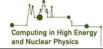
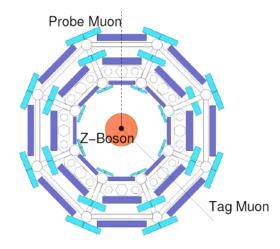


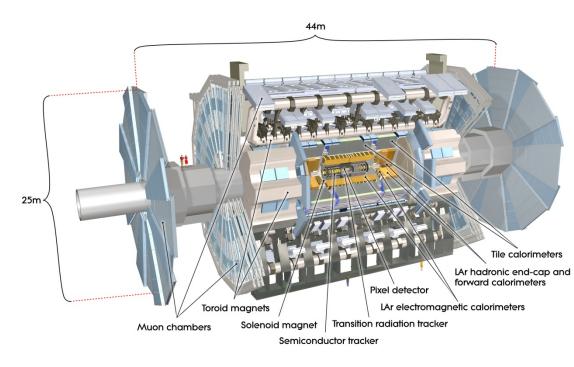
A New Tool For Measuring Detector Performance in ATLAS


 Arno Straessner – TU Dresden Matthias Schott – CERN

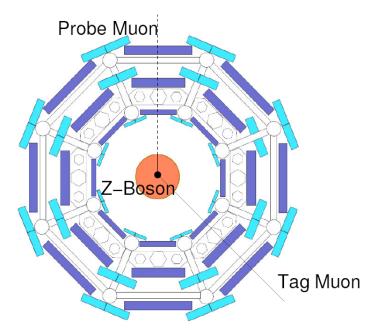

on behalf of the ATLAS Collaboration

Computing in High Energy and Nuclear Physics Prague March 21-27, 2009

- The Physics: Detector Performance
- An Infrastructure For Performance Data
- Current Implementation in ATLAS
- Outlook

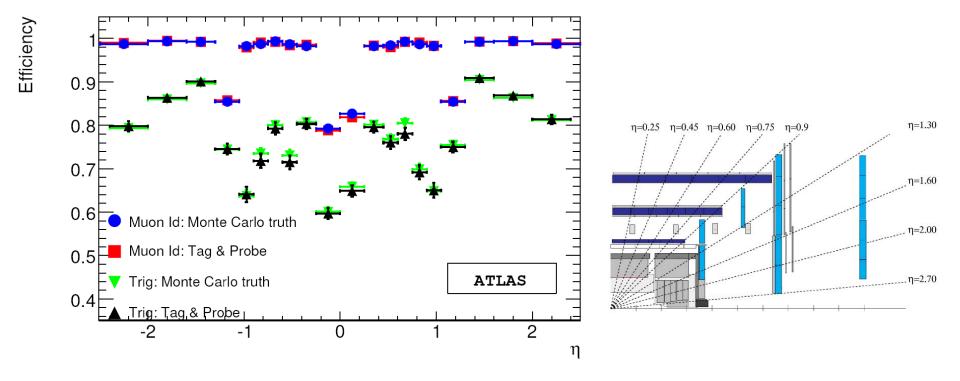


- Complex detector with main subsystems:
 - Inner tracking
 - Calorimetry
 - Muon tracking
- 2500 physicists perform analyses


- All need detailed information about detector performance
 - General performance
 - Trigger, reconstruction and identification efficiencies
 - Resolutions of energy, momenta, angles, ...
 - Energy and momentum scales
 - Time-dependent performance

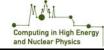
Detector Performance Tool

- Commonly applied method to measure performance in data: → Tag & Probe
- Example: measure muon trigger efficiency in $Z{\rightarrow}\mu\mu$ events
 - Identify triggered and well measured muon: → Tag
 - Use Z decay kinematics to find the 2^{nd} muon: \rightarrow Probe
 - Check if 2^{nd} muon was triggered \rightarrow efficiency
- Many more examples:
 - $Z \rightarrow ee$, J/psi $\rightarrow ee$, Z+jets for tau fake rates, ...
- Common infrastructure to
 - Implement the object tag and event selection
 - Store the collection of probe objects
 - Analyse the probes
 - \rightarrow efficiencies and detector response
 - Store matrices with efficiency, resolution and scale information


Clients:

- Performance groups
- Fast Monte Carlo simulation
 - Individual Physicists

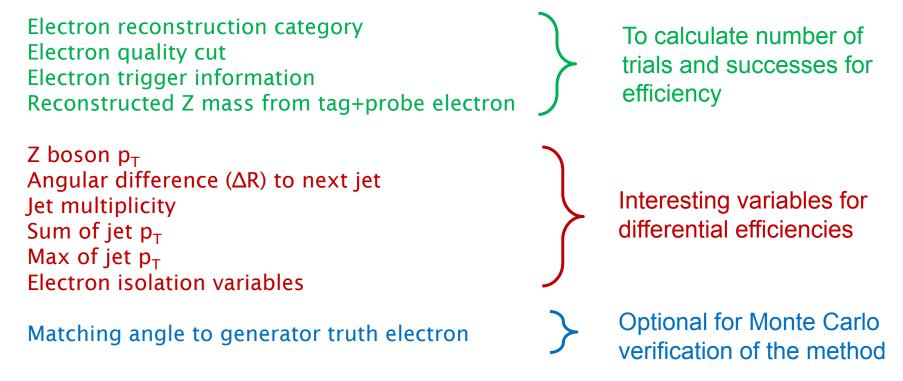
- Early version of the package was used in ATLAS physics book
- Estimation of muon identification and trigger efficiencies:



- Performance Tool is the ATLAS solution for:
 - Direct use in Standard Model physics \rightarrow closely related to performance groups
 - Benchmark comparisons for reconstructed objects used in searches etc.

Performance database

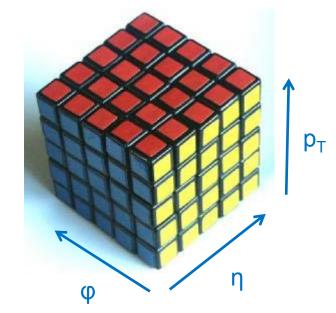
The Procedure

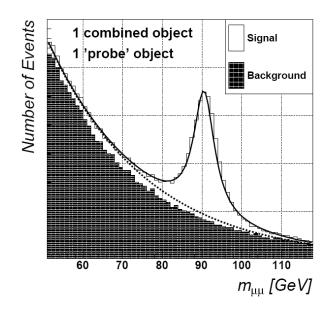


- ATLAS data storage Primary Data: ESDs, AODs, DPDs Event Summary Data (ESD) Signal Analysis Object Data (AOD) World Wide Grid Derived Physics Data (DPD) Selection • 1st step: Signal selection and object tag Intermediate Intermediate Intermediate Input: ESD, AOD, DPD Data Data Data • Grid task Histograms Histograms Histograms NTuples NTuples NTuples \rightarrow Performance-DPD with probe Performance objects Local PC • 2nd step: Performance determination Determination Executed on local cluster Overall fits might be necessary (background shape, ...) Database (Detector Performance Representation)
 - ATLAS Detector Performance Tool Arno Straessner

- Probe objects are usually: tracks, reconstructed leptons, jets
- Only parameters necessary for further analysis are stored \rightarrow can be freely defined
- Example for electron calorimeter identification efficiency:

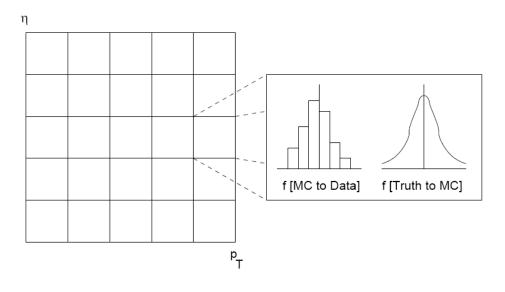
- Map<tag,float> with string tags in meta-data \rightarrow flexible, user-friendly structure
- Small data size: ~ 0.33 kB per event in DPD file


- Objects stored:
 - N-dimensional matrices to map detector areas and physics
- Typically 4-dimensional, not larger because of
 → data statistics per matrix entry
 - \rightarrow storage space
- Matrix defined by N axes objects with free binning
- Matrix entries:
- For "simple" efficiency calculations:



- Number of trial and success counts
- With side-band subtraction of background:

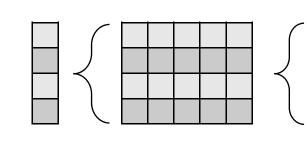
- Data and background histograms
- Pre-defined fitting functions
- Background subtraction assuming predicted S/B ratio

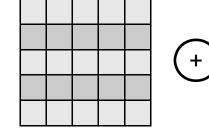


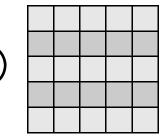
- Matrix entries for detector response:
- Resolution/scale histogram for Monte Carlo \rightarrow data reference
- Smearing functions for generator level \rightarrow fully simulated Monte Carlo

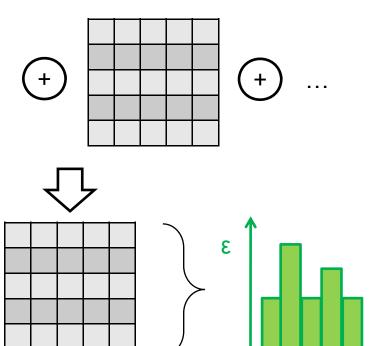
- Once ATLAS data is available:
 - Smearing functions for generator level \rightarrow data projections
 - To be used in fast detector simulations
- Matrix entries for resolution and scaling:

• ROOT Histograms \rightarrow in future: RooWorkspace of RooFit

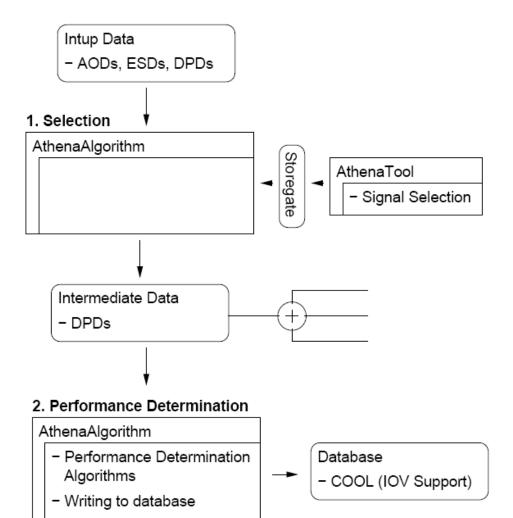

Matrix Objects


Computing in High Energy and Nuclear Physics


- Methods to calculate efficiency and resolution from stored data
 - Classical and Bayesian efficiencies and uncertainties

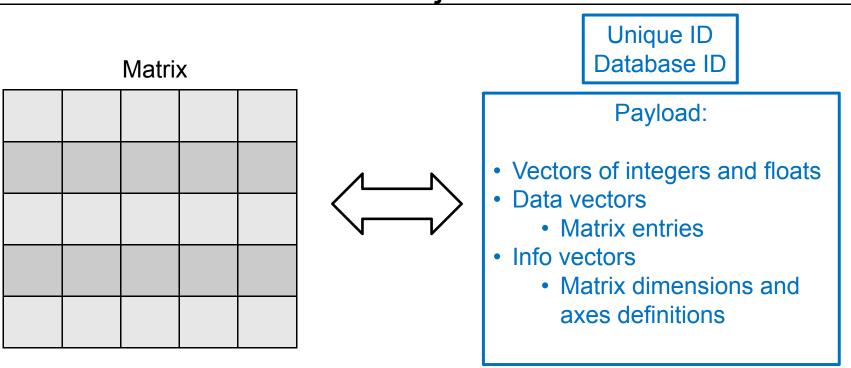


- Efficiencies and detector response using fits to data and background
- Caching: fit result is stored and then directly accessed
- All matrix entry objects are additive:
 - Distributed analysis
 - Averaging over different run periods
- Projections to any number of axes is supported:
 - Projections in form of matrices
 - Projections into histograms
 - Slices of matrices \rightarrow cuts
 - Not trivial for resolutions
- Hide complexity from user

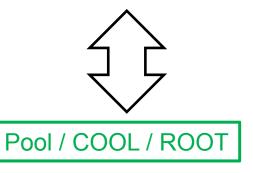


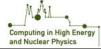
• ATHENA = ATLAS software framework

- "Algorithm" is executed at each event
- Uses "Tool" to perform signal selection
- Intermediate data is stored in
 - DPD
 - Transient memory "Storegate"
- Performance determination
- Output to ATLAS official conditions database:
 - LCG product: COOL database
 - With Interval-Of-Validity (IOV)

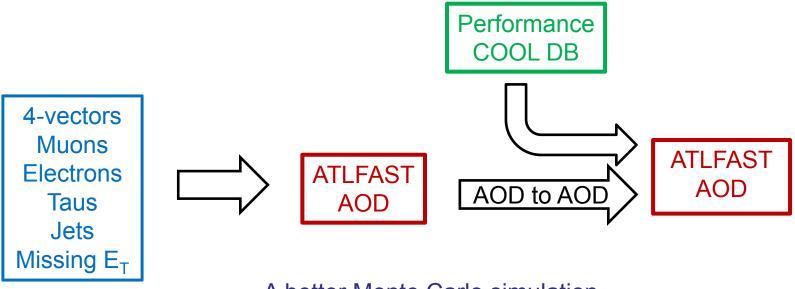

- ATLAS official conditions database: LCG Pool/COOL \rightarrow for collaborative use
- Plain ROOT file → for online Tier-0 applications, development, debugging and individual use
- Unique database identifier:

Database ID	Description	Examples
Object	Physics Parameter	Muon, Electron, Tau, Jet,
Туре	Performance Parameter	Efficiency, Scale/Resolution, Fake- Rate
Channel	Physics Channel	Z→µµ, J/psi→ee, tt, …
Author	Author's name	MuonPerformanceGroup, PJenni,
RecoSWV	Software version (ATLAS Metadata Interface tag)	14.5.2.1
IOV	Interval of validity (runs), For MC: simulation software release	Run 1000-2000 13.0.1

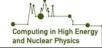

Database Object Structure



COOL - Database


DATA	IOV
Data [float, float, int, int, float,]	10-23
Data [float, int , int]	12-35
 Data [Reference to ROOT–File]	11-18
(

- Fast Monte Carlo simulation
 - Correction of the generated 4-vectors
 - Smearing and efficiency correction
- Ideal place for input from performance tool \rightarrow currently "hand-made" input tables
- Communication via COOL database \rightarrow to be implemented

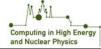


 \rightarrow A better Monte Carlo simulation

 \rightarrow Reference numbers from data for systematic detector studies

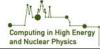
 \rightarrow towards a "realistic" Monte Carlo: possibility to map on run-time effects

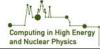
ATLAS Detector Performance Tool - Arno Straessner



- Probe DPD files are much smaller than typical AOD:
 - 200 kB/event in AOD \rightarrow 0.3-0.5 kB/event in DPD
- DPD files produced on grid and collected on local storage
- Matrix files eventually stored in COOL
 - Depends on number of dimensions
 - Potentially large for a database if full histograms are stored
 - For 2x50 bin histograms in 20x20x20 matrix ~ 3 MB

- All underlying functionalities are implemented
 - Tagging framework
 - DPD creation
 - Matrix representations and operations
 - COOL and ROOT database operations
 → converters


- Working use-cases:
 - Electron reconstruction and identification efficiency
 - Muon reconstruction and identification efficiency
 - Muon trigger efficiency
 - Inner detector tracking efficiency with Z and J/psi tags



- Performance tool provides useful and standardized service to the collaboration
- Performance data can be distributed via ATLAS central database
- Interesting use cases:
 - Individual physics analysis
 - Performance groups
 - Realistic Monte Carlo simulation
- Full working analyses planned to be available in a month's time
- "Online" exercise on Tier-0 center to be done
- Many more performance analyses to be integrated
- Currently evaluating structures for dealing with systematic uncertainties

