

Universitätsklinikum Carl Gustav Carus DIE DRESDNER.

Measurement of Hg-197 and Hg-197m by a dose calibrator

R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

1) I or one of my co-authors hold a position as an employee, consultant, assessor or advisor for a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company:

No.

2) I or one of my co-authors receive support from a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company/which project and whether support is in kind or monetary:

No.

3) I or one of my co-authors hold property rights/patents for (radio)pharmaceuticals, medical devices or medical consulting firms. **If yes, please specify name/position/company:**

No._____

4) I or one of my co-authors have written articles for (radio)pharmaceutical, medical device, biotechnology or consulting companies during the last 5 years. If yes, please specify name/position/company/article/ journal and co-authors:

No.

Motivation

Hg-197 and Hg-197m

- promising for future application in nuclear medicine:
 - low energy gamma radiation for imaging
 - Auger and conversion electrons for therapy

 simultaneously produced by proton irradiation of natural gold using a cyclotron

Fig. 1: Decay scheme of Hg-197(m) showing the major photon emissions.

Data from: Nuclear Data Sheets for A = 197 (2004)

Hg-197 and Hg-197m

- promising for future application in nuclear medicine:
 - low energy gamma radiation for imaging
 - Auger and conversion electrons for therapy
- simultaneously produced by proton irradiation of natural gold using a cyclotron

Fig. 2: Dose Point Kernels for different nuclides.

Motivation

Dose calibrator

- **ionization chamber** (*MED Isomed*)
- is used in clinical nuclear medicine laboratory to make measurements of radiopharmaceutical activities

function

- radiation interacts with atoms and molecules, resulting in ion pairs
- electrons move in the applied electrical field
- current produced is proportional to the amount of radioactivity and the energy of the photons
- different current-activity conversion factors for different isotopes and geometries

http://www.springer.com/de/book/9783642811876: Nuclear Medicine Part 1A Radiopharmaceuticals Instrumentation Technology Radiation Protection

Motivation

Dose calibrator

- ionization chamber
- is used in clinical nuclear medicine laboratory to make ٠ measurements of radiopharmaceutical activities

function

radiation interacts with atoms and molecules, resulting in .

Measurement of Hg-197 and Hg-197m by a dose calibrator

R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Method

http://www.schott.com/pharmaceutical_packaging/german/products/vials/topline-options.html http://www.canberra.com/products/detectors/germanium-detectors.asp

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Method

http://www.schott.com/pharmaceutical_packaging/german/products/vials/topline-options.html http://www.canberra.com/products/detectors/germanium-detectors.asp

Universitätsklinikum **Carl Gustav Carus**

Efficiency calibration of the HPGe detector

٠

٠

using Geant4

Efficiency calibration of the HPGe detector

Fig. 3: Comparison between experimental and calculated full-energy peak efficiency ε for a source-to-detector distance of 40 cm

filling volume V of the vial / ml

Fig. 4: Comparison between the efficiency for a point source and a vial with different filling volumes

Method

http://www.schott.com/pharmaceutical_packaging/german/products/vials/topline-options.html http://www.canberra.com/products/detectors/germanium-detectors.asp

269 keV: low photon emission probability

134 keV and 165 keV: good agreement

130 keV and 279 keV: indicates a wrong photon emission probability

Method

http://www.schott.com/pharmaceutical_packaging/german/products/vials/topline-options.html http://www.canberra.com/products/detectors/germanium-detectors.asp

Theoretical background

Response to a single radioisotope:

$$I_{\rm s} = A \cdot \varepsilon$$

$$\varepsilon = \sum_{j} p_{\beta j}(E_{j}) \cdot \varepsilon_{\beta j}(E_{j}) + \sum_{i} p_{i}(E_{i}) \cdot \varepsilon_{i}(E_{i})$$

- *I*_S ... detector reading ~ saturation current
- A ... activity

Response to a mixture of two radioisotopes

$$I_{s} = A_{1} \cdot \varepsilon_{1} + A_{2} \cdot \varepsilon_{2}$$

- ε ... efficiency
- p ... emission probability

Theoretical background

Response to a single radioisotope:

$$I_{s} = A \cdot \mathcal{E}$$

$$\varepsilon = \sum_{j} p_{\beta j}(E_{j}) \cdot \varepsilon_{\beta j}(E_{j}) + \sum_{i} p_{i}(E_{i}) \cdot \varepsilon_{i}(E_{i})$$

- $I_{\rm S}$... detector reading
 - ~ saturation current
- A ... activity
- ε ... efficiency
- p ... emission probability

Response to a mixture of two radioisotopes

 $I_{\rm s} = A_1 \cdot \varepsilon_1 + A_2 \cdot \varepsilon_2$

Calibration procedure

- \checkmark A₁, A₂ are known (HPGe detector)
- $\boldsymbol{\varepsilon}_{i}$ have to be determined

 → At least two measurements necessary (different activity ratios)

Theoretical background

Response to a single radioisotope:

Response to a mixture of

two radioisotopes

$$I_{\rm s} = A \cdot \varepsilon$$

 $I_{\circ} = A_1 \cdot \varepsilon_1 + A_2 \cdot \varepsilon_2$

$$\varepsilon = \sum_{j} p_{\beta j}(E_{j}) \cdot \varepsilon_{\beta j}(E_{j}) + \sum_{i} p_{i}(E_{i}) \cdot \varepsilon_{i}(E_{i})$$

- *I*_S ... saturation current ~ detector reading
- A ... activity
- ε ... efficiency
- p ... emission probability

- \checkmark A₁, A₂ are known (HPGe detector)
- $\boldsymbol{\varepsilon}_{i}$ have to be determined

→ At least two measurements necessary (different activity ratios)

(c)

I

Theoretical background: Selection of a shielding

without

hout shielding
$$I_s = A_1 \cdot \varepsilon_1 + A_2 \cdot \varepsilon_2 \longrightarrow A_1(A_2) = \left(-\frac{\varepsilon_2}{\varepsilon_1}A_2 + \frac{T_s}{\varepsilon_1}\right)$$

with shielding $\widetilde{I}_s = A_1 \cdot \widetilde{\varepsilon}_1 + A_2 \cdot \widetilde{\varepsilon}_2 \longrightarrow A_1(A_2) = \left(-\frac{\widetilde{\varepsilon}_2}{\widetilde{\varepsilon}_1}A_2 + \frac{\widetilde{I}_s}{\widetilde{\varepsilon}_1}\right)$

 two lines with different slopes

• aim: maximize angle of
intersection, i.e.
$$\frac{\mathcal{E}_2}{\mathcal{E}_2} \neq \frac{\widetilde{\mathcal{E}}_2}{\mathcal{E}_2}$$

 $\overline{\varepsilon_1} \neq \overline{\varepsilon_1}$

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Determination of radionuclide efficiencies ε_i

1. preparation of a **serial dilution** in order to cover a range of activities with different ratios of $A_{Hg-197m}$ to A_{Hg-197}

- 2. determination of $A_{Hg-197m}$ and A_{Hg-197} of samples using HPGe detector
- 3. **multiple measures with dose calibrator** at different times, with and without shielding

4. determination of ε_i by nonlinear curve fitting of all dose calibrator readings

Determination of radionuclide efficiencies ε_i

	${\cal E}_{ m m}$	$\widetilde{\mathcal{E}}_{\mathrm{m}}$		${\cal E}_{ m g}$	$\widetilde{m{\mathcal{E}}}_{ ext{g}}$	
shielding	no	1 mm	2 mm	no	1 mm	2 mm
value	$9,9 \pm 0,9$	6,87 ± 0,17	$5,3 \pm 0,5$	14,6 ± 0,5	8,38 ± 0,11	$6,36 \pm 0,29$
relative uncertainty	8,8 %	2,4 %	8,8 %	3,5 %	1,3 %	4,5 %

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke Universitätsklinikum Carl Gustav Carus

Consideration of uncertainties

elements of uncertainty:
$$arepsilon_{
m m}, arepsilon_{
m g}, \widetilde{arepsilon}_{
m m}, \widetilde{arepsilon}_{
m g}, I, \widetilde{I}$$

Example:

quantity	${\cal E}_{ m m}$	$\widetilde{\mathcal{E}}_{\mathrm{m}}$	${\cal E}_{ m g}$	$\widetilde{m{\mathcal{E}}}_{g}$	Ι	Ĩ	$A_{ m m}$	$A_{ m g}$
relative uncertainty / %	8,8	2,4	3,5	1,3	0,05 0,4	0,1 1,2	<u>48 >100</u>	<u>22 71</u>

I.

- HPGe detector:
 - A_{Hg-197} and $A_{Hg-197m}$ with relative uncertainties between 3,2 and 5,0 % determined
- Dose calibrator:
 - Efficiencies for Hg-197 and Hg-197m determined
 - Good agreement between calculated activities and nominal values within the scope of their uncertainties
 - Consideration of the uncertainties is a very important point

Limitations:

- Great uncertainties of calculated activities
- Not applicable in clinical routine at the moment

Alternative method:

- Determination of A_{Hg-197} , A_{Hg-197} using HPGe detector
- Calculation of $A_{Hg-197}(t)$, $A_{Hg-197m}(t)$ using equations for radioactive decay chain

Limitations:

- More time-consuming than measurements with a dose calibrator
- Requires HPGe detector
- Uncertainty of activity ratio, photon emission probability and half life
 - great uncertainties in calculated activities for later times
 - should only be used for short periods of time

Thank you very much for your attention!

Contact: Robert.Freudenberg@uniklinikum-dresden.de

Maria.Vogel@uniklinikum-dresden.de

Characterization with Monte Carlo simulations

- using the Geant4 toolkit
- geometry was initially modeled using technical dimensions supplied by the manufacturer
- optimization: information from X-ray and CT images
 - comparison between experimental and calculated full-energy peak efficiency for different detector parameter set-ups at the reference geometry (point sources)

Geant4 detector model

X-ray scan

CT scan

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Determination of radionuclide activity $A_{Hg-197m}$ and A_{Hg-197}

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, <u>M. Vogel</u>, M. Andreeff, J. Kotzerke

Determination of radionuclide activity $A_{Hg-197m}$ and A_{Hg-197}

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, <u>M. Vogel</u>, M. Andreeff, J. Kotzerke

Quality control

- dose calibrators can remain stable over several years
- they are critical to the work of a nuclear medicine department

Test	Constancy	Activity linearity			
Recommended Frequency	Daily	Half-yearly			
	Reading of the activity of a long-lived reference source (usually Cs-137)	Measure a short-lived source (Tc-99m) at several time points (from 1 MBq to 1 GBq or more)			
	Acceptable error < ± 5 %				

Quality control

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Determination of radionuclide efficiencies ε_i

1. preparation of a **serial dilution** in order to cover a range of activities with different ratios of $A_{Hg-197m}$ to A_{Hg-197}

2. determination of $A_{Hg-197m}$ and A_{Hg-197} of samples using HPGe detector

3. multiple measures with dose calibrator at different times, with and without shielding

4. multiple controls of $A_{Hg-197m}$ and A_{Hg-197} using HPGe detector

Determination of radionuclide efficiencies ε_{i}

preparation of a serial dilution in order to cover a range of activities with different ratios of 1. $A_{\rm Hq-197m}$ to $A_{\rm Hq-197}$

2. determination of $A_{Hg-197m}$ and A_{Hg-197} of samples using HPGe detector

multiple measures with dose calibrator at different times, with and without shielding 3.

multiple controls of $A_{Hg-197m}$ and A_{Hg-197} using HPGe detector 4.

6. determination of $\varepsilon_{Hq-197m} == \varepsilon_m$ by analysis of other dose calibrator readings

Method b)

Determination of radionuclide efficiencies ε_i

	Method a)	
5.	determination of ε_i by nonlinear curve fitting of all dose calibrator readings	5
		6

Method b)

- 5. **determination of** $\varepsilon_{Hg-197} == \varepsilon_g$ by analysis of dose calibrator readings of decayed samples ($A_{Hg-197m} \ll A_{Hg-197}$)
- 6. **determination of** $\varepsilon_{Hg-197m} == \varepsilon_m$ by analysis of other dose calibrator readings

		<i>E</i> _m			ε _g			
	shielding	no	1 mm	2 mm	no	1 mm	2 mm	
	value	$9,9 \pm 0,9$	6,87 ± 0,17	$5,3 \pm 0,5$	14,6 ± 0,5	8,38 ± 0,11	6,36 ± 0,29	
wethou a)	rel. unc. / %	8,8	2,4	8,8	3,5	1,3	4,5	
Method b)	value	9,1 ± 0,4	$6,4 \pm 0,3$	-	15,28 ± 0,28	8,64 ± 0,22	-	
	rel. unc. / %	4,4	4,7	-	1,8	2,5	-	

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

Measurement of Hg-197 and Hg-197m by a dose calibrator R. Freudenberg, M. Vogel, M. Andreeff, J. Kotzerke

