A search for high-mass resonances decaying to $au^+ au^-$ in pp collisions at $\sqrt{s}=8~{ m TeV}$ with the ATLAS detector

Dirk Duschinger

DPG – Fruehjahrstagung

03/09/2015

Bundesministerium für Bildung und Forschung

Introduction

- Heavy Z' gauge bosons appear in many extensions of the Standard Model (SM)
- Grand unified theories often give rise to Z' bosons
- Lepton universality is not necessarily preserved
 - Searches in di-electron and di-muon channels do not apply
 - Preferred couplings to third generation fermions in some models like non-universal G(221)
- Three different tau decay channels are analyzed: $\tau_{had}\tau_{had}$ (BR=42%), $\tau_{\mu}\tau_{had}$ (BR=23%), $\tau_{e}\tau_{had}$ (BR=23%)

Signal Models

- Sequential Standard Model (SSM) is used as a benchmark scenario
 - Couplings are the same as for SM Z boson
- Variations to purely left/right handed fermion couplings
- Variations to wider and narrower decay widths
- Non-universal G(221) model $SU(2)_l \times SU(2)_h \times U(1)_Y \xrightarrow{u} SU(2)_{l+h} \times U(1)_Y \xrightarrow{v} U(1)_{em}$

Recent Publications

Volume 719, Issues 4–5

Phys. Rev. D 90, 052005

Analysis strategy $h^++\nu \leftarrow \tau^+ \leftarrow Z' \rightarrow \tau \rightarrow h^-+\nu$ $e^-/\mu^-+\nu\nu$

- Select two back-to-back tau decays of opposite charge
- Channels are complementary

	Hadronic tau decays	Muons	Electrons
T _{had} T _{had}	2	0	0
$\tau_{\mu} \tau_{had}$	1	1	0
τ _e τ _{had}	1	0	1

• Count events passing high transverse mass threshold

$$m_{\rm T}^{\rm tot}(\tau_1, \tau_2, E_{\rm T}^{\rm miss}) = \sqrt{m_{\rm T}^2(\tau_1, \tau_2) + m_{\rm T}^2(\tau_1, E_{\rm T}^{\rm miss}) + m_{\rm T}^2(\tau_2, E_{\rm T}^{\rm miss})}$$

Channel Selections

	τ _{had} τ _{had}	τ _μ τ _{had}	τ _e τ _{had}
Trigger	single tau	single muon	single electron
Kinematic Cuts	p _τ (τ ₁) > 150 GeV p _τ (τ ₂) > 50 GeV	p _τ (μ) > 30 GeV p _τ (τ) > 30 GeV	p _τ (e) > 30 GeV p _τ (τ) > 30 GeV
ID Cuts	Loose for both	Medium + muon veto	Medium + medium e-veto
Opposite Charge	$q(\tau_1) \ge q(\tau_2) = -1$	q(μ) x q(τ) = -1	q(e) x q(τ) = -1
Back-to-Back Topology	$\Delta \phi(\tau_1, \tau_2) > 2.7 \text{ rad}$	Δφ(μ,τ) > 2.7 rad	Δφ(e,τ) > 2.7 rad

Uncertainties

Uncertainty [%]		Signal		Ba	ckgroun	d
	$ au_{ m had} au_{ m had}$	$ au_{\mu} au_{ m had}$	$ au_e au_{ m had}$	$ au_{ m had} au_{ m had}$	$ au_{\mu} au_{ m had}$	$ au_e au_{ m had}$
Statistical uncertainty	2.4	4	4	6	21	21
Efficiency	16	8	8	12	5	4
Energy scale and resolution	2.9	5	5	10	11	9
Theory cross section	—	—	—	6	6	6
Luminosity	2.8	2.8	2.8	2.5	2.2	1.9
Data-driven methods	0.2	—	—	2.7	8	12
Total	17	11	10	18	27	28

Results – Total Transverse Mass

Results – Z'_{SSM}

- Set 95% credibility lower limits on Z'_{SSM} mass
- Measured acceptance (x efficiency)

	observed	expected
τ _{had} τ _{had}	1.88 TeV	1.79 TeV
$\tau_{\mu} \tau_{had}$	1.59 TeV	1.58 TeV
$\tau_e \tau_{had}$	1.55 TeV	1.64 TeV
combination	2.02 TeV	1.94 TeV

03/09/15

Impact of model variations on Z' acceptance

- Variations of couplings to left/right handed fermions
- Variations to wider/narrower decay width

arXiv:1502.07177

Results – NU G(221)

First direct limits parametrized in sin²φ (mixing between SU(2)_h and SU(2)_l)

Summary

- Observation is consistent with Standard Model expectation
- Limits set on σ x BR for Z'_{SSM}:
 - observed 2.02 TeV

- expected 1.94 TeV

- Investigated impact of coupling and decay variations on acceptance
- First direct limits on non-universal G(221) model

BACKUP

Recent Publications

Signal Models

- TauSpinner is used to reweight $Z/\gamma^* \to \tau\tau$ to produce Z' signals
- Models:
 - Sequential Standard Model (SSM) is used as a benchmark scenario
 - Couplings are the same as for SM Z boson
 - Variations to purely left/right handed fermion couplings
 - variations to wider and narrower decay widths
 - Non-universal G(221) model

 $SU(2)_l \times SU(2)_h \times U(1)_Y \xrightarrow{u} SU(2)_{l+h} \times U(1)_Y \xrightarrow{v} U(1)_{em}$

 17 mass points from 500 GeV up to 2.5 TeV in steps of 125 GeV

Event Samples

- Data:
 - Only data taken with pp collisions in stable beam conditions and with all ATLAS subsystems operational
 - Analyzed 19.5-20.3fb⁻¹ for $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ channels
- Backgrounds:
 - Main backgrounds: $Z/\gamma^* \rightarrow \tau \tau$, Multijets, W+jets
 - Minor backgrounds: Z+jets, Z \rightarrow II, diboson, single top, tt \bar{t}

Common Preselection

Hadronic Taus:

- $p_T > 20 GeV$
- 0<|η|<1.37 or 1.52<|η|<2.47
- 1 or 3 tracks
- |Charge| = 1
- Loose BDT electron veto

- Muons:
 - p_T>10GeV
 - |η|<2.5
 - Loose + ID quality
- Electrons:
 - p_T>15GeV
 - 0<|η|<1.37 or
 1.52<|η|<2.47
 - LoosePP
 - Object Quality
 - B-Layer hit if expected

- Jets: Only enter analysis through missing ET
- Overlap removal: within ΔR<0.2 with preference: muons, electrons, taus, jets
- Missing transverse energy: RefFinal STVF

τ_{had}τ_{had} Channel

- No electrons, no muons, 2 tau candidates
- Trigger: EF_tau125_medium1, 19.5fb⁻¹ (w/o period A)
- τ_1 : p_T >150 GeV, matched to trigger
- τ₂: p_T>50 GeV
- Both taus pass tau ID BDT loose
- $q(\tau_1) \times q(\tau_2) = -1$
- $\Delta \phi(\tau_1, \tau_2) > 2.7 \text{ rad}$

τ_{had}τ_{had} Channel – Multijet Background

- Modeling from MC inadequate
 estimation from data
- Fake factors measured in multijet control region
 - Similar to signal region with small variations
 → high multijet purity

 $f_{\text{tau-ID}}(p_{\text{T}}, N_{\text{track}}) \equiv \frac{N^{\text{pass tau-ID}}(p_{\text{T}}, N_{\text{track}})}{N^{\text{fail tau-ID}}(p_{\text{T}}, N_{\text{track}})}\Big|_{\text{multijet}}$

- Fake factors applied on events where $\tau_{\scriptscriptstyle 2}$ fails BDT loose

 $N_{\text{multijet}}(p_{\text{T}}, N_{\text{track}}, x) = f_{\text{tau-ID}}(p_{\text{T}}, N_{\text{track}}) \times N_{\text{data}}^{\text{fail tau-ID}}(p_{\text{T}}, N_{\text{track}}, x)$

- Uncertainties account for:
 - Statistical uncertainty
 - Variations made for multijet control region

τ_{had}τ_{had} Channel – Other Jet Background

- Jet-to-tau fake rate mis-modeled in MC
- Fake rates measured in W+jets control region in data
- BDT loose requirement dropped for simulated quark- and gluon-initiated jets
- Instead apply fake rates
- Uncertainties account for:
 - Statistical uncertainty
 - 60% composition uncertainty

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ Channel

- τ_μτ_{had}
 - Trigger:
 EF_mu24i_tight or
 EF_mu36_tight
 - Exactly one STACO muon: combined, isolated, $p_T > 30 \text{ GeV}$
 - One tau: BDT medium, $p_T > 30$ GeV,

pass muon veto

- No additional muons/electrons
- $q(\mu) \times q(\tau) = -1$, $\Delta \phi(\mu, \tau) > 2.7$ rad

- $\mathbf{T}_{e}\mathbf{T}_{had}$
 - Trigger:
 - EF_e24vhi_medium1 or EF_e60_medium1
 - Exactly one electron: tight++, isolated, p_T > 30 GeV
 - One tau: BDT medium,
 p_T > 30 GeV,
 - pass medium electron veto
 - No additional muons/electrons
 - $q(e) \times q(\tau) = -1$, $\Delta \phi(e,\tau) > 2.7$ rad

$\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{had}$ Channel Jet Background

• Fake factor measured in W+jets control region in data

$$f_{\tau}(p_{\mathrm{T}},\eta) \equiv \left. \frac{N^{\mathrm{pass}\ \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta)}{N^{\mathrm{fail}\ \tau-\mathrm{ID}}(p_{\mathrm{T}},\eta)} \right|_{\mathrm{W-CR}}$$

• MC contributions subtracted for fake factor measurement and application

 $N_{W+\text{jet}}(p_{\text{T}},\eta,x) = f_{\tau}(p_{\text{T}},\eta) \cdot \left(N_{\text{data}}^{\text{fail }\tau-\text{ID}}(p_{\text{T}},\eta,x) - N_{\text{MC}}^{\text{fail }\tau-\text{ID}}(p_{\text{T}},\eta,x)\right)$

- Uncertainties account for:
 - Statistical uncertainty
 - 25% uncertainty derived from deviation to multijet control region

Results – Z'_{SSM}

- Set 95% credibility lower limits on Z'_{SSM} mass
- Measured acceptance (x efficiency)

	observed	expected
τ _{had} τ _{had}	1.88 TeV	1.79 TeV
τ _μ τ _{had}	1.59 TeV	1.58 TeV
τ _e τ _{had}	1.55 TeV	1.64 TeV
combination	2.02 TeV	1.94 TeV

Results – NU G(221)

- Measurements of σ x BR and signal acceptance wrt. Z'_{SSM} parametrized in $\sin^2\varphi$ (mixing between $SU(2)_h$ and $SU(2)_l$)
- First direct limits
 - Competitive with indirect searches
 - Lower mass limit of 1.3TeV for small values of $\sin^2 \varphi$

24/12

Z' SSM limits with $\tau_e \tau_{had}$ and $\tau_\mu \tau_{had}$ shown separately

Total transverse mass distribution for $\tau_{\mu}\tau_{had}$ channel

Total transverse mass distribution for $\tau_{e}\tau_{had}$ channel

Leading tau transverse momentum in the $\tau_{_{had}}\tau_{_{had}}$ channel

Subleading tau transverse momentum in the $\tau_{_{had}}\tau_{_{had}}$ channel

Missing transverse energy in the $\tau_{had} \tau_{had}$ channel

Tau transverse momentum distribution for $\tau_{lep} \tau_{had}$ channel

Lepton transverse momentum distribution for $\tau_{lep} \tau_{had}$ channel

Missing transverse energy in the $\tau_{lep} \tau_{had}$ channel

