Reconstruction and Identification of Boosted Tau Pair Topologies at ATLAS David Kirchmeier TU Dresden

Bundesministeriun für Bildung und Forschung

Motivation

- Search for BSM particles, e.g. heavy Higgs Bosons
- With higher energies in Run II: Higher masses reachable Highly boosted tau topologies more likely
- Highly boosted taus tend to end up in same jet

Tau Lepton Decay

- Hadronic mode with 65% BR
- more collimated than QCD Jets

Tau Reconstruction and Identification

Tau Reconstruction

- Results of current tau reconstruction (w/o identification step)
- Signal: simulated with Pythia, $A \rightarrow Z h$, ggA, $m_A = 1$ TeV

Tau Reconstruction

Di-Tau Reconstruction and Identification

Clusters \rightarrow Anti-Kt-10-Jets \rightarrow Di-Tau Candidates \rightarrow Di-Taus

Cells

Di-Tau Reconstruction

÷

Di-Tau Reconstruction

- Now di-taus with $\Delta R < 0.4$ and $p_T > 500$ GeV can be reconstructed
- Reconstruction efficiencies of up to 90%

Background Rejection

- Signal: Pythia, $A \rightarrow Z h \rightarrow II + \tau \tau$, $m_A = 2 \text{ GeV}$
- Background: high- p_{T} -Di-Jet data
- Trained Boosted Decision Trees with 9 variable

Conclusion and Outlook

- New di-tau reconstruction and identification
- Reconstruction efficiencies of up to 90%
- High background rejection
- Application in $A \rightarrow Z h \rightarrow \tau \tau + II$ and $H \rightarrow h h \rightarrow \tau \tau + bb$

THANKYOU FOR YOUR ATTENTION

Di-Tau Reconstruction

Di-Tau Reconstruction + ID

Di-Tau Reconstruction Cuts

- anti-kt-10 jet
- $n(subjets) \ge 2$
- $1 \le n(subjet_tracks) \le 4$
- p_T(subjet) > 15 GeV
- $p_T(track) > 1 GeV$
- $n(pixel hits) \ge 2$
- $n(pixel hits) + n(SCT hits) \ge 7$
- $|d_0| \le 1.0$ mm
- $|z_0 \sin\theta| \le 1.5$ mm

Software Implementation

- r19 ATHENA package with xAOD input and NTuple output
- FastJet 3 for jet reconstruction
- Python 2.7 classes to wrap reconstruction output into BDT training and testing trees
- TMVA for multivariate separation methods
- ROOT 5.34

