑗

𝑔𝑖𝑉𝑖𝑗𝑔𝑗 , 𝑄2 =
∑︁
𝑖𝑗

𝑔′
𝑖𝑉𝑖𝑗𝑔

′
𝑗 , 𝑄3 =

∑︁
𝑖𝑗

𝑔′
𝑖𝑉𝑖𝑗𝑔𝑗 ,

Δ = 𝑄1𝑄2 − 𝑄2
3 , 𝜆 = 𝑄2

Δ , 𝜅 = −𝑄3

Δ , 𝜇 = 𝑄3

Δ , 𝜌 = −𝑄1

Δ .

(1.3)

With these parameters the coefficients 𝑎𝑖 can be calculated:

𝑎𝑖 = 𝜆
∑︁

𝑗

𝑉𝑖𝑗𝑔𝑗 + 𝜅
∑︁

𝑗

𝑉𝑖𝑗𝑔
′
𝑗. (1.4)

Additionally there is another optimal filter OF𝜏 [6] which reconstructs the product
of deposited energy and hit time 𝐸𝜏 :

𝑂𝐹𝜏 (𝑡) =
𝑛−1∑︁
𝑖=0

𝑏𝑖 · 𝑥(𝑡 − 𝑖). (1.5)

The hit timing can then be used for a correction of the reconstructed energy. The
coefficients 𝑏𝑖 can be also calculated with the defined parameters:

𝑏𝑖 = 𝜇
∑︁

𝑗

𝑉𝑖𝑗𝑔𝑗 + 𝜌
∑︁

𝑗

𝑉𝑖𝑗𝑔
′
𝑗. (1.6)

1.6 The High Luminosity Large Hadron Collider

At the moment the data analysis groups working at ATLAS are using the run
2 data with 13 TeV invariant mass and a total amount of 139 fb−1 of integrated
luminosity which is usable for physics analysis while the LHC produced 158 fb−1

at ATLAS and 147 fb−1 were measured [13]. The current LHC is expected to reach
an additional integrated luminosity of 160 fb−1 at the end of run 3 in 2024 having
350 fb−1 in total for all runs. While this is an extremely large amount of data,
the physics community is convinced that even much more data is needed to find
exciting new physics and very rare processes [36].
To reach this goal an upgrade of the LHC is planned. The upgraded LHC will
be called High Luminosity Large Hadron Collider (HL-LHC) [22] then and is
expected to to reach 250 fb−1 to 300 fb−1 per year, which is more data than the
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1.6 The High Luminosity Large Hadron Collider

LHC produced during the whole run 3 in three years.
To reach this high luminosity, many beam properties of the LHC will be optimized
to enlarge the number of proton-proton collisions per BC noted as 𝜇, which has
to be interpreted as expected value of collisions, the real number can be higher
or smaller. The number of protons per bunch will be increased from 115 billion
to 220 billion protons and the emittance, the area of a bunch in phase space, will
get smaller. Also newly developed so-called crab cavities, shown in figure 1.8,
will be installed. These will maximize the overlap volume of two bunches at a
bunch crossing leading to more possible proton-proton collisions. Due to these
changes, the number proton-proton collisions will get approximately seven times
larger from 𝜇 = 20 at the LHC to 𝜇 = 140 at HL-LHC.
While this is a great improvement for the possibilities in data analysis, it is also an
enormous challenge for the detectors since they will face up to seven times higher
signal rates and these signals have to be detected and processed.
The upgrade schedule of the LHC and its detectors is shown in figure 1.9.
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Figure 1.8: Scheme of the functionality of the newly developed crab cavities.
The bunches will be rotated just before the bunch crossing so that the over-
lapping volume is increased compared to the non-rotated bunches like they are
used at the LHC. [35]
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Figure 1.9: Upgrade schedule of the LHC. The long shutdown 3 is planned for
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1.7 Pileup at the High Luminosity Large Hadron
Collider

Having 140 𝑝𝑝-collisions per BC does not only increase the number of interesting
events. Most of the collisions will just increase the number of less interesting
hadronic events for the majority of the cells. These particles, mainly pions, result
in many small energy deposits per cell and BC which is called called in-time pileup
[36].
More events per BC will also increase the chance of observing two events in the
same cell with a short temporal distance. Since one pulse has a total length of
about 25 BC, smaller temporal gaps between two events will result in an overlap
of both pulses which is shown in figure 1.10. This so-called out-of-time pileup is a
challenging problem for the signal processing because the OF is correcting out-of-
time pile-up on average, but not for each individual BC. If the height of the OF
output is taken as the reconstructed energy without more complex algorithms,
this will lead to underestimated energies for short gaps as shown in figure 1.10
[27].
The high amount of pileup will impact the energy resolution if no advanced signal
processing technique will be used. The figures 1.11 and 1.12 show that the energy
resolution for photons and electrons will decrease with an increasing number of
collisions per bunch crossing 𝜇 [12].
Additionally to the requirement of an improved signal reconstruction, the limited
radiation tolerance of the current front-end electronics and the need of larger data
buffers for the desired higher trigger rate of 1 MHz, lead to the decision to replace
the readout electronics [12].
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Figure 1.10: Example of a sequence with out-of-time pileup before filtering
(ADC) and afterwards (OF). Also the actual energy deposit is shown. The
second energy deposit follows very quickly after the first one so both pulses
overlay each other.
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1.8 The ATLAS Liquid Argon Calorimeter Phase-II
Upgrade

The actual calorimeter cells will not get upgraded for the HL-LHC because they
should be able to work properly under the high luminosity conditions. However
due to the mentioned increased radiation and pileup and ATLAS new trigger
scheme it is necessary to upgrade the electronics of the LAr calorimeter. This so-
called Phase-II upgrade [12] will take place during the third long shutdown (LS3)
of the LHC when the LHC will be upgraded to the HL-LHC. The new layout is
shown in figure 1.13.
The increased radiation dose led to the decision to replace the FEBs with new
Front-end electronics boards (FEB2) while they will perform the same operations
as in the Phase-I design [11]. New application-specific integrated circuits (ASIC)
containing the preamplifiers and shapers are developed. Also the ADC will be
replaced. The new electronics are designed to be more resistant to radiation.
Every FEB2 will have two connectors with 64 channels each resulting in 128 total
inputs. One input is needed per cell so 1524 FEB2s will be needed to read out the
whole calorimeter. Additionally a clock and several other chips used for sending
data to other boards are integrated on the FEB2.
Another big change will be the new LAr Signal Processor (LASP) with its field-
programmable gate array (FPGA) [37]. Every LASP FPGA will get the data from
three FEB2s via optical links to minimize the delay of signals. This results in a
total number of 384 calorimeter cells one LASP FPGA has to process. The FPGA
have to perform several algorithms. The most important one is the algorithm for
the reconstruction of the energy and optionally the hit time. Aan OF as described
in section 1.5 could be used or an advanced algorithm. Since the FPGA will
have to process the output of 384 detector cells, the hardware resources for these
algorithms are limited.
LASP data will be sent to the Global Event Trigger Processors (GETP) which is
responsible to decide if the ATLAS detector should read out the data of an event
or not. This shows how important the performance of the LAr and its signal
processing is.
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Also the trigger scheme will be changed. With the new scheme the ability to per-
form measurements of events in consecutive bunch crossings is desired. Not only
the hardware has to be renewed for that, also the signal processing algorithms are
challenged by this trigger scheme. Here, alternative solutions should be discussed
to exploit the full potential of the HL-LHC.
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1.9 The ATLAS Readout Electronics Upgrade
Simulation

To test the influence of increasing event rates, new trigger schemes and other new
effects on the readout electronics, a simulation software called "ATLAS Readout
Electronics Upgrade Simulation" (AREUS) [32] is used. AREUS simulates how
particles resulting from proton-proton collisions hit single cells of the LAr calorime-
ter and how these hits produce pulses. These pulses are then shaped and digitized
exactly the same way, the electronics at the detector would do. Afterwards there
is the possibility to activate filters like the mentioned OF. The calculation of
the coefficients of the OF follows the principle described in [6]. Also, multiple
evaluation methods for the performance of filters are included. The output of the
resulting data and intermediate steps is given in ROOT files. These files can then
be used for advanced analysis.
Using a simulation software is not only necessary for checking future changes. The
possibility of knowing the true energy leading to specific pulses is a big advantage
which is not possible to achieve if actual data from the detector would be used.

1.10 Machine Learning and Artificial Neural
Networks

Computer algorithms are able to solve problems very easily, which are extremely
hard to solve for humans. Simulating complex physical processes, finding the best
possible play in chess or calculating the prime factors of a number: if there is a
way to formulate a task in logical and mathematical expressions, computers are
able to outperform humans. However, some tasks that are very simple for humans
are hard to formalize for a computer program. For example the recognition of
animals, faces or even shapes is rather complicated for algorithms [30, Chapter 1].
To solve this issue, humanity tried for a long time to find ways to make computers
think intelligently. In the last couple of years, the development of artificial intel-
ligence (AI) made a big step and today AI is used in many fields of science and
every-day life. Most of these AI technologies are using artificial neural networks
(ANN) with machine learning algorithms [30, Chapter 1].
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1.10.1 Convolutional Neural Networks

Mathematically an ANN is a graph with vertices, called neurons, and edges which
define how the neurons are connected to each other. Data are passed through the
network from neuron to neuron while every neuron performs a calculation 𝑔𝑖(𝑥) on
the data. In most cases, many of these neurons are arranged in layers. Neurons in
the same layer are not connected to each other but only to neurons in the previous
and following layer so that the output of a layer can be interpreted as a function
𝑓𝑗(𝑥) = 𝑓𝑗(𝑔𝑗1(𝑥), ..., 𝑔𝑗𝑁(𝑥)). The network output is the sequential calculation of
these functions so basically their composition[30, Chapter 6]:

output = 𝑓𝑁(𝑓𝑁−1(...𝑓1(input)...)). (1.7)

A scheme of a simple ANN is shown in figure 1.14. Arrows denote connection
between neurons, shown as circles. The output of a neuron will be given as an
input to the neurons connected to it.
A special case of ANNs are Convolutional Neural Networks (CNN) [23][30, Chap-
ter 9]. These networks consist of at least one layer which performs a mathematical
convolution. Let 𝑥 be the input of the layer and may 𝑦 be the output. There will
be a set of parameters 𝑤, called kernel, and a set of parameters 𝑏, called bias, such
that:

𝑦 = 𝑤 ⊗ 𝑥 + 𝑏. (1.8)

Since both 𝑥 and 𝑦 are multidimensional tensors in general, this product has to
be understood as a tensor product.
The total size of the kernel is defined by the number of input data points used in
one convolution, also-called kernel size, the number of input dimensions and the
number of output dimensions, which are called filters. The name filter is chosen
because the different weight sets can accentuate specific properties of the data.
The bias can shift the whole output by a constant.
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outputinput

Figure 1.14: Scheme of an ANN with 3 layers, 2 neurons in the first layer
followed by 2 layers consisting of 3 neurons each.

In the following, an example with a CNN consisting of two layers, where input
and output are 1D-vectors is presented. The first layer has a kernel size of 𝑘𝑠,1

and 𝑛 filters. The second layer has a kernel size of 𝑘𝑠,2. The output of the CNN
is then calculated as the composition of two tensor products:

𝑦𝑖 = 𝑤′ ⊗ (𝑤 ⊗ 𝑥 + 𝑏) + 𝑏′. (1.9)

Or written with the tensors components:

𝑦𝑖 =
𝑘𝑠,2∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑤′
𝑗𝑘

⎛⎝ 𝑘𝑠,1∑︁
𝑚=0

𝑤𝑚𝑗𝑥𝑖+𝑚 + 𝑏𝑗

⎞⎠ + 𝑏′. (1.10)

Visualized as a graph, this CNN would look like the one shown in figure 1.15,
where 𝑘𝑠,1 = 3, 𝑘𝑠,2 = 2 and 𝑛 = 2.

When the convolution performed by a layer as described in equation 1.8 is applied
many times like described in equation 1.7, the composition of all these convolutions
allows to apply complex operations. Nowadays, such CNNs are an important tool
for object recognition in images [30, Chapter 9].
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Figure 1.15: Example for a relatively small CNN with one dimensional input
and output and a two-dimensional output of the first layer. The green arrows
symbolize the multiplication of weights and the addition of these products.
The blue squares symbolize the bias and the blue arrows symbolize the addition
of them. To calculate the output 𝑦𝑖+1 the CNN would be applied to the input
values 𝑥𝑖+1 to 𝑥𝑖+4

1.10.2 Machine Learning Algorithms

A machine learning algorithm is a program that uses data sets to learn prop-
erties of this data. There are different categories of machine learning such as
unsupervised and supervised learning. Unsupervised learning uses training data
and learns specific features of this data set. A supervised learning algorithm uses
training data and target data to learn a specific context between input data and
the desired output. In this thesis the supervised learning method was used [30,
Chapter 5].
For the application with ANNs a common way to implement machine learning
is the gradual adjustment of the weights and bias [30, Chapter 6]. Therefore
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at the beginning of the training an initial set of the parameters will be chosen
randomly, often with a normal or uniform distribution. Then the algorithm needs
information about which parameters are leading to good results. For that reason,
so-called cost or loss functions [30, Chapter 6], named Λ here, are used. The loss
function uses the target data 𝑦true and the output predicted by the ANN 𝑦pred to
calculate how good the prediction is. For a given ANN architecture the prediction
is a function of the input data 𝑥 and the set of parameters Θ:

Λ = Λ (𝑦true, 𝑦pred) = Λ (𝑦true, 𝑥, Θ) . (1.11)

The goal of machine learning is to minimize this loss by finding an optimal choice
of Θ. Since an analytical calculation of this minima is not possible in many cases,
a gradual adjustment of the parameters is performed.
Therefore, the gradient ∇ΘΛ of the loss function is calculated. This gradient can
be used to determine the direction and the strength of change of every parameter
Θ𝑖. For a better search for the minima it is convenient to adjust the strength of
change with the so-called learning rate 𝑟𝑙. The adjustment of the parameter Θ𝑖 is
then:

ΔΘ𝑖 = 𝜕

𝜕Θ𝑖

Λ · 𝑟𝑙. (1.12)

Every trainable parameter gets adjusted this way. This procedure is repeated for a
specified number of epochs and in the best case a local minimum was found then.
This is called training in machine learning. A simplified scheme of a training
is shown in figure 1.16. It also shows that the initial guess of the parameters
influences the success of a training.

1.10.3 Loss Functions

The success of a training in machine learning highly depends on the loss function
which is used. On the one hand, the loss function defines which value is minimized
in the training, so if a loss, which does not fit to the data and the desired output,
is used, the training will not lead to the desired results. For example there are
different loss functions suitable for classification problems and for regression prob-
lems. On the other hand, the loss function defines the geometry of the loss plane
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Figure 1.16: Scheme of a training process where the parameters are adjusted
gradually to reach a minima in the loss function. The Influence of the initial
parameters can be seen.
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where the learning algorithm searches for a minima. Too complex loss functions
may cause minima which are hard to reach.
Two commonly used loss functions are the mean absolute error (MAE) [5] and the
mean squared error (MSE) [5]:

𝑀𝐴𝐸 = 1
𝑁

𝑁∑︁
𝑖=0

|𝑦true,𝑖 − 𝑦pred,𝑖| , (1.13)

𝑀𝑆𝐸 = 1
𝑁

𝑁∑︁
𝑖=0

(𝑦true,𝑖 − 𝑦pred,𝑖)2 . (1.14)

In the following, the influence of the chosen loss function will be clarified by these
two examples. Since the MAE only takes the absolute difference of every data
point into account, every data point influences the loss almost in the same way.
Outliers in the data will not disturb the training’s success since reducing the loss
of the many regularly looking data points will lead to the same result. This may
result in many well fitting outputs while some few outputs have high deviations.
The MSE increases more for outliers than for regular data points. Those outliers
will be handled better when the ANN is trained with the MSE instead of the MAE
but the ANN may perform slightly worse on regular data points.
An example for a loss function suitable for classification problems is the binary
cross entropy (BCE) which is used for binary classification where 𝑦true,𝑖 = 1 or
𝑦true,𝑖 = 0 and 0 ≤ 𝑦pred,𝑖 ≤ 1:

𝐵𝐶𝐸 = 1
𝑁

𝑁∑︁
𝑖=0

𝑦true,𝑖 log (𝑦pred,𝑖) + (1 − 𝑦true,𝑖) log (1 − 𝑦pred,𝑖) . (1.15)

1.10.4 Activation Functions

To increase the performance of ANNs, so-called activation functions can be im-
plemented. An activation function 𝛼 is applied to the output of a layer, so that
in case of a CNN the layer output is [19]:

𝑦 = 𝛼 (𝑤 ⊗ 𝑥 + 𝑏) . (1.16)

Activation functions can add non-linearities which may increase the performance
[19]. Also, the geometry of the activation can help the ANN to find the distribution
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of the target data or to make sure to comply with the restrictions needed for the
output. In the second case, the output layer of the ANN needs the corresponding
activation function. If the output should have only none negative values, a rectified
linear unit (ReLU) [31] could be used. For desired output values between 0 and 1,
for example if the output should be a probability, the so-called sigmoid function
could be a reasonable choice [19]. The graphs of those two often used activation
functions are shown in figure 1.17.
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Figure 1.17: Graphs of the sigmoid activation function (left) and ReLU ac-
tivation function (right).

The sigmoid function:
𝑆(𝑥) = 1

1 + 𝑒−𝑥
(1.17)

has the advantageous property that its derivative can be calculated easily:

𝑆 ′(𝑥) = 𝑆(𝑥)(1 − 𝑆(𝑥)). (1.18)

The ReLU function is defined as:

ReLU(𝑥) = max (0, 𝑥) . (1.19)
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2 Energy Reconstruction of LAr
Signals using CNNs

2.1 3-layer and 4-layer Convolutional Neural
Networks

The Optimal Filter described in section 1.5 will reach its limits at the amount of
signals and pileup expected at the HL-LHC. The OF does not handle the pileup
individually and especially a signal following a high energy deposit will not be
detected properly by the OF. If such signals are not detected, the trigger system
of ATLAS will not start the data readout. Interesting events could get lost.
Therefore, alternative algorithms, which handle the pileup better, are searched
for. ANNs as described in reference [27] could be such an alternative. Different
ANN types are studied at the moment and seem to be promising candidates for
this challenge.
In reference [27] two different CNN architectures were explored which will be
presented here. Both of them consist of two parts, so called sub-networks. The
first part is called tagging part, consisting of two convolutional layers with sigmoid
functions as activation. The first layer has 5 filters with a kernel size of 3, the
second has a kernel size of 6 and one filter to match the one dimensional output.
The input of the first layer is the ADC output of the LAr cell. The output of
the tagging part is concatenated with the ADC output and passed to the second
sub-network which is called energy reconstruction part. There are two different
architectures of the energy reconstruction part. For the so called 3Conv CNN
the energy reconstruction part consists of one layer with one filter and a kernel
size of 21. The so called 4Conv CNN has two convolutional layers in its energy
reconstruction part, the first with 3 filters and a kernel size of 4 and a second
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layer with 1 filter and a kernel size of 3. Both versions have ReLU functions as
activation in the energy reconstruction layers. This ensures that the reconstructed
energies have non-negative values. A scheme of the 4Conv network is shown in
figure 2.1.
Every layer gets a bias and the initial parameter values are normal distributed
random numbers with a mean of 0 and a standard deviation of 0.001. A causal
padding is chosen so that the kernel only uses data points that came in before the
evaluated data point.
The training is executed in two stages [27]. At first the tagging part is trained, for
which AREUS samples are used. The target output is 0 when a energy deposit
is smaller than 3𝜎 of the total noise and 1 for higher energies. For the here
investigated detector cell of the EMB middle layer with (𝜂, 𝜑) = (0.5125, 0.0125),
this 3𝜎 threshold is 240 MeV. The sigmoid activation forces the CNN’s output to
be between 0 and 1. The training is done with the BCE loss function.
Pre-training this CNN part causes a higher chance for a successive training for
the second part, the energy reconstruction sub-network. This effect is often used
in machine learning, for example in [18].
Afterwards, the whole CNN is trained to perform the energy reconstruction. Again
the data are generated with AREUS. During this training also the tagging part
gets retrained as well. The property that the tagging parts should return 1 if there
was a significant energy deposit is lost and the tagging layers take over parts of
the energy reconstruction.
To build and train the CNNs the Python framework Tensorflow [3] and especially
Keras [2] were used.
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Figure 2.1: Schematic architecture of the 4Conv CNN. [27]
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2.2 The Performance of 3Conv and 4Conv Networks

To validate the performance of the ANNs multiple indicators are used. The energy
resolution of the ANNs should be as good as possible, but at least it should be
better than the OF. Also, it is important that they reconstruct as many energy
deposits as possible while achieving a reliable background rejection. Since the
OF’s biggest problem is the out-of-time pileup, special attention is given to the
performance for small temporal gaps between two high-amplitude pulses. To make
the ANN’s output more comparable to the OF, a simple maximum finder is used,
which returns reconstructed energies. The output of the OF with a maximum
finder is called OFMax.
To analyze the signal efficiency and background rejection, in [27] so called ROC-
curves [25] were analyzed. These show, how the background rejection depends on
the signal efficiency, which is set by selecting a signal threshold. The ROC-curves
for the OFMax, 3Conv and 4Conv CNN are shown in figure 2.2. It can be seen
that the ANNs perform better since, for equal background rejection, they have
higher signal efficiencies than the OFMax.
However, the energy reconstruction is no classification task but a regression.
Therefore an energy threshold which defines signal and background has to be
chosen manually and was chosen to be 3𝜎 of total noise. In this work, a better
way to analyze the signal detection and background rejection, was aimed for. A
good classifier for well working background rejection, which was found, is the rate
of fake energies where 𝐸true

𝑇 = 0 GeV and 𝐸pred
𝑇 > 0 GeV. This method is indepen-

dent of a manually chosen threshold and differentiates between smaller and higher
fake energies. This information is useful, because reconstructing many high fake
energies could lead to overestimated missing transverse energy. A histogram of
these fake energies is shown in figure 2.3. In this work, these fake energies instead
of ROC-curves will be used to classify the background rejection.
The 3Conv network performs very similar to the OFMax while the 4Conv network
reconstructs fewer fake energies lower than 0.5 GeV but has up to 100 times more
entries with 𝐸fake

𝑇 < 0.3 GeV compared to the OFMax. While this effect can
be observed for many trainings of the 4Conv, it does not occur for the 3Conv
networks. It seems to be inherent in the architecture of the 4Conv CNNs.
The resolution of the energy reconstruction is improved by the CNNs, especially
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The ROC-curves are showing the background rejection over the signal effiency.
Curves that are closer to the upper right corner at (100 %, 100 %) perform
better which means that the CNNs outperform the OFMax. [27]
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Figure 2.3: Histogram of fake energies for OFMax, 3Conv and 4Conv ANN.
While OFMax and the 3Conv network have a similar distribution of fake en-
ergies, the 4Conv produces a lot of fake energies with 𝐸true

𝑇 < 0.03 GeV.

for the 3Conv network as shown in figure 2.4. The OF tends to underestimate
energies which is caused by the undershoot of the bipolar pulses. This can also
be seen in figure 2.5.
It is clearly visible that the CNNs have less underestimated energies when the gap
to the previous pulse is smaller than 20 BC, which corresponds to the length of the
pulse’s undershoot. The 4Conv network seems to struggle with small gaps but the
performance loss is smaller than for the OFMax. The 3Conv handles those small
gaps very well until the gap is smaller than 4 BC, where the peaks of both pulses
are overlapping. At this point the ANN is not able to distinguish the signals.
All in all, the CNNs outperform the Optimal Filter for 𝜇 = 140. However, there
are still cases which have to be tested. As a part of this master thesis, some of the
open questions will be studied in more detail. These questions will be presented
in the next section. Since the 3Conv network seems to perform slightly better
than the 4Conv network, the analysis will focus on this CNN type.

34



2.2 The Performance of 3Conv and 4Conv Networks
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Figure 2.4: Histogram of difference between predicted and actual energies for
OFMax, 3Conv and 4Conv ANN. The 4Conv network have a broader energy
difference distribution than the OFMax but the 3Conv network outperforms
the OFMax.

35



2 Energy Reconstruction of LAr Signals using CNNs

0 20 40 60 80 100
Gap [BCs]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Epr
ed

T
Etr

ue
T

 [G
eV

]

AREUS  Simulation
work in progress

50

100

150

200

250

300

N
um

be
r o

f E
nt

rie
s

(a) 3Conv
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(b) 4Conv
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(c) OFMax

Figure 2.5: 2D Histogram of difference between predicted and actual energies
over the gap to the previous pulse with an energy above 0.5 GeV for OFMax,
3Conv and 4Conv ANN. The CNNs clearly outperform the OFMax for small
gaps < 20 BC.
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2.3 Open Difficulties and Problems

2.3.1 Overall Performance and Reproducibility

As described in section 1.10.2, the training of ANNs is a statistical process since
the initial parameters are chosen randomly. The performance of the same ANN
architecture may vary strongly when the network is trained multiple times, de-
pending on how the initial values are chosen.

Even if the performance of 3Conv and 4Conv network described here is better
than the OFMax, this is not the case for most of the trainings. To check the
reproducibility, the 3Conv ANN was trained 100 times on a training data set with
pileup which is realistic for 𝜇 = 140 and artificially inserted hits with uniformly
distributed energies up to 5 GeV for half of the data and 30 GeV for the other half.
For the data set with energies up to 5 GeV, the temporal distance between two
of these hits is normal distributed with a mean distance of 30 BC and a standard
deviation of 10 BC. The 30 GeV data set contains hit with a constant gap of
45 BC. The CNNs are evaluated on another data set where the temporal distance
between two artificially inserted hits up to 5 GeV is normal distributed with a
mean distance of 30 BC and a standard deviation of 10 BC. The distribution of
the difference between predicted and actual energies for deposits above 1 GeV were
analyzed and evaluated in terms of the mean and standard deviation of the energy
resolution. Additionally the number of fake energies in different energy regions
was studied.

Not a single training resulted in such a good performance as the 3Conv network
from [27]. Also just 6 trainings had a performance which is comparable with or
slightly better than the OF. All other trainings performed worse, some of them
even significantly.

This points to two issues. Criteria are needed to decide whether to use a training
or continue to find a better result. Since the detector is recalibrated from time to
time and the ANNs may need to get retrained, a more efficient training concept
needs to be developed in order to save CPU or GPU time. This shows that
improvements of the training structure or CNN architecture are desirable.
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2 Energy Reconstruction of LAr Signals using CNNs

2.3.2 Specialization of the CNNs

The 3Conv and 4Conv networks from [27] were trained on two data sets generated
with AREUS. Both sets have a pileup spectrum which is realistic for 𝜇 = 140 and
artificially inserted hits with uniformly distributed energies. One data set contains
hits up to 5 GeV with a temporal distance which is normal distributed with a mean
distance of 30 BC and a standard deviation of 10 BC. The second set has energies
up to 30 GeV with an fixed gap of 45 BC. This was done to reduce effects of
specialization on specific properties of the data. [personal communication, Anne-
Sophie Berthold]
However it seems like this was not a sufficient generalization in order to reach
performances that are not strongly influenced by the properties of the data used.
Figure 2.6 shows that the CNNs struggle for short temporal distances for a data
set with normal distributed hits with a mean distance of 30 BC and a standard
deviation of 10 BC and energies up to 30 GeV. Even though the training included
hits with such a small gap, the CNNs have not learned to correct the energies
with short distance events properly at higher energies.
Another example for such a specialization can be seen if the CNNs are evaluated
with energies which are higher than the maximal energy in the training data
sets. As shown in figure 2.7 the energies reconstructed by the 4Conv network
are underestimated for energies above 30 GeV even if the pulse height increases
linearly with the energy. Additionally there are a lot of fake energies with very high
values for both CNNs. A reason for this might be the non-linearity of the CNNs,
especially caused by the sigmoid functions. The CNNs also seem to reconstruct
a lot of high fake energies on this evaluation data set while the CNNs will not
predict as many high fake energies on data sets with energies known from their
training data.

2.3.3 Resources on the FPGA

The CNNs described in [27] have less than 100 parameters which is rather small for
modern ANNs. This small amount of parameters is required because the energy
reconstruction algorithm needs to run on the LASP FPGA which has limited
resources on the one hand and it has to process data from 384 calorimeter cells
on the other hand.
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(a) 3Conv 5 GeV data set
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(b) 3Conv 30 GeV data set
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(c) 4Conv 5 GeV data set
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(d) 4Conv 30 GeV data set

Figure 2.6: 2D Histogram of difference between predicted and actual energies
over the gap to the previous pulse with an energy above 0.5 GeV for OFMax,
3Conv and 4Conv ANN. All evaluation data sets had normal distributed
hits with a mean distance of 30 BC and a standard deviation of 10 BC. The
performance of the CNNs drops for small temporal distances when the data
contains transverse energies higher than 5 GeV. It seems that the network
learned to correct the out-of-time pile-up only for hits below 5 GeV because
hits with higher energies only had the constant gaps of 45 BC in the training
data set and therefore did not produced out-of-time pileup.
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(a) 3Conv
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(b) 4Conv

Figure 2.7: Predicted energy over actual energies for 3Conv and 4Conv CNNs.
Both networks were trained with data which included energies up to 30 GeV.
A lot of high fake energies and a systematical underestimation of transverse
energies > 30 GeV are observable.

A smart implementation of the CNNs on the FPGA can save resources but the
possible saving here is limited. The CNNs themselves are either more resource
efficient if they have fewer parameters or the calculations and operations are easier
to handle for the FPGA.
The implementation of the CNNs on hardware on the FPGA is complicated.
Resource-saving network architectures would help to make the implementation
easier and less prone to errors.

2.3.4 Unknown Influence of varying Pulse Shapes

The specialization of the CNNs leads to the question how stable the networks
perform if the pulse shapes vary due to different reasons. One reason is that the
actual pulse shape caused by the shaping electronics may fluctuate due to small
differences in the electronics and cell geometry. But also the ideal pulse shape
varies in different detector regions. Additionally, the pileup in different 𝜂-regions
will vary, which leads to different noise patterns.
While this variation is known in principle and the CNNs can be trained individ-
ually for every cell, there are other variations which are not predictable. One
example is the influence of time shifts of the pulses relative to the sampling clock
which is described in detail in section 4.1.
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2.3 Open Difficulties and Problems

All expected and realistic shape variations as possible should be checked because
it is important that the ANNs have a low rate of fake energies, efficiently detect
the signals and reconstruct the peak of each pulse in the correct bunch crossing.

2.3.5 Trainings getting stuck in local Minima

Some trainings will minimize the loss in the way that it finds a local minimum
which is very undesirable. An example is a network which sets all output values
close to zero. Since most of the data points in the simulated sequences have no
or very low energy entries, setting all predicted values close to zero results in a
better loss than reconstructing fake energies too often.
Such a minimum is found quite often depending on hyper-parameters like the
initializer or the learning rate. It is therefore desired that the training process
is set up in a way that local minima are avoided for a majority of the network
trainings.
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3 Optimization of the CNN
Architecture and Training
Structure

In this work, new features of the CNNs, that are implemented to improve the
energy reconstruction, were always chosen such that they maintain or even reduce
the FPGA resource consumption of the CNNs. To get a starting point for the
search for alternative architectures, resource-saving networks were analyzed and
then their performance and reproducibility was compared to the 3Conv and 4Conv
CNNs.
Another method to increase the performance and reproducibility of the CNNs
is to test different loss functions. Loss functions highly influence the results of
a training but they do not affect the architecture and resource consumption in
the hardware implementation. The impact of customized loss functions on the
performance and reproducibility is evaluated.

3.1 Usage of Callbacks

During a training, the Python framework Keras allows checking properties of the
current parameters. An automatic reduction of the learning rate at a loss plateau
are already implemented in Keras and used to train the CNNs.
Additional callbacks can help to reduce the number of trainings which end in un-
wanted local minima. During the work for this thesis, a callback was implemented
which resets the parameters with normal distributed values if an adjustable loss
limit was not reached after a specific number of steps.
Using this callback, not a single training resulted in the case where for all bunch
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3 Optimization of the CNN Architecture and Training Structure

crossings energies close to 0 were reconstructed.

3.2 An Alternative Activation Function: COReLU

One property of the current CNNs that consumes many resources on the FPGA is
the sigmoid activation function. Since FPGAs can only perform basic calculations,
the division and exponential function in the definition of the sigmoid is too complex
for a direct calculation. Therefore the sigmoid gets approximated on the FPGA
by using a specific number of linear segments or by using a look-up table. The
better the approximation should be, the more segments and thus resources on the
FPGA are needed.
Replacing the sigmoid function with simpler activation functions, which fit to
the tagging problem, could improve the resource consumption. Therefore, two
conditions should be met. At first, the function should be simple, in the best case
segmentally linear and additionally it should only return values between 0 and 1.
One of the simplest functions that meets these two conditions is a function which
is defined as:

𝛼(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑥 < 0

𝑥 if 0 < 𝑥 < 1

1 otherwise

(3.1)

This function is basically a ReLU function that is cut off for values above 1, which
is why this activation will be called Cut Off ReLU (COReLU) here.
The COReLU activation was tested with the 3Conv CNN that was modified in
the following way. The sigmoid activation in the first layer of the tagging part
was replaced by a ReLU function and in the second layer it was replaced by the
COReLU function. Additionally, all initializers were replaced by the He Normal
function [20]. This initializer produces normal distributed weights with a mean
of 0 and a standard deviation of 𝜎 =

√︁
2
𝑛𝑙

where 𝑛𝑙 is the number of parameters
in the layer. The number of weights reduces the standard deviation and therefore
keeps the expected value of the sum of the products of the weights in this layer
nearly to 1. Hence this distribution prevents a strong amplification or reduction
of the input when many parameters are used to calculated the output of the layer
with ReLU activation functions. This should ensure a nearly linear calculation
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3.2 An Alternative Activation Function: COReLU

which is desirable in the case studied here.
To check if this simplification has a negative influence on the performance of the
3Conv CNN, the 3Conv network with the COReLU function was also trained 100
times the same way as in [27]. Just like the self-trained 3Conv network, the 3Conv
network with a COReLU activation produced no result which is as good as the
3Conv network from [27] and only 5 trainings performed better or at least as well
as the Optimal Filter regarding the energy resolution. For the self trained 3Conv
network 6 of these 100 trainings performed that well.
In figure 3.1 and 3.2 the best performing self trained 3Conv network and 3Conv
network with a COReLU activation are compared. The histogram of energy dif-
ferences in figure 3.1 and also the 2D histograms in figure 3.2 depending on the
gap between two pulses are analyzed. For both performance indicators, the CNNs
perform very similar.
Another observation is that more trainings resulted in much broader energy dif-
ference distributions compared to the normal 3Conv network trainings. Those
trainings with broader energy resolutions than the OF will be thrown away any-
way. Therefore, how broad the energy difference distributions of these trainings
is, is not that important. Still the higher fluctuation of the performance should
be kept in mind. A reason for this could be the vanishing gradient problem [30,
Chapter 8] since the gradient of the COReLU function is 0 for most 𝑥. This may
increase the chance for very badly performing trainings.
All in all the COReLU activation has no significant negative influence on the per-
formance of the 3Conv network when well working trainings are compared despite
simplifying the activation significantly. Also the number of well performing train-
ings does not seem to be reduced. Still 95 % of the trainings of the 3Conv network
with the COReLU and 94 % of the trainings of the 3Conv network with sigmoid
activation had a worse energy resolution than the OFMax. The reproducibility
of well performing trainings must be increased. It should be mentioned that this
activation has not been tested yet on the FPGA but only in Python software
and in the next step it should be tested on hardware to validate how much this
function really improves the FPGA resource consumption.
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Figure 3.1: Comparison of the difference between predicted and actual ener-
gies for different networks. 3ConvCG is the 3Conv network trained during this
work, 3ConvASB is the 3Conv network from [27]. Since these two CNNs have
the same architecture and were trained the same way, in principle they should
perform the same way if the same minimum was found during the training.
Only energy deposits above 1 GeV are included. The 3Conv network with a
COReLU activation and the 3Conv network which was trained for this work
have a comparable performance. Both outperform the OFMax but do not
reach the performance of the 3Conv from [27]. For the self-trained 3Conv net-
work, this means no training of the 100 exectutes trainings ended in the same
minimum as the 3Conv network from [27].
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(a) 3Conv (self trained)
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(b) 3Conv COReLU

Figure 3.2: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the gap between two energy deposits above 0.5 GeV
for a self trained 3Conv ANN and the 3Conv with a COReLU activation. Both
distributions are very similar which indicates that the simplifying COReLU
function does not negatively influence the performance of the 3Conv ANN.

3.3 Alternative Loss Functions

Using other loss functions could improve the results of the training. So far the
mean absolute error and mean squared error were studied. The comparison of
these two loss functions shows that the MSE produces broader energy difference
distributions compared to the MAE.
The reason for this effect could be explained by the geometry of the functions.
Outliers influence the value of the MSE much more than data points where the
difference is already small. Optimizing the weights of the CNN in that way that
outliers are reconstructed slightly better will reduce the loss more than optimizing
data points where the difference is already small. To get more narrow distributions
of the energy deviation, a reversed geometry could be desirable: a function which
has a higher gradient for small energy difference than for bigger ones.
A first idea that fulfills this attribute would be a mean root absolute error (MRAE):

𝑀𝑅𝐴𝐸 = 1
𝑁

𝑁∑︁
𝑖=0

√︁
|𝑦true,𝑖 − 𝑦pred,𝑖|. (3.2)

This function would be a rather simple loss function but has a divergent gradient
if 𝑦true,𝑖 − 𝑦pred,𝑖 → 0. This is a massive disadvantage because the training step
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3 Optimization of the CNN Architecture and Training Structure

size will diverge too, leading to problems while searching for minima.

A more fitting albeit more complex loss function would be a mean hyperbolic
tangent linear loss (THL):

𝑇𝐻𝐿 = 1
𝑁

𝑁∑︁
𝑖=0

|tanh (𝑦true,𝑖 − 𝑦pred,𝑖) + 𝑦true,𝑖 − 𝑦pred,𝑖| , (3.3)

which is nearly linear for greater energy deviations with a slope of ±1 for a single
data point and a maximal slope of ±2 if the energy difference is nearly 0.

To test the influence of this loss on the training performance again 100 3Conv
and 3Conv COReLU networks were trained using the THL as the loss function
for the energy reconstruction training. Again the energy resolution for hits with
energies higher than 1 GeV were analyzed. For the 3Conv CNN trained with THL
only 3 trainings performed at least as well as the OFMax while for the 3Conv
COReLU CNN 7 performed similar or better than the OFMax. One training even
performed similar to the 3Conv network from [27]. The respective best trainings
are shown in figure 3.3 and 3.4.

While single performances do not allow a general and statistically significant con-
clusion on which architectures and training methods work better and produce
well performing trainings more often, the number of these well performing train-
ings shows a trend. The best training performance from all self trained CNNs is
the 3Conv COReLU network with THL loss. This might be coincidence but this
architecture also produced the largest number of trainings with a better energy
resolution than the OF. Still this result should be checked.

To verify this assumption the performance was tested the same way with a simpli-
fied setup where only one data set was used to train the model. The data contains
hits up to 30 GeV and gaussian distributed gaps with 𝜇 = 30 BC and 𝜎 = 10 BC.
The CNNs were evaluated on another data set with the same properties. The
3Conv network performance dropped significantly. Not a single of the 100 trained
CNNs performed comparable with the OFMax in terms of the energy resolution.
Also THL loss function did not improve the performance significantly. While the
mean performance for the 3Conv network with a COReLU function was slightly
better, also none of the trainings outperformed the OFMax. For this CNN ar-
chitecture, the trainings using the THL seem to increase the performance since
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Figure 3.3: Comparison of the difference between predicted and actual en-
ergies for different networks. 3ConvCG is the 3Conv network trained during
this work, 3ConvASB is the 3Conv network from [27]. The two CNNs have the
same architecture and training structure and should therefore lead to the same
results if the same minimum was found during the training. The additional
label THL indicates if the THL loss function was used. No extra label means
that the CNN was trained with MAE Only energy deposits above 1 GeV are
included. Still the 3Conv network from [27] has the best energy resolution but
the 3Conv COReLU network trained with THL outperforms all other algo-
rithms.
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(a) 3Conv THL
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(b) 3Conv COReLU THL

Figure 3.4: 2D-Histogram of the difference between predicted and actual en-
ergies on the 𝑦-axis and the gap between two energy deposits above 0.5 GeV for
a self trained 3Conv ANN and the 3Conv network with a COReLU activation
with the THL loss function. The THL could not improve the resolution for
the 3Conv network with a sigmoid activation but for the network containing
the COReLU, the results were improved.

2 trainings produced results comparable with the OFMax. Figure 3.5 shows the
best trainings for this setup.
In both setups the THL could not increase the performance for the trainings of
the 3Conv network but the 3Conv COReLU network was influenced positively by
this loss function. For the second setup the THL seems to reduce the performance
of the 3Conv network with sigmoid activation functions.
Also some other loss functions were tested. For example the Huber loss [29] or a
MAE where every data point is weighted with weights defined by the temporal
distance to its preceding high energy pulse. However, these loss function did not
show an increased performance.
All in all it can be seen that the choice of the loss function is important for
the reproducibility of the performance of ANNs. Since the THL seems to help
the 3Conv network with the COReLU activation but not the 3Conv network
with sigmoid, different loss function should be tested if the CNN architecture is
changed.
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Figure 3.5: Comparison of the difference between predicted and actual en-
ergies for different networks evaluated on a 30 GeV data set. 3ConvCG is the
3Conv network trained on a 30 GeV data set, 3ConvASB is the 3Conv net-
work from [27]. The additional label THL indicates if the THL loss function
was used. No extra label means that the CNN was trained with MAE. Only
energy deposits above 1 GeV are included. Again the best working algorithm
is the legacy 3Conv network but like in the previous setup, the combination
of COReLU and THL performs better than all other algorithms.

51



3 Optimization of the CNN Architecture and Training Structure

3.4 CNNs without Tagging

Even more resource-saving than simple replacements for the sigmoid would be a
CNN without the tagging layers, where all layers use ReLU functions as activation.
This should also be optimal for the energy reconstruction since the ReLU function
is the natural candidate for this task because it is nearly linear and does not allow
the reconstruction of negative energies.
Methods to train CNNs without the tagging sub-network were studied during this
work. This might allow to check if the fake energy reconstruction and non-linear
hit energy reconstruction, which was observed when the evaluation data contained
greater energies than the maximal energy of the training data, can be solved if no
highly non-linear sigmoid functions is used. Therefore a CNN with 3 layers was
created. The first layer has 5 filters and a kernel size of 3, the second layer got
2 filters and also a kernel size of 3. The last layer has 1 filter and a kernel size
of 21. These parameters are mainly taken over from the legacy 3Conv network
architecture. The only differences are, that 2 filters instead of 1 were used in the
second layer, the concatenation layer is discarded and the kernel size of the second
layer was reduced to 3 to match the number of parameters. This results in a total
parameter number of 95 which is just 1 more than the 3Conv network from [27].
Since all layers have ReLU functions as their activation, this CNN should be much
more resource-saving than the 3Conv network. A scheme of this CNN is shown in
figure 3.6.
For such a CNN the training structure must be modified because the pre-training
with the tagging part is no longer needed. Since one open question is the required
size of the training data, more data sequences were used to improve the training.
While the previously used training data contained 400 sequences with 10 000 BC
each, the new training data set contained 12.5 times more sequences and the data
had more variation. The following sequences contained 10 000 BC each:

1. 2000 sequences with hits up to 30 GeV and 45 BC between two hits with
realistic time shifts

2. 2400 sequences with hits up to 30 GeV and a gaussian random gap with
𝜇 = 30 BC and 𝜎 = 10 BC between two hits with realistic time shifts
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3.4 CNNs without Tagging

3. 200 sequences with hits up to 30 GeV and a gaussian random gap with
𝜇 = 30 BC and 𝜎 = 10 BC between two hits with enlarged time shifts

4. 200 sequences with hits up to 5 GeV and a gaussian random gap with 𝜇 =
30 BC and 𝜎 = 10 BC between two hits with realistic time shift

5. 200 sequences without artificially added hits with realistic time shift

The meaning of realistic and enlarged time shifts will be explained in the next
chapter but is mentioned here for completeness. These data sets were chosen
such that the data contain some variation but the exact composition of specific
properties were randomly chosen. The only reason for this choice was the idea to
use different maximal energies, temporal distances of hits and time shifts. There
may be more optimal choices how often specific properties of the data should
appear.
The CNN was trained with the mean absolute error. Other loss functions were
tested briefly but did not lead to better results. Because of the larger number
of data points one epoch needs much more time for this training setup but less
epochs are needed to reach a loss plateau. Instead of 300 tagging training epochs
and 300 epochs in the energy reconstruction training only 100 epochs were needed
to reach good results.
To check the reproducibility, again multiple trainings were executed. Instead of
100 trainings, only 50 trainings were done. Again these networks were evaluated
on the same data set as in the previously presented evaluations. 13 networks,
26 % of the trainings, achieved results comparable with or better than the OF
and additional 6 trainings, correspondingly 12 %, performed comparable with the
3Conv network from [27]. Despite having only half of the trainings, more results
with good and very good energy resolutions were achieved than for any other
architecture. To check if this effect is only caused by the different training data
set or by the architecture, the 3Conv network was also trained 50 times with the
same training data. 5 of the trainings, so 10 %, performed similar or better than
the OFMax, no training reached the performance of the 3Conv network from [27],
which means that the percentage of these trainings is better than for the previous
training method. Still, the performance of the 3Conv network without tagging
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Figure 3.6: Scheme of the 3Conv network without tagging part. The first
layer has 5 filters and a kernel size of 3, the second layer got 2 filters and also
a kernel size of 3. The last layer has 1 filter and a kernel size of 21. Every
layer has a ReLU function as its activation function. This results in a total
parameter number of 95 and a receptive field of 25 bunch crossings.

layers seem to have a much better reproducibility. Since this CNN is a promising
candidate, some more detailed evaluation will be provided here.

In figure 3.7 the difference between predicted and true energy is shown for dif-
ferent CNN types and the OFMax. One can see that the performance of the
3Conv network without tagging layers is very similar to the 3Conv network and
outperforms the other algorithms. Also the best 3Conv network trained with the
new training method, denoted with 3ConvNT, could not perform as well as the
CNN without tagging layers and the 3Conv network from [27]. Figure 3.8 shows
gaussian fits of the peaks in the range where the bins have at least 25 % of the
height of the peak. The standard deviation of these fits shows that the 3Conv
network without tagging has a better energy resolution than the 3Conv network
with tagging but the mean deviates slightly more. The energy resolution of the
3Conv network without tagging is 3 % better than the resolution of the OFMax
and 2 % better than the energy resolution of the 3Conv network.

Also the reconstruction of fake energies is similar to the other algorithms as shown
in figure 3.9. Especially for small values the OFMax and also the 3Conv network
produce less fake energies. In the data set used for evaluation, 353274 of the two
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3.4 CNNs without Tagging

million bunch crossings had a true energy of 0. The OFMax reconstructed fake en-
ergies in 4 % of these bunch crossings. The 3Conv network reconstructed energies
in 6 % and the 3Conv network without tagging in 8 % of the bunch crossings where
the true energy is 0. The maximal fake energy reconstructed by the OFMax has
a transverse energy of 4.9 GeV and the maximal fake energy the 3Conv network
reconstructed is 3.4 GeV. The maximal fake energy of the 3Conv network without
tagging layers is much smaller with 0.8 GeV. These maximal fake energies of the
OFMax and the 3Conv network are likely outliers and maybe just actual energy
deposits assigned to a neighboring bunch crossing. To cut these outliers, energy
intervals that contain 95 % of the fake energies were analyzed. For the 3Conv
CNN without tagging layers, 95 % of the fake energies were smaller than 0.14 GeV
while for the 3Conv network this is the case for 0.15 GeV. For the OFMax, 95 %
of the fake energies were smaller than 0.16 GeV. This shows that most of the
fake energies are rather small. The 3Conv network without tagging reconstructed
twice as many fake energies than the OFMax in total but only 1.14 times more
fake energies larger than 0.1 GeV. The numbers of fake energies for the different
algorithms are given in table 3.1.
Figure 3.10 shows the performance of the 3Conv network without tagging de-
pending on the temporal distance between two pulses. While the distribution
is narrower and more centered around the horizontal zero line compared to the
3Conv network, there are more entries for gaps below 5 BC. Still this CNN clearly
outperforms the OFMax.

Algorithm 𝑁fake energies
𝑁fake energies
𝐸pred

𝑇 < 0.01 GeV
𝑁fake energies
𝐸pred

𝑇 > 0.1 GeV
OFMax 13998 1387 2398
3Conv network 19828 3549 2683
3Conv no tagging 28168 5969 2744

Table 3.1: Number of fake energies for the OFMax, the 3Conv network and
the 3Conv network without tagging. The data set contains 2000000 bunch
crossings and 353274 of these bunch crossing had no energy deposit. the 3Conv
network without tagging produces more than twice as many fake energies than
the OFMax and more than 40 % more fake energies than the 3Conv network
with tagging. Most of these fake energies have rather small values.
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Figure 3.7: Histogram of the energy differences between predicted and true
energies for different CNNs and the OFMax. Only Pulses with a transverse
energy above 1 GeV are included. The energy difference distribution of the
3Conv network without tagging layers is more narrow than for all other algo-
rithms and therefore outperforms them in this category.
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OFMax
= (0.07316±0.00073) GeV
= (-0.03692±0.00062) GeV

3Conv
= (0.07241±0.00064) GeV
= (-0.00323±0.00055) GeV

3Conv no Tagging
= (0.07086±0.00069) GeV
= (-0.00672±0.00058) GeV

Figure 3.8: Histogram of the energy differences between predicted and true
energies for different CNNs and the OFMax. Only Pulses with a transverse
energy above 1 GeV are included. The energy difference distribution of the
3Conv network without tagging layers is more narrow than for the 3Conv
network and OFMax. The fits include those bins which are filled with at least
25 % of the entries at its peak. The standard deviation of the 3Conv network
without tagging is the smallest one but the mean deviates slightly more than
for the 3Conv network.
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Figure 3.9: Histogram of the reconstructed fake energies for different CNNs
and the OFMax. No big differences between the algorithms besides the 4Conv
network are visible.
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Figure 3.10: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the gap between two energy deposits above 0.5 GeV
for the 3Conv network without tagging layers. There are some more entries for
gaps smaller than 5 BC compared to the legacy 3Conv network but it cleary
outperforms the OFMax.
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Since the fake energies shown in figure 3.9 only indicate how well the background
rejection works, a way to evaluate the signal detection is needed. Analyzing data
points with 𝐸true

𝑇 > 0 GeV and 𝐸pred
𝑇 = 0 would not lead to useful results because

reconstructing a 1 GeV energy deposit with 0.01 GeV can be handled as a signal
rejection but could not be seen in such an evaluation. A better way is to look at
the relative deviation of the reconstructed energy for different energy ranges. An
relative deviation of -1 occurs if no energy was reconstructed, relative deviations
near that value can be interpreted as signal rejection. Figure 3.11 shows the mean
and median of the relative deviation and the ranges where 68 % and 95 % of the
relative deviations are included for different energy regions for the OFMax, 3Conv
network, 4Conv network and 3Conv network without the tagging part. The 4Conv
network has some interesting effects for small energies which was already observed
at the fake energy reconstruction. It seems to reconstruct very few bunch crossings
with 0 energy. For higher energies the relative deviation is higher than it is for
the 3Conv network with and without tagging layers and comparable to the OF.
The 3Conv network and 3Conv network without tagging layers have very similar
median and mean values. A difference is visible for the lower range of the 95 %
interval, where the 3Conv network without tagging seem to reject more signals
above 0.7 GeV. Still both CNNs outperform the OFMax.
One assumption which was made is that the non-linearity of the sigmoid function
leads to problems when the energy of a pulse is greater than the highest energy of
the training data. To verify this, the 3Conv network without tagging layer and a
3Conv network with tagging trained using the new training method are evaluated
on a data set containing higher energies up to 90 GeV. The predicted energy over
the true energy is shown in figure 3.12. The energy resolution of the best 3Conv
network trained with the new data set is not as good as the 3Conv network from
[27] and the 3Conv without tagging part, so their comparison is biased. Still, it
is visible that the 3Conv CNN trained on the new data set reconstructs a large
amount of fake energies such as the legacy 3Conv network does. The 3Conv
network without tagging does not have this problem.
During the evaluation of the performance of this CNN, some deviations in the
training data were found. The ideal pulse shape and the noise distribution vary
slightly for different data sets. Further information will be provided in section 4.2.
However, the results of the 3Conv without tagging are not less good because of
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(c) 3Conv without Tagging
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Figure 3.11: Plot of the mean and median of the relative deviation as well
as the ranges where 68 % and 95 % of the relative deviations are included for
different energy regions. The intervals reaching to an relative deviation of
−1 indicate that the algorithms reject signals. The 3Conv network without
tagging seem to reject some more signals than the legacy 3Conv but less than
the OFMax.
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(a) 3Conv without tagging
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(b) 3ConvNT

Figure 3.12: Predicted energy over true energies for 3Conv network without
tagging and the 3Conv network with tagging, which was trained on the large
data set and is denoted here as 3ConvNT. Both networks were trained with
data which included energies up to 30 GeV. While the 3Conv without tagging
layer handles energies higher than 30 GeV well the 3Conv with tagging layers
produce a lot of high fake energies even with the new training method.

these variations in the data. Since the CNN without tagging performs better on
the data containing the previous noise pattern and pulse shapes as well as on the
new data with variations, this indicates that the CNN is more robust against small
variation in the data, especially the exact pulse shape. Still, the training should
be repeated with data sets containing the correct pulse shapes and its robustness
should be proved afterwards.
A 4Conv CNN without tagging layer was not tested mainly because of two reasons.
On the one hand, the 4Conv with tagging layer performed worse than the 3Conv,
so the focus was to develop optimizations of the 3Conv CNN. On the other
hand, the 3 layer structure has another motivation. The first layer splits into
many feature maps to allow the CNN to filtering different features of the data. If
every feature map would be evaluated with the output layer with a kernel size of
21, many parameters would be needed. Therefore the second layer decreases the
number of filters and so the number of parameters for the last layer.
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4 The Influence of varying Pulse
Shapes

4.1 Sources of Time Shifts of Pulses

Ideally, every particle would hit the calorimeter cell in a way that the maximum
of the pulse’s peak is synchronized with the sampling rate of the ADC, which is
in turn with the bunch crossings of the LHC. Due to different times of flight and
collision vertex variation, the hit can happen later or earlier than the exact bunch
crossing when both bunches overlap completely.
The first source for time shifted pulses is the interaction with the detector material.
These hit times are already included in AREUS assuming that every collision
happens at the exact IP at the nominal time of a bunch crossing and the resulting
particles will reach the detector cell with the speed of light. Since interactions
with the detector material can only slow down these particles, this effect results
in positive time shifts . Here, positive means that the hit is delayed to later times.
While measuring hits at ATLAS these shifts are unknown but relatively small. A
simulated test sequence for a cell in the middle layer of the EMB including just
these time shifts has a mean time shift of 𝜏 = 0.125 ns, so just 0.5 % of a bunch
crossing time interval, and a maximum of 𝜏max = 0.42 ns or correspondingly 1.7 %
of a bunch crossing time interval.
The geometry of the bunches causes two more types of time shifts. If the bunches
were just point-like, every proton-proton-collision would occur at 𝑧 = 0 and at
the exact bunch crossing time. The time of flight of the particle to the cell causes
shifts which can be partially corrected before sampling. Then only the random
shifts described in the previous paragraph would occur significantly.
In reality the protons in a bunch at the LHC and HL-LHC are gaussian distributed

63



4 The Influence of varying Pulse Shapes

in every space direction. The radial distribution is negligible small in the order
of 𝜇m, while the length in 𝑧-direction is in the order cm and actually influences
the time shifts noticeably. This 𝑧-distribution has a standard deviation 𝜎𝑧 and
a mean 𝜇𝑧 which changes over time. The exact value of the standard deviation
which is given in literature varies but values between 𝜎𝑧 = 1 cm and 𝜎𝑧 = 7.5 cm
are commonly used [36]. Here, data with 𝜎𝑧 = 5 cm [36] and 𝜎𝑧 = 3.8 cm [22] was
used for evaluation.
The sources of time shifts caused by the bunch geometry is shown in figure 4.2.
The first 𝑝𝑝-collision can take place before the nominal bunch crossing time. Since
the density of protons is smaller in outer regions of the bunch, collisions happen
less often there than for times, where the overlap of both bunches is larger. The
time shifts caused by this effect are also modelled as gaussian distributed random
times with:

𝜇𝜏,collision time = 0 and 𝜎𝜏,collision time = 2𝜎𝑧

𝑐
, (4.1)

where 𝑐 is the speed of light, which is approximately the speed of the protons at the
LHC. The resulting distribution is a combination of two independent gaussians
and will have an enlarged standard deviation. The factor 2 is an upper limit for
this enlargement. This upper limit was chosen such that the training of the CNNs
include every possible time shift.
Additionally, an unknown time shift due to different time of flights caused by
different 𝑧-positions of the collision influences the total time shift. This hit time
component is also random but not gaussian distributed for every cell position. For
example cells at 𝜂 = 0 only have positive time shifts, while for 𝜂 = ±∞ the times
are gaussian distributed. The randomness is caused by the gaussian distributed
𝑧-position of the collision with:

𝜇𝑧,collision = 0 and 𝜎𝑧,collision =
√

2𝜎𝑧 (4.2)

The factor
√

2 in the standard deviation is caused by the convolution of the two
gaussian distributed bunches [4]. The time shift can then be calculated geometri-
cally:

𝜏time of flight =

√︁
𝑟2 + 𝑧2

collision + 2𝑟𝑧collision cos Θ − 𝑟

𝑐
(4.3)
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where 𝑧collision is the random 𝑧-coordinate of the collision, 𝑟 is the distance be-
tween IP and cell and Θ = 2 arctan (𝑒−𝜂) is the angle between beam pipe and
the calorimeter cell around the interaction point. A scheme of this geometrical
consideration is shown in figure 4.1
In reality these two distributions are not independent. Large values for |𝑧collision|
are less likely for high |𝑡collision|. Correct dependent distributions would result in
a narrower distribution. Assuming independent distributions, for 𝜎𝑧 = 5 cm, time
shifts up to 𝜏 = ±1 ns are common values.
Other effects can influence the time shifts of pulses further. Some theories be-
yond the standard model postulate the possibility of unknown long living particles
(LLP) which could cause much greater time shifts than those caused by the bunch
geometry and particle interaction with the detector. Such particles are currently
searched for at ATLAS [14] where lifetimes up to 30 ns are investigated, which
would dominate the expected time shifts.
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Figure 4.1: Scheme of the geometrical consideration leading to equation 4.3.
To calculate the additional hit time, the difference between the flight distance
𝑟flight and the distance 𝑟 between the interaction point and the detector cell
is used. 𝑟flight can be calculated using the law of cosine if 𝑟, 𝑧collision and Θ
is known. The hit time is than calculated by subtracting 𝑟flight and 𝑟 and
dividing by the velocity of the particle, here approximated with the speed of
light 𝑐. The scheme is not drawn in scale.

.
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Figure 4.2: Schematic visualization of the crossing of a two bunches. The
collision at 𝑡1 shows the first collision of two protons of these bunches hap-
pening before the exact bunch crossing at time 𝑡2 when both bunches overlap
exactly and their mean is at 𝑧 = 0. At the time 𝑡2 two collisions happen at
different 𝑧-coordinates.
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4.2 Implementation of Time Shifts in AREUS

Since hit times in general are implemented in AREUS, the addition of realistic
hit times caused by the bunch geometry is rather simple. For every hit a random
𝑧-position and 𝑡collision is generated using gaussian distributed random numbers
as defined in the last section and the described calculations are performed to get
time shifts. The hits from one bunch crossing are causing single pulses which are
shifted individually before sampling. For the output of the hit time sequence,
AREUS adds all hit times of the hits from one bunch crossing and weights them
by the hit energy.
After implementing these time shifts the generated sequences were analyzed. A
Python script was used to check if the AREUS implementation works like ex-
pected, which is shown in figure 4.3. For this Python simulation 140 𝑝𝑝-collisions
were simulated where every collision has a defined probability to hit the cell.
This probability was chosen so that the hits-per-BC distribution is the same as in
AREUS. Also, the energy distribution of these hits is the same as in AREUS, so
the weighted sum of all hits is comparable. It can be seen that under these condi-
tions the hit time distributions of AREUS and the Python model agree sufficiently
well. That shows that the implementation works as expected.
While checking the data it was also observed that the time shifts of the pulses
are discrete with 0.5 ns steps as shown in figure 4.4. For a better analysis of
the influence of small time shifts and the reconstruction of time shifts, a higher
temporal resolution of the pulses is needed. This resolution is expressed by more
data points of the unsampled pulse curve. In AREUS this number of points is
defined by the time between two points of the pulse curve before sampling. This
time is determined by a constant, which is set to 0.5 ns. A non-zero hit time will
shift the pulse before sampling. Therefore this constant defines the lower limit of
the resolvable shifts. It was redefined as 0.005 ns because at this point, no discrete
effects were visible in the analysis anymore. To ensure that the pulse shapes are
sufficiently well known for small shifts, also the number of data points of the
unshaped pulse curves was increased to 10000 sampling points per BC. Since
the pulse shapes loaded from the database contain less data points per BC, these
pulse shapes are interpolated. The interpolation technique which is applied before
shaping was changed from linear to PChip [26] to ensure a better approximation.
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Figure 4.3: Distribution of the hit time in AREUS and the simulated hit
times from a Python script. The times are distributed nearly identically which
validates the AREUS simulation.
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Figure 4.4: Difference between ADC value at peak and value before peak
divided by the true energy over the hit time 𝜏 . Discrete steps of 0.5 ns can
be seen which means that the pulses are not shifted properly because of a too
small number of points on the pulse curve.
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After changing these two resolution parameters, the pulse shapes and noise dis-
tribution of the generated samples changed. The deviation of the electronic noise
could be caused by the Volt to MeV converter which depends on the ideal pulse
shapes. The pulse shapes loaded by AREUS had their maximum not located ex-
actly at a nominal bunch crossing time. Since the peaks of the pulses are not
sampled then by the ADC, this leads to different pulse shapes with a relative
amplitude smaller than 1. To solve this issue, the loaded pulse shapes are shifted
so that their maximum is located at a bunch crossing. This solution leads to more
consistent pulses, since the relative amplitude is 1 again at the sampled peak, but
the exact shape is still different. These differences are caused by the different dis-
tances between two sampling points of the unshaped pulses because the shaping
algorithm depends on this sample distance. Using more data points to describe
the unshaped pulses results in a more realistic shaping. The pulse shapes of the
previous data sets, those with an increased number of data points of the unshaped
and unsampled pulses and the pulses corrected by shifts are shown in figure 4.5.
Also the interpolation technique was changed from linear to PChip to ensure a
better approximation. However, this can not be the reason for the differences
of the shapes, because those also appear with the linear interpolation. Actually,
the differences caused by better interpolation are relatively small and differences
caused by the choice of the sampling distance dominate.
Also the possibility to simulate LLPs is not implemented yet. Unrealistic large
time shifts can be simulated by using unnaturally high 𝜎𝑧 > 20 cm but this will
also cause high negative time shifts that would not occur for LLPs. Since LLPs
are hypothetical particles with unknown life times and production cross-section,
there is no way to implement a realistic distribution of LLP hit times. It might
be handy to implement another uniformly distributed hit time with an adjustable
maximal 𝜏 . Another problem with these LLP time shifts can occur due to the
periodicity of the bunch structure. There is no difference between a pulse with a
hit time 𝜏 or 𝜏 +𝑚 ·25 ns, 𝑚 ∈ Z. A LLP with a hit time 𝜏true = 23 ns will likely be
reconstructed with 𝜏pred = −2 ns. Reconstructing time shifts larger than ±0.5 BC
is only reliably possible with advanced offline analysis techniques as shown in
reference [14] for example.
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Figure 4.5: Sampled, ideal pulse shapes. The pulses of previous data sets
as used in [27] are assumed to be correct. The new shape resulted from the
increased number of data points of the unshaped and unsampled pulses. Since
this shape has a relative amplitude smaller than 1 at the peak, a shift is
performed before sampling to correct this effect. Also, the corrected shape
differs from the original one because the number of data points of the pulse
curve was increased, which influences the shaping algorithm.
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4.3 Influence of Time Shifts to the Pulse Shape
The ADC will sample the signal exactly every 25 ns, synchronized to the bunch
crossings. If the peak of a pulse is in time to the bunch crossing, the actual value
at the peak is sampled. If the peak is shifted, the ADC samples a value in the
neighborhood of the peak and the ADC output is therefore smaller than the actual
energy. Figure 4.6 shows how the product of transverse energy 𝐸𝑇 and hit time
𝜏 influences the difference between the peak value of the sampled pulse and the
value before this peak depending on the pulses energy.
It can be seen that, if noise is neglected, the energy and the difference of the values
define the product of transverse energy and hit time. This effect can be used to
determine the hit time in algorithms like the OF𝜏 . The noise and pileup leads
to data points which do not fit to the trend. To correct these, advanced filter
techniques are needed.
It also shows that the hit time could affect the performance of the energy recon-
struction since the OF and the ANNs use the values of the data points of a peak
to reconstruct the energy. If the height of the sampled peak and the difference
to the neighboring sampling points differ, the algorithms may have a significant
performance decrease. This effect will be larger for high energetic pulses. For the
OF𝜏 , in reference [6] a linear correction is suggested, which is also used in ATLAS
offline reconstruction.
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Figure 4.6: The difference between the value of the peak of the sampled
pulse and the value before this peak depending on the product of transverse
energy 𝐸𝑇 and hit time 𝜏 on the x-axis and the transverse energy indicated
by the color of the marker. Only hits with transverse energies above 3 GeV
are included. The slopes in the color gradient indicate that the shifts have an
noticeable influence on the pulse shape. This can influence the performance
of the energy reconstruction but it could also be used to reconstruct the hit
time.
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4.4 The Influence of Time Shifts to CNNs and the
Optimal Filter

To check how these time shifts influence the energy reconstruction algorithms, the
CNNs and the OFMax were tested with two time shift distributions, one with
realistic shifts as expected with 𝜎𝑧 = 5 cm and one with artificially enlarged hit
times which are generated using 𝜎𝑧 = 50 cm. These enlarged shifts are used to
analyze additional effects as LLP shifts, even if they also include high negative
shifts.
Analyzing the difference between the predicted and actual energy in figure 4.7,
4.8 and 4.9, it can be seen that the CNNs and the OF are influenced by the time
shifts. The influence is relatively small for realistic time shifts and small energies
while it is clearly visible for enlarged shifts and higher energies.
It is important to note, that the pulse shapes of the data differ from the previous
data used to train the 3Conv and 4Conv CNN due to the increased number of
points to describe the pulse shape. This causes performance decreases of the
legacy CNNs which are not caused by the time shifts itself but the simulated data.
Unfortunately these effects make it more difficult to compare the performance of
the ANNs and the OF. A technical solution to prevent this has not yet been found
at the time of this thesis.
Compared to the OF, the better performance of the CNNs for the 5 GeV random
gap data set with realistic shifts is likely caused by the better handling of pileup.
Especially for the 5 GeV random gap data set with enlarged shifts it is clearly
visible that the CNNs struggle more with larger time shifts. The 30 GeV data sets
with a constant gap show, that the CNNs also struggle for higher energies when
the influence of time shifts increases.
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(a) OFMax. Data set contains
hits with energies up to 5 GeV
and realistic shifts. Gaps are
normallly distributed with 𝜇 =
30 BC and 𝜎 = 10 BC.
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(b) OFMax. Data set contains
hits with energies up to 30 GeV
and realistic shifts. Gaps are con-
stantly distanced 45 BC.
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(c) OFMax. Data set contains
hits with energies up to 5 GeV
and enlarged shifts. Gaps are
normallly distributed with 𝜇 =
30 BC and 𝜎 = 10 BC.
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(d) OFMax. Data set contains
hits with energies up to 30 GeV
and enlarged shifts. Gaps are
constantly distanced 45 BC.

Figure 4.7: 2D-Histogram of the difference between predicted and actual en-
ergies on the 𝑦-axis and the hit time on the 𝑥-axis for energies above 1 GeV
for the OFMax. Different data sets were evaluated which show how the influ-
ence of time shifts depend on the energies of the pulses. Especially for large
gaps and high energies the energy reconstruction of the OFMax is influenced
negatively by the time shifts.
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(a) 3Conv. Data set contains hits
with energies up to 5 GeV and re-
alistic shifts. Gaps are normallly
distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.
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(b) 3Conv. Data set contains
hits with energies up to 30 GeV
and realistic shifts. Gaps are con-
stantly distanced 45 BC.
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(c) 3Conv. Data set contains hits
with energies up to 5 GeV and en-
larged shifts. Gaps are normallly
distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.
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(d) 3Conv. Data set contains
hits with energies up to 30 GeV
and enlarged shifts. Gaps are
constantly distanced 45 BC.

Figure 4.8: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the hit time on the 𝑥-axis for energies above 1 GeV
for the 3Conv. Different data sets were evaluated which show how the influence
of time shifts depend on the energies of the pulses. Especially for large gaps and
high energies the energy reconstruction of the 3Conv is influenced negatively
by the time shifts. These effects are higher than for the OFMax.
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(a) 4Conv. Data set contains hits
with energies up to 5 GeV and re-
alistic shifts. Gaps are normallly
distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.
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(b) 4Conv. Data set contains
hits with energies up to 30 GeV
and realistic shifts. Gaps are con-
stantly distanced 45 BC.
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(c) 4Conv. Data set contains hits
with energies up to 5 GeV and en-
larged shifts. Gaps are normallly
distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.
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(d) 4Conv. Data set contains
hits with energies up to 30 GeV
and enlarged shifts. Gaps are
constantly distanced 45 BC.

Figure 4.9: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the hit time on the 𝑥-axis for energies above 1 GeV
for the 4Conv. Different data sets were evaluated which show how the influence
of time shifts depend on the energies of the pulses. Especially for large gaps and
high energies the energy reconstruction of the 4Conv is influenced negatively
by the time shifts. These effects are higher than for the OFMax.
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Besides the influence of time shifts to the energy reconstruction quality, another
effect, which should be checked, is the reconstruction of energies in wrong bunch
crossings. Since the information of the energy deposit is used for the trigger
system, it is important that the trigger starts the data readout for the correct
bunch crossings. To check how often such effects occur, data points were evaluated,
where:

𝐸true
𝑇 (BC𝑖) < 0.1 GeV

∧
(︁
𝐸true

𝑇 (BC𝑖+1) > 0.5 GeV ⊻ 𝐸true
𝑇 (BC𝑖−1) > 0.5 GeV

)︁
∧𝐸pred

𝑇 (BC𝑖) > 0.5 GeV
∧

(︁
𝐸pred

𝑇 (BC𝑖+1) < 0.1 GeV ⊻ 𝐸pred
𝑇 (BC𝑖−1) < 0.1 GeV

)︁
,

(4.4)

where ⊻ is a symbol for xor. Figure 4.10 shows how the hit time influences the
number of energy reconstructions assigned to the wrong bunch crossing. The
frequencies are normalized to the number of total hit times in the corresponding
bin.
The CNNs seem to assign less energy entries to a neighboring bunch crossing than
the OF. In general the total number is quite small for the CNNs and the OF.
Only 0.14 % of the data points were wrongly assigned by the OF, for the 4Conv
0.04 % and for the 3Conv 0.03 % of the energies were assigned to neighboring
bunch crossings. For all energy reconstruction algorithms, the chance of assigning
an energy to the wrong bunch crossing is higher for large positive or negative time
shifts. For large time shifts with |𝜏 | > 9 ns, no algorithm detected an energy in the
wrong bunch crossing, which is likely caused by the small amount of data points
with such a large shift.
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Figure 4.10: Histogram of energy reconstruction in wrongly assigned bunch
crossings. The histogram contains data points which meet the condition 4.4
for a data set with energies up to 5 GeV, random gaps and enlarged time shifts.
The OFMax produces more of these wrongly assigned energies than the CNNs.
For all algorithms high time shifts increase the chance of assigning a energy
deposit to the false bunch crossing.
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4.5 Minimization of Performance decrease due to
Time Shifts

To reduce the negative influence of time shifts on the energy reconstruction the
first idea for a solution is to use data containing time shifts for the training of
the network. Since the training data set described in section 3.4 led to very good
results for the energy reconstruction, this data set is also used here to compare
the 3Conv network without tagging to the OFMax and the 3Conv and 4Conv net-
works. Also, a 3Conv network with COReLU activation is analyzed at here which
was trained on 1000 data sequences containing energies up to 5 GeV and 30 GeV
and data without artificially inserted hits. The data with artificially inserted hits
were used with realistic and artificially enlarged time shifts, the data set without
these hits only contained realistic hit times.
In figure 4.11 and 4.12 the results for the 3Conv network without tagging and the
3Conv network with a COReLU function are shown. Both CNNs perform better
than the legacy CNNs and the OFMax, which is especially visible for the data set
with enlarged time shifts. Looking at the difference between predicted and true
energy in the histogram in figure 4.13 one can see that both CNNs outperform
the OF as well as the 3Conv and 4Conv networks which were not trained on data
containing time shifts.
Looking at the energy deposits assigned to wrong bunch crossings in figure 4.14,
it can be seen that both CNNs produce some more entries than the 3Conv but
still fewer entries than the OFMax. For the 3Conv without Tagging 0.04 % and
for the 3Conv with the COReLU activation 0.03 % of the energies were assigned
to neighboring bunch crossings. All in all there are no big differences between the
CNNs and the effects are small in general.
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(a) 3Conv without Tagging layer.
Data set contains hits with en-
ergies up to 5 GeV and realistic
shifts. Gaps are normallly dis-
tributed with 𝜇 = 30 BC and 𝜎 =
10 BC.
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(b) 3Conv without Tagging layer.
Data set contains hits with en-
ergies up to 30 GeV and realistic
shifts. Gaps are constantly dis-
tanced 45 BC.
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(c) 3Conv without Tagging layer.
Data set contains hits with en-
ergies up to 5 GeV and enlarged
shifts. Gaps are normallly dis-
tributed with 𝜇 = 30 BC and 𝜎 =
10 BC.
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(d) 3Conv without Tagging layer.
Data set contains hits with ener-
gies up to 30 GeV and enlarged
shifts. Gaps are constantly dis-
tanced 45 BC.

Figure 4.11: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the hit time on the 𝑥-axis for energies above 1 GeV
for the 3Conv without Tagging. Different data sets were evaluated which
show how the influence of time shifts depend on the energies of the pulses.
The influence of time shifts is still cleary visible but there are less entries with
high energy differences than for the OFMax.
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(a) 3Conv with COReLU. Data
set contains hits with energies
up to 5 GeV and realistic shifts.
Gaps are normallly distributed
with 𝜇 = 30 BC and 𝜎 = 10 BC.
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(b) 3Conv with COReLU. Data
set contains hits with energies
up to 30 GeV and realistic shifts.
Gaps are constantly distanced
45 BC.
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(c) 3Conv with COReLU. Data
set contains hits with energies
up to 5 GeV and enlarged shifts.
Gaps are normallly distributed
with 𝜇 = 30 BC and 𝜎 = 10 BC.
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(d) 3Conv with COReLU. Data
set contains hits with energies up
to 30 GeV and enlarged shifts.
Gap are constantly distanced
45 BC.

Figure 4.12: 2D-Histogram of the difference between predicted and actual
energies on the 𝑦-axis and the hit time on the 𝑥-axis for energies above 1 GeV
for the 3Conv with COReLU. Different data sets were evaluated which show
how the influence of time shifts depend on the energies of the pulses. The
influence of time shifts is still cleary visible but there are less entries with high
energy differences than for the OFMax
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(a) Hits with energies up to 5 GeV. Realistic shifts.
Gaps are normallly distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.
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(b) Hits with energies up to 5 GeV. Enlarged shifts.
Gaps are normallly distributed with 𝜇 = 30 BC and
𝜎 = 10 BC.

Figure 4.13: Histograms of the difference between predicted and true energy
for realistic and enlarged time shifts. The CNNs trained with data containing
time shifts, the 3Conv not Tagging and 3ConvCOReLU, clearly outperform
the other algorithms.
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Figure 4.14: Histogram of energy reconstruction in wrongly assigned bunch
crossings. The histogram contains data points which meet the condition 4.4
for a data set with energies up to 5 GeV, random gaps and enlarged time
shifts. The CNNs trained with data containing time shifts produce more falsely
assigned energy deposits.
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4.6 Advanced Techniques to analyze Time Shifts

It may be desirable to not only reconstruct the energies but also reconstruct the
product of energy and hit time as the OF𝜏 does. In perspective this could help
with trigger decisions or it could be used to correct the energy reconstruction.
Therefore different CNNs were tested and their 𝐸𝜏 reconstruction performance
was evaluated. It must be mentioned that in the current setup of LASP timing
reconstruction shall be implemented but the trigger system is planned to not use
the hit time information. The reconstruction of hit times should be as resource
saving as possible.
The training used different data sets containing samples with realistic time shifts
and artificially enlarged ones. The best results were found, when a data point
only influences the loss, if the energy reconstruction network reconstructed and
energy above 3 GeV at this bunch crossing. Different loss functions were tested
briefly but more extensive studies should verify the ideal loss function. The loss
function used here was the mean absolute error which gave good results in the
tests. Since the performance of different trainings for the same CNN was mostly
similar, they were not trained 100 times. Here, 10 trainings were executed.
Before results for the CNNs will be presented, some performance plots for the OF𝜏

are shown. The following plots contain data with hits up to 30 GeV for 𝜇 = 140
and realistic or artificially enlarged time shifts. Only data points for which the
transverse energy is greater than 3 GeV are included in the following plots. Since
the CNNs presented in this section have been trained on the uncorrected data sets
described in section 4.2, these data sets are also used here for evaluation. The
evaluation could be repeated with the corrected data sets but this should not lead
to much differing results.
In figure 4.15 it is clearly visible that the OF struggles with the reconstruction
of hit times for small gaps between two pulses with high energy deposits. The
performance decreases for distance up to 10 BC and between 15 BC and 25 BC. In
these regions the previous pulse rises or falls. Since the difference between ADC
values is an indicator for the hit time, a change of this difference influences the
OF𝜏 more than the constant offset of the undershoot.
Figure 4.16 shows the difference between predicted and actual hit time for different
energy ranges. Especially for the realistic hit times, the reconstruction works quite
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Figure 4.15: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the gap between two pulses with energies
above 3 GeV for the OF𝜏 . There are high performance decreases for gaps up
to 10 BC and between 15 BC and 25 BC.

unreliable for transverse energies below about 10 GeV considering the hit times
are mostly smaller than ±1 ns.
Figure 4.17 shows the difference between predicted and actual hit time depending
on 𝜏true. While for realistic hit times the reconstruction is not affected much for
different 𝜏 ranges, for enlarged shifts the reconstruction performance decreases.
The strong differences between median and mean values in the plot containing
realistic data indicates that there must be very large or small outliers which affect
the mean massively but they are not included in the 95 % ranges.
All in all the performance of the OF𝜏 is not very satisfying so it might be interesting
to investigate if CNNs can perform better with limited resources.
The CNNs used to reconstruct the time were trained to reconstruct the product
of energy and hit time. For the evaluation, this output is divided by the CNN
energy reconstruction output. Since the CNNs will not reconstruct an energy in
every bunch crossing, the time is set to 0 manually if the reconstructed energy is
0. The CNNs were constructed so that they do not affect the energy reconstruc-
tion because the main focus is still to reconstruct the energy as well as possible.
Schemes of all presented CNNs are schon in figure 4.27
At first a minimal solution will be presented. The following CNN consist of 1
layer with a kernel size of 5 and 1 filter. The input is a concatenated data of the
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Figure 4.16: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the transverse energy of the pulse for
transverse energies above 3 GeV for the OF𝜏 .
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Figure 4.17: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit
time differences are included depending of the true hit time of the pulse for
transverse energies above 3 GeV for the OF𝜏 . There is a visible performance
decrease for very large time shifts.
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ADC output and the result of the energy reconstruction of the 3Conv network
without tagging part from section 3.4. The knowledge of the already corrected
energy should be an advantage over the OF𝜏 while adding only 11 parameters. A
negative consequence is, that the energy reconstruction input causes a delay of
the time output when implemented in FPGA.
Figure 4.18 again shows the difference between predicted and actual hit times
depending on the gap between two pulses with transverse energies higher than
3 GeV. Compared to the OF𝜏 the 95 % and 68 % ranges got smaller in general and
the large deviations between predicted and true hit times for gaps up to 10 BC
and between 15 BC and 25 BC got smaller but they are still there.
In figure 4.19 it can be seen that the performance of this CNN is slightly better for
all energy regions. Especially the 95 % intervals are smaller. Still the resolution
of the time reconstruction is not satisfactory for 𝐸true

𝑇 < 10 GeV.
Figure 4.20 shows, that the time reconstruction for realistic hit times have fewer
outliers since the median and mean are very close to each other in every bin. For
the enlarged times the intervals again got smaller but the performance got worse
for large negative and positive time shifts.
Because of the large deviations between predicted and true hit times for gaps
between 15 BC and 25 BC in figure 4.18 a CNN with one layer with a kernel size
of 25 is tested because then the pulses causing these deviations should be included
in the receptive field of the CNN. This results in a CNN with 51 parameters. This
CNN would consume potentially a lot of resources. But as figure 4.21 shows, this
large receptive field actually leads to a really constant performance for different
gaps.
Also, the time reconstruction resolution got much better for all observed energy
ranges, which can be seen in figure 4.22. Again especially the 95 % ranges got
reduced but also the 68 % ranges are visibly smaller.
Looking at the time differences depending on the hit time, the performance is
much more constant for highly shifted pulses so this CNN outperforms the OF𝜏

and the smaller CNN even though for hits with |𝜏true| > 10 ns the differences are
still very large.
To check whether the performance is increased only because of the larger kernel
size or if the additional energy reconstruction input lead to the improved perfor-
mance, another CNN was tested with a kernel size of 25. This CNN only has
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Figure 4.18: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the gap between two pulses with energies
above 3 GeV for 1-layer CNN with a kernel size of 5 and two inputs, the ADC
and the energy reconstruction. There are still high performance decreases for
gaps up to 10 BC and between 15 BC and 25 BC but these are smaller than
for the OF𝜏 .
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Figure 4.19: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the transverse energy of the pulse for
transverse energies above 3 GeV for 1-layer CNN with a kernel size of 5 and
two inputs, the ADC and the energy reconstruction. Especially the upper
ranges of the 95 % intervals got better than for the OF𝜏 .
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Figure 4.20: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit
time differences are included depending of the true hit time of the pulse for
transverse energies above 3 GeV for 1-layer CNN with a kernel size of 5 and
two inputs, the ADC and the energy reconstruction. The performance for high
time shifts decreased compared to the OF𝜏 .
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Figure 4.21: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the gap between two pulses with energies
above 3 GeV for 1-layer CNN with a kernel size of 25 and two inputs, the
ADC and the energy reconstruction. There are no unwanted effects until gaps
are smaller than 5 BC When both pulses overlay each other an the energy
reconstruction output is probably heavily biased. This CNN clearly handles
those short gaps better than the OF𝜏 .
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Figure 4.22: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit
time differences are included depending of the transverse energy of the pulse
for transverse energies above 3 GeV for 1-layer CNN with a kernel size of 25
and two inputs, the ADC samples and the reconstructed energies. The 95 %
intervals are narrower than for the smaller CNN and the OF𝜏 .
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Figure 4.23: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit
time differences are included depending of the true hit time of the pulse for
transverse energies above 3 GeV for 1-layer CNN with a kernel size of 25 and
two inputs, the ADC and the energy reconstruction. The difference between
predicted and actual hit time is much more constant here compared to the
smaller CNN and the OFMax.
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the ADC as its input. Figure 4.24 shows, that this linear-filter-like CNN handles
out-of-time pileup much better than the OF𝜏 with 5 weights and also better than
the small CNN with an receptive field of 5 BC. Especially gaps up to 8 BC as
well as gaps between 20 BC and 35 BC cause problems. The problems caused for
higher gaps are interesting because the previous pulses should not influence the
pulse shape for these distances. Since the temporal distance between two high
pulses in this data set is gaussian distributed with 𝜇 = 30 BC and 𝜎 = 10 BC this
effect might be caused by these pulses with 𝐸true

𝑇 < 3 GeV.
Figure 4.25 shows that this CNN performs very similar to the larger CNN with
a combined input. Visible deviations in terms of the time resolution can only
be seen, when the plotted mean values in the figures with enlarged shifts are
compared.
Also, figure 4.26 does not show any signs for real performance decreases compared
to the larger CNN. Interestingly, this CNN is the only algorithm where the time
differences over the actual hit time is not axial symmetrical.
All the CNNs outperformed the OF𝜏 . A large receptive field which includes the last
25 bunch crossings seem to be important for a constant performance. Whether the
small performance increase, which is seen after adding the energy reconstruction
output to this CNN’s input, justifies 25 additional parameters, is a question of
priorities.
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Figure 4.24: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the gap between two pulses with energies
above 3 GeV for 1-layer CNN with a kernel size of 25 and the ADC as input.
There are are some unwanted effects so this CNN clearly handles those short
gaps worse than the CNN with 51 parameters but still the deviations of the
hit time reconstruction are much smaller than for the OF𝜏 .
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Figure 4.25: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit time
differences are included depending of the transverse energy of the pulse for
transverse energies above 3 GeV for 1-layer CNN with a kernel size of 25 and
the ADC as input. The 95 % intervals are not visibly broader than for the
CNN with 51 parameters.
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Figure 4.26: Plot of the mean and median of the difference between predicted
and actual hit time as well as the ranges where 68 % and 95 % of the hit
time differences are included depending of the true hit time of the pulse for
transverse energies above 3 GeV for 1-layer CNN with a kernel size of 25 and
the ADC as input. The difference between predicted and actual hit time is
much more constant here compared to the smaller CNN and the OFMax. It
is comparable constant to the large CNN but has a negative bias for large
negative shifts.
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(a) 11-parameter time reconstruction CNN

ADC output

Energy Reconstruction
output

CNN output

Bias

…

…
…

feature map = 1
kernel = 25

Receptive Field = 25

t0t-1t-29 ...

(b) 51-parameter time reconstruction CNN

ADC output

CNN output

Bias

…

…

feature map = 1
kernel = 25

Receptive Field = 25

t0t-1t-29 ...

(c) 26-parameter time reconstruction CNN

Figure 4.27: Schemes of the presented CNNs for the reconstruction of the
product of hit time and energy. All CNNs consist of 1 layer and have a linear
activation. The smallest CNN with 11 parameters and the largest CNN with
51 parameters have 2 inputs: the ADC output and the energy reconstruction
CNN output. The CNN with 26 parameters has only the ADC output as its
input and therefore works like a linear filter.
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5 Summary, Conclusions and
Outlook

5.1 Summary and Conclusion

5.1.1 General Optimization

Different methods to solve some of the open problems of the CNNs for energy and
time inference were investigated. Particulary interesting are those architectures
and training methods which improve or maintain the performance and simultane-
ously decrease the resource consumption of the CNNs on FPGAs.
The simplification of the sigmoid function, namely the COReLU activation, is
a promising way to reduce the resource consumption if the tagging subnetwork
should be maintained. These CNNs reached similar performances as the legacy
CNNs with sigmoid functions. No significant disadvantage was noticeable.
If CNNs without tagging layers perform at least as well as those CNNs with
a tagging subnetwork, the tagging structure should get discarded to reduce the
resource consumption. In section 3.4, a method to train such a CNN was described.
The network, which was presented, consists of three convolutional layers with
ReLU activation functions. While the energy resolution of the 3Conv network
without tagging was better than for all other energy reconstruction algorithms,
this network reconstructed more fake energy than the OFMax and the 3Conv
network with tagging. The reproducibility of well performing trainings of the
3Conv network without tagging was better than for the legacy architecture, when
it was trained with the same data sets and training method, which allowed to
train CNNs without tagging layers. Ways to improve the signal detection and
background rejection should be further investigated.
Also advanced loss functions were tested. The hyperbolic-tangent-linear loss in-
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creased the performance of the 3Conv CNN with a COReLU activation but not
for the normal 3Conv network. This effect was observed for two different train-
ing setups. It might be interesting to study further how architectures and loss
functions affect each other.

5.1.2 The Influence of Time Shifts

To test the influence of shifted pulses caused by the variation of hit times, an
additional function was implemented in AREUS. Some simplifications were used
but the implementation produces time shifts in a realistic order of magnitude.
For a better data quality, the number of data points describing the unshaped and
unsampled pulse curves were changed. This lead to variation in the ideal pulse
shapes compared to previously used data. These variation do not mean, that the
newly produced samples are more unrealistic, but it makes it harder to analyze the
performance of legacy CNNs using data with time shifts. It is necessary to ensure
that the simulated data and especially the pulse shapes are actually realistic.
Time shifts influence the performance of CNNs and the OFMax. While for re-
alistic pulse shifts, these effects are relatively small but noticeable, for enlarged
hit times they are not tolerable. These effects can be handled unproblematically
by including different hit times in the training data. Also using enlarged hits for
the training might be good if non-regular signals, like from LLP paritcles, occur.
Especially the 3Conv network without tagging layer handled time shifts really
well and outperformed the CNNs from [27] and the OFMax. The ratio of realistic
shifts and artificially enlarged shifts in the training data should be optimized. So,
the performance of the CNNs can be optimized for a realistic scenario while still
performing well on edge cases.

5.1.3 The Reconstruction of Time Shifts

Not only the performance of the OF but also of the OF𝜏 will be decreased with
high luminosity and especially for increased out-of-time pileup. The time recon-
struction of the OF𝜏 and the CNNs is not very reliable for small energies. Because
of that, only hits with 𝐸true

𝑇 > 3 GeV are evaluated here. Also for transverse en-
ergies up to 10 GeV the reconstruction is not very reliable and the relative errors
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are large for many hits.
A reliable reconstruction of the hit time seems to need quite a lot of parameters.
While small CNNs with 11 parameters can already outperform the OF𝜏 , 30, 50 or
more parameters are needed to reach results which are not strongly influenced by
the temporal distance to the previous pulse.
It must be decided by physics simulations if this additional consumption of re-
sources is worth it. The output of the timing analysis could be used to indicate
energy reconstructions asserted to false bunch crossings. While these are an actual
problem for the trigger, they are quite rare and the influence of such an additional
criterion must be checked in detail very carefully.

5.2 Outlook

The new CNN architectures should be tested on FPGAs to check their perfor-
mance in a more realistic environment. Even if there are no indications that the
COReLU activation and CNNs without tagging part are affected more by the
hardware implementation than the legacy CNNs, it is necessary to check the in-
fluence of the hardware implementation. Also in theory these architectures should
save resources but the exact effects are not completely known yet.
The training of the 3Conv network without tagging layer and the specialization of
the 3Conv and 4Conv networks showed how important the choice of the properties
of the training data sets is. The training data used for the 3Conv network without
tagging part was chosen more or less randomly. A more reasoned choice of the
frequency of specific properties might help to perform optimally on realistic data
sets while still working well for edge cases.
Also the simulated data from AREUS should be further checked to verify if the
pulse shapes and noise pattern is actually close to the actual pulses at the LAr
calorimeter. Even if training methods are found to achieve a good robustness of
the CNNs against shape fluctuation, this is very important to check.
The influence of time shifts shows that the training data should contain a broad
variety of effects which occur at the real ADC output. Other influencing variations
like the bunch train structure should all be contained in the training data to check
if further variations of the ADC output is an additional problem for the CNNs.
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Also higher energies than 30 GeV should be further studied. Especially for high
energies the influence of shifted pulses will increase because the ADC value at the
peak of a pulse becomes linearly smaller in absolute terms for higher energies. The
reliable reconstruction of energies in a large range between 0.01 GeV to 1000 GeV
will be an additional challenge.
Since the trigger system of ATLAS uses the information of multiple detector cells,
it is interesting to check how the reconstruction of fake energies for example in-
fluences the trigger. Therefore the CNNs should be implemented in a simulation
of the whole ATLAS detector. For this simulation, the CNNs should be further
analyzed in different detector regions.
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