

Liquid-Argon Calorimeters for High Luminosity

Olga Novgorodova

TU Dresden, IKTP

DPG 16 | Hamburg 01.03.2016

FSP 1

DPG16 Hamburg | 01.03.2016 | O. Novgorodova

1/18

BMBF-Forschungsschwerpunkt

ATLAS-EXPERIMENT

ATLAS Detector for Phase II

Scoping document - ATLAS Phase II Upgrade → 3 Scenarios: Reference, Middle & Low Cost

O. Novgorodova

2/18

DPG16 Hamburg

01.03.2016

Motivation for the HL-LHC

to extend and improve the physics program

- Probing the Higgs sector
 - more precise coupling measurement
 - rare decays
 - self coupling

New physics beyond the Standard Model (SUSY and extra dimensions)

Challenges:

- \rightarrow High instantaneous luminosity
- → High pile-up
- → Radiation damage
- → Higher trigger rates
- \rightarrow More complex trigger algorithms

DPG16 Hamburg

01.03.2016

O. Novgorodova

•

Liquid Argon Calorimeters

- Active medium → Liquid Argon (LAr)
- The <u>barrel</u> cryostat
 - two electromagnetic (EMB)
 halves → lead-LAr
 LAr hadronic _
- The <u>endcap</u> cryostat
 - Electromagnetic calorimeter halves/endcaps (EMEC) → copper/LAr
 LAr electromagnetic end-cap (EMEC)
 - Two hadronic calorimeter wheels (HEC) → copper/LAr
 - three forward calorimeter wheels (FCal) → coppertungsten/LAr

LAr electromagnetic barrel

end-cap (HEC)

4/18

LAr forward (FCal)

LAr technologies

EM Cal Structure

Pb Absorber •Honeycomb spacer •Cu/Kapton electrode

HEC Structure

FCal Structure

Electrode Rods & Absorber Matrix Cu (FCal1) + LAr 269 µm gap W (FCal2/3) + LAr 376/508 µm gap

DPG16 Hamburg | 01.0

01.03.2016

O. Novgorodova

LAr Signal Pulse Shapes

DPG16 Hamburg | 01.03.2016 | O. Novgorodova

LAr & Tile Calorimeters

- The LAr and Tile calorimeter electronics upgrades are mandatory
 → all scenarios of Phase II High Granularity
 - ith high-
- Replacement of FCal1 with highgranularity sFCal1
 - Boiling is almost excluded
- New device in front of endcap: HGTD -High granularity timing detector

Calorimeters	1	2	3
LAr Calorimeter Electronics	\checkmark	\checkmark	\checkmark
Tile Calorimeter Electronics	\checkmark	\checkmark	\checkmark
Forward Calorimeter	\checkmark	×	×
High Granularity Precision Timing Detector	\checkmark	×	×

high granularity small-gap LAr forward calorimeter (sFCal)

sFCal Option

The FCal is planned to be replaced by a highgranularity sFCal in order to improve the physics performance, **if** installation and radiation risks are found to be sufficiently small.

01.03.2016

O. Novgorodova

sFCal Option

- sFCal A finer granularity copy of the existing FCal1 100μm
- The only option to improve the current performance

→ Improved granularity in $(\Delta \eta x \Delta \phi)$ → by removing summing boards →will assist in pile-up reduction

 \rightarrow Lower protection resistors, new cooling loops

Problem of positive ion buildup:

DPG16 Hamburg | 01.03.2016 |

O. Novgorodova

The Calorimeter Test Modules

Setup in experimental area

Test beam setup and absorber thickness was optimized in MC Current talk is on the basis of 2013 Data

O. Novgorodova

12/18

DPG16 Hamburg

01.03.2016

TECHNISCHE UNIVERSITÄT DRESDEN

HiLum R&D Project

Extract one accelerator fill in ~1.2 s spill

Intensity range: 10⁶ - ~3×10¹¹ p/spill

01.03.2016

O. Novgorodova

Intensity Measurements

From minimum bias events at LHC we obtain for a LHC luminosity of 10^{34} cm⁻² s⁻¹ a corresponding beam intensity at Protvino of 6.7 10^8 p/s(8.9 10^7 p/s, 4.8 10^7 p/s) for the FCal(269) (EMEC,HEC) with ~46% MC uncertainty

DPG16 Hamburg | 01.0

01.03.2016

O. Novgorodova

HV Current Measurement

Device is installed between the HV power supply and the Filter Boxes of the Calorimeter modules

Measurement of the 3 EMEC HV channels in March 2013 run

Four 24-bit ADCs \rightarrow Digital resolution of 1.2nA

Measurement rate: 10Hz / channel

Time-stamp of internal clock was synchronized with DAQ clock to ±1s

15/18

TECHNISCHE UNIVERSITÄT DRESDEN

Stable and solid running

DPG16 Hamburg

01.03.2016

O. Novgorodova

HV Current from EMEC mock-up over very wide range of beam intensity

Test to Destruction

- Run IHEP proton beam with highest intensity for several days
- Compare HV currents before and after
- Roughly equivalent to worst place in EMEC after about 1000 fb⁻¹

Conclusions

Ar+ ion build-up is actually a problem for linearity for Liquid Argon Calorimetry

- LAr Calorimeters are intrinsically radiation tolerant (was shown after test for destruction)
- Critical intensity for ATLAS EMEC ~1.6 10⁸ p/s and for FCal1 is under investigations

