Optimisation of the Hadronic Tau Identification Based on Classification of Tau Decay Modes with the ATLAS Detector

> Dirk Duschinger, <u>Stefanie Hanisch</u>, Wolfgang Mader, Marcus Morgenstern, Arno Straessner

> > CERN and TU Dresden

March 10th 2015

The Tau Lepton

- $c\tau = 87 \, \mu \mathrm{m}$
- $m_{ au} \sim 1.77 \, {
 m GeV}$
- decays leptonically...
 - \rightarrow difficult to distinguish from prompt electrons and muons
- decays hadronically...
 - \rightarrow mainly charged and neutral pions
 - \rightarrow pion with highest $p_{\rm T}$ reproduces au direction
 - \rightarrow mostly 1 and 3 prong
 - \rightarrow highly collimated
- physics with taus

 $Z \rightarrow \tau \tau$ cross section, performance and ID measurements $H \rightarrow \tau \tau$ studies of leptonic coupling, CP studies BSM Higgs tau final states preferred in many models heavy resonances $Z' \rightarrow \tau \tau$ might have stronger coupling

Tau Reconstruction & Decay Substructure

CellBased algorithm

- subtracts energy deposits of π[±] in calorimeter cells
- uses average hadronic shower shapes
- searches for π^0 candidates

EflowRec algorithm

- orders cells in rings according decreasing energy density
- substracts energy deposits of π^{\pm} from rings
- estimates π^0 energy for each eflow object

+ PanTau algorithm

- exploit kinematic properties of tau decay products
 - improve decay mode classification

- reconstruction cannot sufficiently differentiate τ s and jets
- define set of identification variables exploiting au decay topology
- use multivariate analysis techniques to combine them

MVA – BDT & LLH

<u>LLH</u>

 $\frac{\text{Likelihood value}}{L_{S B} = \prod_{i=1}^{N} p_i^{S B}(x_i)}$

Likelihood score

$$S_{\text{LLH}} = \ln \left(rac{L_{\text{S}}}{L_{\text{B}}}
ight) = \sum_{i=1}^{\text{N}} \ln \left(rac{
ho_{i}^{\text{S}} x_{i}}{
ho_{i}^{\text{B}} x_{i}}
ight)$$

Figures of Merit

Substructure Tau ID – Equivalents

- replace default variables with substructure equivalents
 - \rightarrow some substructure variables are similar to corresponding default variables
 - \rightarrow some show differences due to coarser granularity \rightarrow performance loss and decay mode migration

Substructure Tau ID – Equivalents & Calorimeter Radius

• other powerful variables which don't suffer from coarser granularity

$$R_{cal}^{core \text{ isolation}} = \frac{\sum_{i}^{\Delta R < 0.2 \ 0.4} p_{T,i} \cdot \Delta R_i}{\sum_{i}^{\Delta R_i < 0.2 \ 0.4} p_{T,i}}$$

- increased pile-up dependence by considering R^{iso}_{cal}
 - \rightarrow linear fit on μ profile for each variable
 - \rightarrow applied as a μ dependent correction

 μ = average number of interactions per bunch crossing

Substructure Tau ID – Equivalents & Calorimeter Radius

stefanie.hanisch@cern.ch

Substructure Tau ID – Further Variables

Substructure Tau ID - CellBased Top Variable Sets

Substructure Tau ID – EflowRec Top Variable Sets

- investigation of pure substructure tau ID
 - \rightarrow almost reach and partly exceed performance of default variable set
 - \rightarrow apply pile-up corrections
- update Log-Likelihood (p_{T} and μ reweighting, π^{0} variables)
- study BDT configuration (optimisation of minimal node size)
- work in progress
 - \rightarrow search for more powerful variable set
 - \rightarrow consider decay modes separately
 - \rightarrow use results to improve default ID
 - \rightarrow test on 14 TeV MC samples

THANKS FOR YOUR ATTENTION.

algorithm	reco. category	decay mode					
		1p0n	1p1n	1pXn	3p0n	3pXn	
CellBased	correct reco.	87.1	62.9	53.6	84.7	60.7	
	correct reco. prongness	98.9	95.8	93.9	93.7	93.2	
	too few reco. neutrals	_	15.2	40.8		36.9	
	too many reco. neutrals	12.1	21.6	_	11.6	_	
EflowRec	correct reco.	77.8	56.2	55.8	59.8	72.8	
	correct reco. prongness	98.9	95.8	94.0	93.7	92.8	
	too few reco. neutrals	—	13.8	38.3	—	30.0	
	too many reco. neutrals	21.5	29.8		37.8	_	
CellBased	correct reco.	85.5	74.9	40.8	89.0	62.0	
+ PanTau	correct reco. prongness	98.9	86.6	94.0	93.7	93.2	
	too few reco. neutrals	—	12.4	53.5		36.3	
	too many reco. neutrals	13.7	12.5		8.0	—	
EflowRec	correct reco.	84.2	68.5	38.8	84.0	58.3	
+PanTau	correct reco. prongness	99.0	95.8	93.8	93.7	93.1	
	too few reco. neutrals	—	15.2	55.3		39.1	
	too many reco. neutrals	15.1	16.1		13.7	_	

Backup – Update on BDT-based Tau ID

Backup – Update on LLH-based Tau ID

 apply μ and p_T reweighting on signal and background

• consider π^0 variables

 \rightarrow no performance gain

Backup – Performance of Default Tau ID

Backup - Tau ID with Substructure Equivalents

stefanie.hanisch@cern.ch

Backup – Variable Definitions

$$\begin{split} & \mathcal{N}_{chrg \ neut \ all}^{cent \ core \ Evide} = \frac{\Delta R < 0.1 \ 0.2 \ E[0.2, 0.4]}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0}} \pi_{i}} \pi_{i} \\ & \mathcal{M}_{chrg \ neut \ all}^{cent \ core \ iso} = \sqrt{\left(\frac{\Delta R < 0.1 \ 0.2 \ 0.4}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0}} E_{i}\right)^{2} - \left(\frac{\Delta R < 0.1 \ 0.2 \ 0.4}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0}} E_{i}\right)^{2}} \\ & \Delta R_{max, \ chrg}^{core \ iso} = \Delta R_{\pi^{\pm}}^{\Delta R < 0.2 \ 0.4} (\pi, \tau) \to \max \\ & \Delta R_{pT}^{iso} = \Delta R_{\pi^{\pm}}^{\Delta R < 0.2 \ 0.4} (\pi_{pT}^{ini}, \pi_{pT}^{max}) \\ & f_{pT}^{cent \ core \ iso} = \Delta R_{\pi^{\pm}}^{\Delta R < 0.2 \ 0.4} (\pi_{pT}^{ini}, \pi_{pT}^{max}) \\ & f_{pT}^{cent \ core \ isolation} \\ & R_{cal, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ PT, i}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ PT, i} \\ & f_{e, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ PT, i}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ PT, i} \\ & f_{e, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ PT, i}{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ \pi^{\pm}, \pi^{0} \ E_{T}, i} \\ & f_{e, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{\sum_{i \in \pi^{\pm} \pi^{0} \pi^{\pm}, \pi^{0} \ \pi^{\pm}, \pi^{0} \ E_{T}, i}{\sum_{j \in \pi^{\pm} \pi^{0} \ \pi^{\pm}, \pi^{0} \ \pi^{\pm}, \pi^{0} \ E_{T}, j} \\ & f_{e, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{P_{T, \ lead \ \pi^{\pm}}^{\Delta R < 0.1 \ 0.2 \ 0.4} \ E_{T}}{\sum_{j \in \pi^{\pm} \pi^{0} \ \pi^{\pm}, \pi^{0} \ E_{T}, j} \\ & f_{e, \ chrg \ neut \ all}^{cent \ core \ isolation} = \frac{P_{T, \ lead \ \pi^{\pm}}^{\Delta R < 0.1 \ 0.2 \ 0.4} \ E_{T}}{\sum_{j \in \pi^{\pm} \pi^{0} \ \pi^{\pm}, \pi^{0} \ \pi$$

generic ranking				BDT specific ranking				
CellBased		EflowRec		CellBased		EflowRec		
1-prong	3-prong	1-prong	3-prong	1-prong	3-prong	1-prong	3-prong	
$ \begin{array}{c} \substack{r_{\rm iso} \\ c_{\rm cal, all} \\ r_{\rm cent-iso} \\ E, chrg \\ \Delta F_{\rm max, all} \\ f_{\rm pT, all} \\ m_{\rm all} \\ f_{\rm pt, all} \\ f_{\rm iso} \\ f_{\rm lead, chrg} \end{array} $	$ \begin{array}{c} R^{\rm iso}_{\rm cal,chrg} \\ \Delta R^{\rm iso}_{\rm max,all} \\ & {}^{\rm miso}_{\rm chrg} \\ & {}^{\rm mchrg}_{\rm chrg} \\ & {}^{\rm mcent}_{\rm chrg} \\ & {}^{\rm mcent}_{\rm all} \\ & {}^{\rm cent}_{\rm PT,all} \\ & {}^{\rm flight}_{\rm ST} \\ & {}^{\rm flight}_{\rm flead,chrg} \end{array} $	$ \begin{array}{l} R^{\rm iso}_{\rm cal,chrg} \\ cal,chrg \\ core-iso \\ F,all \\ N^{\rm wide}_{\rm chrg} \\ \Delta R^{\rm iso}_{\rm riso} \\ P^{\rm minmax}_{\rm priod} \\ lead,chrg \\ P^{\rm cent}_{\rm PT,all} \\ m^{\rm iso}_{\rm all} \end{array} $	$ \begin{array}{l} R_{\rm iso}^{\rm iso} \\ {\rm cal,chrg} \\ \Delta R_{\rm max,all}^{\rm iso} \\ f_{\rm core-iso}^{\rm core-iso} \\ m_{\rm all}^{\rm core} \\ m_{\rm all}^{\rm core} \\ f_{\rm cal}^{\rm cal} \\ r_{\rm fead,chrg}^{\rm cal} \\ S_{\rm T}^{\rm fight} \\ r_{\rm pT,all}^{\rm cent} \end{array} $	$ \begin{array}{c} r_{\rm iso}^{\rm iso} \\ r_{\rm cal,all}^{\rm obs} \\ N^{\rm wide} \\ Chrg \\ \Delta F^{\rm iso}_{\rm max,all} \\ r_{\rm cent-iso}^{\rm cent-iso} \\ r_{\rm c,chrg}^{\rm core} \\ S_{\rm lead}^{\rm track} \\ r_{\rm T,all}^{\rm so} \\ m_{\rm all}^{\rm iso} \\ m_{\rm reut}^{\rm iso} \\ r_{\rm f,neut}^{\rm reut} \end{array} $	$ \begin{array}{c} R^{\rm iso}_{\rm cal,chrg} \\ {\rm cal,chrg}_{\rm cal,chrg} \\ {\rm fight}_{\rm T} \\ S^{\rm frg}_{\rm T} \\ N^{\rm wide}_{\rm brg} \\ r^{\rm core}_{\rm PT,chrg} \\ r^{\rm core}_{\rm PT,chrg} \\ r^{\rm iso}_{\rm PT,neut} \\ S^{\rm IP}_{\rm Flead} \\ S^{\rm IP}_{\rm lead} \\ {\rm track} \end{array} $	$\begin{array}{c} cent-iso\\ E,chrg\\ core-iso\\ E,chrg\\ cent-iso\\ F,all\\ Slead track\\ f^{Core}\\ F_{1,all}\\ m_{all}^{iso}\\ lead,chrg\\ m_{cent}^{iso}\\ m_{chrg}^{cent} \end{array}$	$\begin{array}{c} \substack{ R_{\rm cal,chrg}^{\rm iso} \\ {\rm core-iso} \\ {\rm E,chrg} \\ {\rm ST} \\ {\rm ST} \\ {\rm f}^{\rm core-iso} \\ {\rm F,all} \\ m_{\rm core}^{\rm core-iso} \\ {\rm m}^{\rm core} \\ {\rm$	