Track Reconstruction in Hadronic Tau Decays at the ATLAS Detector

Dirk Duschinger

DPG – Fruehjahrstagung Wuppertal

March 09, 2015

Dirk Duschinger (dirk duschinger@cern.ch)

Bundesministerium für Bildung und Forschung Introduction - Tau Leptons

- heaviest known lepton with $m_{ au} = 1.777~{
 m GeV}$
- \blacktriangleright decay length c au= 87 $\mu{
 m m}$
- leptonic and hadronic decay modes
- in general low multiplicity, i.e. predominantly 1 or 3 charged pions
- physics analyses with tau final states often require reconstructed 1 or 3 prong taus
- ⇒ it is crucial to associate correct number of tracks to the tau

Run 1 tau track reconstruction

- started from a loose track selection working point
- collect tracks in cone $\Delta R < 0.2$

Problems during run 1

- poor efficiency to reconstruct 3 prong tau decays with 3 tracks at high p_T due to track merging
- non-negligible amount of taus decay inside the pixel detector
- \Rightarrow large efficiency drop to reconstruct these tracks due to pixel hits requirement

Performance of track selection in run 2

- starting from loose working point
- apply cuts from run 1

track $p_{\rm T}$ distribution for various tau $p_{\rm T}$ regions

- strong dependence on tau pT
- partly similar effects for other distributions

How to increase track selection performance

optimizing quality cuts in bins of tau p_T

- can get quite challenging to find best thresholds
- hard to handle correlations
- not further considered
- use MVA techniques
 - BDT's are trained using TMVA
 - signal: tracks from tau decays
 - background: pileup, conversions, underlying event, mis-reconstructed tracks
 - ▶ added tau p_T and η to input variables of tracks to account for such dependencies

Results using the BDT approach

Results using the BDT approach

overall better efficiency for 1 and 3 prong combined

High $p_{\rm T}$ track association efficiency

- extended training to very large $p_{\rm T}$ using high mass $Z/\gamma^* \to \tau \tau$ samples

- overall better performance than standard selection
- small p_T dependence for loose + run 1 selection is reduced

High $p_{\rm T}$ track association efficiency

 \blacktriangleright extended training to very large $p_{\rm T}$ using high mass $Z/\gamma^* \to \tau \tau$ samples

- BDT approach shows better performance than standard selection at high p_T
- reconstruction as 0 prong is strongly reduced
- ▶ increase from 9% to 26% in the highest bin

Conclusions

- BDT approach shows better performance compared to standard selection
- BDT trained for high p_T taus reduces problem of track merging and decays within the pixel detector
- large room for improvements in optimizing training, especially input variables, options, thresholds on BDT score

BACKUP

Run 1 tau track reconstruction

- started from a loose track selection working point
- collect tracks in cone $\Delta R < 0.2$
- apply quality criteria to suppress pileup tracks, etc.
 - ▶ $p_{\mathsf{T}} > 1 \, \mathrm{GeV}$
 - # silicon hits \geq 7
 - # pixel hits ≥ 2
 - ▶ $|z_0 \sin(\theta)| < 1.5 \,\mathrm{mm}$
 - ▶ $|d_0| < 1 \, \mathrm{mm}$
- impact parameter were calculated wrt. tau vertexfound by Tau Jet Vertex Association (TJVA)
- ► TJVA: find vertex with largest fraction: $f_{JVF}(jet|vtx) = \frac{\Sigma \rho_T^{trk|vtx}}{\Sigma \rho_T^{trk}}$

Problems during run 1

- additional pileup and conversion tracks due to too loose cuts
- lost tau tracks due to too tight cuts or wrong vertex decision

Results using the BDT approach

overall better performance for 1 prong

slighly worse performance for 3 prong

Rank		Variable		Separation
1	:	q0verP	:	4.080e-01
2		zOsinThetaTJVA		3.264e-01
3		d0		2.423e-01
4		nPixHits		2.422e-01
5		numberOfPixelHits		2.152e-01
6		nSiHits		2.123e-01
7		numberOfBLayerHits		2.116e-01
8		expectBLayerHit		1.333e-01
9		number0fSCTHits		1.191e-01
10		numberOfTRTHighThresholdHits		4.636e-02
11		numberOfTRTHits		4.080e-02
12		z0sinTheta		1.651e-02
13		theta		1.410e-02
14		TrackEta		1.333e-02
15		tauEta		9.745e-03
16		numberOfPixelDeadSensors		5.838e-03
17		number0fSCTSharedHits		4.787e-03
18		numberOfPixelSharedHits		2.285e-03
19		tauPt		5.426e-04
20		number0fSCTDeadSensors		3.901e-04

BDT Score distribution

distribution of quality parameters

distribution of quality parameters

- BDT approach is able to reduce taus being reconstructed with 3 tracks
- but also 2 and 0 prong is reduced
- 3 prong
 - more taus are reconstructed with 2 prong for the BDT approach than for Loose + run 1

track selection definitions **ATLAS** work in progress

RUN1 1	track	selection:
--------	-------	------------

minPt	1000
minNSiHits	7
minNPixelHits	2
maxZ0SinTheta	1.5
maxD0	1

RUN2	Loose-primary	track	selection:

minNSiHitslfSiSharedHits	10
useEtaDependentMaxChiSq	true

Dirk Duschinger (dirk duschinger@cern ch)

RUN2 Loose selection:		
minPt	400.0	
maxAbsEta	2.5	
minNSiHits	7	
${\sf maxNPixelSharedHits}$	1	
maxNSCTSharedHits	2	
${\sf maxOneSharedModule}$	true	
maxNSiHoles	2	
maxNPixelHoles	1	

RUN2 Tight-primary selection:

minNSiHits	9
$\min {\sf EtaForStrictNSiHitsCut}$	1.65
$\min NSiHitsAboveEtaCutoff$	11
minNBLayerHits	1
maxNPixelHoles	0