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Abstract 
Charge migration is a ubiquitous phenomenon with profound implications throughout many 
areas of chemistry, physics, biology and materials science. The long-term vision of designing 
functional materials with tailored molecular scale properties has triggered an increasing quest 
to identify prototypical systems where truly molecular conduction pathways play a 
fundamental role. Such pathways can be formed due to the molecular organization of various 
organic materials and are widely used to discuss electronic properties at the nanometer scale. 
Here, we present a computational methodology to study charge propagation in organic 
molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that 
moving charge carriers strongly affect the values of the physical quantities controlling their 
motion. The approach is also expected to find broad application in the field of charge 
migration in soft matter systems. 
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1. Introduction 
With the emergence of molecular scale electronics, novel fascinating perspectives have 
opened for using molecules as functional building blocks of electric circuits and devices [1-4] 
as well as for the possibility to apply methodologies known from the study of controlled 
quantum dynamics [5] to tune molecular-scale device properties. This is expected to have also 
a strong impact on organic electronics including such areas as solar energy conversion, 
photonics, and sensor development [6]. For all these areas, the understanding of charge 
migration at nanometer length scales is crucial.  
Charge motion is usually characterized by the drift mobility, which is considered as a quantity 
of prime importance for several applications since it determines e.g. the efficiency of charge 
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separation in photovoltaic cells based on organic dyes, the switching speed of organic field 
effect transistors, and the intensity of light in light emitting diodes [7]. In addition, some basic 
biochemical processes in living matter are associated with charge migration at scales of 
several hundred angstroms. In this context, a physical picture based on electron or hole 
propagation is actively discussed as well [8]. 
It is widely accepted that charge transport processes at the molecular scale can cover a broad 
spectrum of possible regimes ranging from coherent propagation up to fully incoherent 
hopping. Contrary to most crystalline solids, the efficiency of charge migration at nano and 
sub-nanometer scales is strongly affected by the system’s structural fluctuations as has been 
established, e.g for polymers [9], bio-molecular assemblies [10], and stacks of organic 
molecules [9]. According to theoretical results verified by computer simulations [11], the 
effect mentioned above arises if structural fluctuations cover time scales comparable with the 
characteristic times of charge propagation. As a result, the atomic dynamics cannot be treated 
as a small perturbation of an otherwise static system, but has to be included in the theoretical 
description of charge transport beyond standard perturbative approaches.  
Different theoretical methods are meanwhile available for modeling transport properties of 
organic systems. For instance, classical Marcus theory [12] has been applied to compute the 
charge carrier mobility in various organic materials [9, 13, 14], where charge transport mainly 
proceeds via the mechanism of incoherent hopping. On the other hand, in the case of coherent 
charge transport the Landauer approach [15] combined with non-equilibrium Green function 
techniques is widely used to calculate electrical properties of molecular wires attached to 
electrodes [16-18]. The coherence breakdown resulting from the coupling of the molecular 
electronic subsystem to environmental degrees of freedom can be taken into account either in 
a phenomenological way [19] or explicitly by including the interaction with vibrational modes 
or with a dissipative environment [20-23]. Both cases can then be treated either with Green 
functions or with reduced density matrix approaches. Alternatively one can directly solve the 
time-dependent Schrödinger equation with appropriate boundary conditions in order to obtain 
the transport characteristics [24-29]. 
Based on these theoretical approaches, it becomes possible to identify the main factors 
controlling the rate and the efficiency of charge transport.  Within a coarse-grained picture of 
the electronic structure (which will be the framework of the current study), two physical 
quantities naturally emerge, which provide a link between the electronic structure of 
molecular materials and the rate of inter-molecular charge transfer. These quantities are the 
electronic couplings (expressed e.g. in terms of transfer integrals), which mediate the 
interaction between building units making up the molecular material, and the molecular 
orbital (MO) energies, which characterize the electronic structure of the individual units.  In 
what follows the two quantities defined above will be called for the sake of simplicity charge 
transport (CT) parameters. We note that the specific definition of the previously mentioned 
physical quantities will obviously depend on the degree of coarse-graining of the electronic 
structure.  
In recent years much effort has been made to calculate both parameters for various systems at 
different levels of theory [30-32]. To our knowledge, most of the calculations performed so 
far (an exception being e.g. Ref. [27]) rely on the implicit assumption that the presence of 
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moving charge carriers does not strongly modify the values of electronic coupling and 
molecular orbital energies; however, this assumption seems to break down in many situations. 
For example, one can expect that in the case of hole transport the coupling between two 
neutral organic molecules will differ from the coupling between cationic and neutral 
molecular species. 
In the present study we present a computational methodology that is free from adjustable 
parameters and allows us to include in a consistent way the influence of a propagating charge 
onto the CT parameters of the system through which it is moving. Using this approach, we 
demonstrate that the explicit inclusion of a moving charge can have a dramatic effect on the 
values of these parameters and hence on the qualitative behavior of the transport 
characteristics of the system. It should be recognized that the situation considered here is 
distinct from changes of molecular orbital energies accompanied, for instance, by the 
formation of a polaronic structure [33]. In the latter case, changes in the values of the MO 
energies result from the polarization of the environment or from the self-trapping of a positive 
charge by a distortion of the molecular stack. By contrast, in the present work we address the 
question of whether changes in the values of molecular orbital energies and electronic 
couplings can occur exclusively due to the motion of charge carriers rather than caused by the 
interaction with the environment. In the next section we present in some detail the 
computational methodology developed in this work, whereas an exemplary application of the 
methodology proposed to the description of charge migration along a coronene molecular 
stack is discussed in Sec. III. 
 
2. Computational Methodology 
A key element for taking into account the interplay of conformational dynamics and charge 
carrier motion is the use of fractional occupation numbers [34] together with the inclusion of 
the electrostatic potential of net charges. The main advantage of using fractional charges is the 
possibility to describe partial delocalization of a moving charge over several molecular sites 
and thus, to go beyond a purely hopping-like propagation where the charge is fully localized 
at each site.  Due to the strong electrostatic effects that an excess charge produces on its local 
environment –leading to strong shifts of the molecular orbital energies, see the ongoing 
discussion- the inclusion of a single electronic level per site can not catch the full complexity 
of the charge migration process; rather, a multi-level description will be required at this point. 
Before going into technical details, we will describe the general structure of our methodology, 
which for the sake of brevity we will call quantum dynamical charge propagation (QDCP) 
scheme. The approach is schematically illustrated in Figure 1.  
An input geometry of the target system as obtained from a molecular dynamics (MD) 
trajectory (after an equilibration run) is taken as an initial structural guess.  Transfer integrals 
and molecular orbital energies are obtained from ab initio electronic structure calculations. 
This step is called parameterization (PAR) for the sake of simplicity. The results obtained at 
the PAR step are exploited in building a coarse-grained Hamiltonian matrix of the system at a 
given time. The quantum dynamical (QD) computation of the hole density matrix determines 
then the new charge distribution (CD) to be included in the subsequent MD step. The 
resulting CD is used to mimic the electrostatic field experienced by the system.  This point is 
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essential since, as we will see in the following, charge transfer parameters do sensitively 
depend upon the current CD. Once a propagation cycle is completed 
(MDPARQDCDMD), the Hamiltonian matrix elements (the CT parameters) and the 
molecular geometries are updated.  
Although our approach can be exploited for molecular systems with arbitrary spatial 
arrangements, the details of the method will be explained for clarity using a linear molecular 
array as an example, specifically a stack of coronene molecules as displayed in Fig. 2. The 
electronic structure of each molecular building block of the stack is treated within the so-

called fragment orbital (FO) approach using fractional charges as implemented e.g. in the 
ADF code [41] and used by other authors as well [24]. The fractional charge for a specific 
fragment is given by the integral of the fragment electronic density. At a given simulation 
time step, the influence of fractional charges of fragments which are neighbors of a given 
fragment m (the index m running over the fragments in the stack) are taken into account as 
classical point charges to compute the CT parameters (the PAR step in the loop of Figure 1), 
thus acting as an electrostatic field affecting fragment m. Then, the net (or grid) charge Qm 
(which is the fractional charge associated with the fragment) is assigned to fragment m (Fig. 
2).  The charge distribution obtained this way affects the diagonal part of the electronic 

density matrix for fragment m, which is given by 2| |  m
m j jj

n , nj being the occupation 

number of orbital j. The off-diagonal Hamiltonian matrix elements (the electronic couplings) 
for every pair of neighboring molecules m and n are also evaluated using the FO approach. 
For this case, we assign the net charges Qmn=Qm+Qn (see Fig. 2) to the corresponding 
fragment pair m,n. Similar to the case of the individual fragments, the environment, i.e. the 
surrounding molecular fragments, is mimicked by electrostatic potentials originating from 
point charges located at the centers of the molecules surrounding a given fragment.  
It should be emphasized that the notations fractional charge and net charge only highlight the 
two different ways charges are taken into account in our computational approach: On the PAR 
step we have fractional charges determined ab initio on each fragment while on the MD step 
the term net charges is used to denote classical point charges placed at the center of each 
fragment. 
Within the PAR step of the closed-loop propagation scheme a coarse-grained electronic 
Hamiltonian is set up as: 
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The orbital index l=0 refers to the HOMO orbital. The lower orbitals with l ≥ 1 were denoted 
by HOMO-l. In the special case of coronene, seven levels have been taken into account per 
site.  
The choice of a multilevel approach to the problem of charge carrier dynamics is motivated 
by two main facts: Firstly, at finite temperatures the values of HOMO-HOMO-l electronic 
coupling elements of neighboring molecules are close to the value of HOMO-HOMO 
coupling. Secondly, charges involved in the transport modify the orbital energies, thus 
affecting the effective coupling between MOs at neighboring fragments. Consequently, the 
manifold of HOMO-l levels (l ≥ 1) may also get involved in the transport depending on the 
obtained CT parameters. In all calculations, we assume that the fractional hole population 
undergoes a fast transition with a characteristic rate γintra from HOMO-l to the HOMO level. 
Further, an additional molecular unit is added at the edge of the stack, which irreversibly traps 
a charge carrier (similarly, for a higher dimensional arrangement a set of traps should be 
included in the simulation). The main function of this trapping site is to avoid unphysical 
multiple reflections over the simulation time which result from the short length of the studied 
molecular stacks.  
The hole time evolution was computed according to the dissipative Liouville-von Neumann 
equation [35] for the temporal evolution of the quantum system’s density matrix ρ(t): 

        i ,  .                                                                          (3)      Dt L t H t L t        

The intra-fragment transition processes (characterized by γintra ) as well as the trapping effects 
at the terminal site (characterized by a parameter γtrap ) can be included in the dissipative 
kernel LD written in the Lindblad form [36] 
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where Ci = γ|a><b|, Ci
†

 = γ|b><a| are the Lindblad operators  corresponding to raising and 
lowering operators of the i-th two-level system, and γ represents either γintra or γtrap. 
The formal solution of Eq. 3 for the initial density matrix ρ(t’) and step Δt=t’’-t’ is given by  

   ( ) .L tt e t                        

For the numerical implementation, the Faber polynomial method [35] was applied to 
approximate the exponential of the matrix L. The real-time propagation was performed for a 
time interval of 1 fs with the time step Δt=0.1 fs. A linear interpolation was used to obtain the 
Hamiltonian matrix from the parameterization part for every 0.1 fs.  
Finally, the QDCP cycle closes with an MD step following the QD propagation step of the 
charge carrier wave function. After the time propagation of the density matrix the new 
geometry of the molecular step is evaluated based on the previous atomic geometry (in the 
first step based on the geometry taken from the equilibration) and its corresponding velocities 
using MD simulations. The actual charge distribution obtained in the previous step from the 
QD calculations is approximated by Gaussian blur distributions of point charges located at the 
center of the fragments (e.g. a coronene molecule). The MD propagation time is also equal to 
1.0 fs, as in case of the QD calculations, but in this case the integration step is taken to be 0.5 
fs. The resulting geometry obtained within this MD step is then used in the next cycle of the 
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QDCP calculation together with the new charge distribution from the QD result to calculate 
new CT parameters and continue the closed-loop propagation scheme.    
 
3. Results and Discussion  
3.1 Electronic structure and dynamics in coronene molecular stacks The potential of the 
ab-initio QDCP propagation scheme described in Section II is demonstrated by applying this 
scheme to the calculation of the mobility of a positive charge carrier (hole) along a π-π stack 
of coronene molecules analogous to those studied experimentally by Feng et al. [37]. Note 
that our approach is not limited to the case of hole migration, but can equally be applicable to 
the transport of electrons. Using the approach discussed above, we show that the mobility of 
holes strongly depends on the temperature in accordance with the experimental results [37]. 
To advance one of our main results, we reveal a quasi ballistic behavior of charge carriers at 
short times as evidenced by a steep linear increase of their diffusion coefficient D(t) with time 
in the fs range. This behavior, however, transforms very rapidly into a diffusive regime of 
hole motion that manifests itself as a quasi-saturation of D(t) as a function of time. The latter 
regime dominates the transport characteristics on longer (about a few 100 fs) time scales. 
Initially, an equilibration of the ideal stack of coronene molecules with an inter-molecular 
distance of 3.6 Å [38] was performed with the SCC-DFTB [39] methodology as implemented 
in the DFTB+ package. This method, being based on a density-functional parameterization of 
a tight-binding Hamiltonian is computationally very efficient and it has been used in the past 
years to address a very broad variety of issues [40]. An integration step of 0.5 fs was used 
during the equilibration and environmental effects were introduced by coupling the system to 
the Andersen thermostat [41]. After the equilibration run, a geometry was taken as an initial 
guess for the QDCP charge propagation. In the following step, the parameterization of the 
molecular orbital energies and nearest-neighbor transfer integrals, see Eq. 1, at the ab initio 
level of theory was performed with the ADF package [42] in order to obtain the required 
quantities for solving the coarse-grained charge carrier dynamics. The ADF package is chosen 
for the electronic structure calculations as it provides the possibility to take fractional charges 
into account. In every QDCP cycle, the MO energies of each fragment of the system are 
determined using density functional theory with semi-local GGA type PBE exchange 
correlation functional [43] and double zeta polarized basis set. The fractional charges (for 
qm>0.01e) of neighboring molecules were taken into account as point charges and the 
corresponding net charge Qm is assigned to the fragment (see also Fig. 2 for reference). The 
characteristic transition rate γintra from HOMO-l (with l=6) to the HOMO levels was taken to 
be 0.1 fs-1.  
To calculate the mobility of a hole in the system under investigation, we approximate the 
molecular stack of coronene molecules by a one dimensional chain, in which each molecule 
can be considered as an individual fragment (see Sec. II). The successful application of our 
approach to model systems is based on a successive calculation of the time evolution of the 
charge carrier wave function in the case where nuclear and electronic degrees of freedom are 
coupled. Currently, full ab initio Ehrenfest dynamics [44] in the basis of atomic orbitals at the 
attosecond scale is considered as a powerful theoretical tool for the study of the electronic 
density response of single molecules to external time-dependent potentials. In the theoretical 
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analysis of transport/transfer problems the evolution of the charge carrier density can be 
treated as the external time-dependent potential in the space of the fragments MOs. However, 
in organic materials a weak MO coupling leads to longer characteristic times of transitions 
between sites which typically occur on the time scale of tens of femtoseconds. Therefore this 
allows for an increased propagation step. The duration of each propagation cycle was taken to 
be 1 fs to cover the dynamical fluctuations of the MO energies and transfer integrals. In the 
present QDCP scheme the electronic structure was reduced to the active electronic space (for 
holes, the highest occupied MOs) involved in the transport and represented, for the quantum 
dynamical propagation, in a coarse-grained MO basis. In order to describe the charge 
distribution in the considered time step, corresponding fractional net charges Qm of a given 
fragment m and point charges qm mimicking the effective field of neighbors were included in 
the calculations of charge transport parameters (Fig. 2).  The energy profile obtained for the 
hole transport is also shown in the inset of Fig. 2. 
From the QD propagation a new charge carrier distribution was obtained, which was included 
in the subsequent MD calculation as molecular mechanics (MM) potentials of a QM/MM 
calculation, performed with the DFTB code [39]. As a consequence, the structural dynamics 
will be affected by the updated charge redistribution from the quantum dynamical calculation. 
After a full cycle of the QDCP propagation a new charge distribution and a new geometry 
were obtained for the next step. In the chosen model system, the coronene stack involved ten 
molecules, which proved to be sufficient to model charge transport in the studied system. This 
is basically related to the fact that the charge wave function was extended at each simulation 
time step over no more than three sites, so that the system length (thus about 3 times larger 
than the width of the wave function) was enough to get reliable results.  
As follows from our computations, after a time period of t=150 fs the charge is spread mainly 
over the first three fragments of the coronene stack. This leads to a decrease of the HOMO 
energies since the fragment populations become lower. According to the data shown on the 
inset of Fig. 2, the energy difference between fully and partially occupied orbitals (sites 1 and 
10) is on the order of 1 eV. This is much larger than the thermal fluctuations of the molecular 
orbital energies (~0.1 eV). The behavior of the MOs displayed in the inset of Fig. 2 was then 
mimic within the MD step of the loop of Figure 1 by applying a classical electrostatic 
potential, see Fig. 3a. 
Using these results, we also obtain the time behavior of the total difference in electron density 
for the neutral and charged systems as shown in Fig. 3c, where a snapshot of the hole 
behavior at t=150 fs is shown. According to the calculated electron distribution, HOMO and 
LUMO states of the complete system localize in space as shown in Fig. 3b. 
The QDCP propagation scheme was applied to the coronene stack coupling to a thermostat 
with a certain temperature T.  The data deduced from the QDCP calculations at different 
temperatures in the range from 300 K up to 500 K in steps of 50 K are shown in Fig. 4. When 
comparing the two extreme cases of low (300 K) and high (500 K) temperatures, we see that 
the wave packet can propagate coherently across the stack, while it splits up at higher 
temperatures and this is accompanied by a rapid broadening of the charge distribution. Hence, 
at room temperature it turns out that the dynamical structural disorder cannot overcome the 
collective stabilization of the wave packet resulting from the interaction with nearest-
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neighboring and next-to-nearest-neighboring sites. MD simulations provide additional 
evidence in favor of the validity of this conclusion. As the temperature increases (up to 400 
K) the molecular orbital energies and transfer integrals are increasingly affected by the 
dynamical structural disorder in the stack; this in turn leads to a broadening of the wave 
packet and to a destruction of the collective stabilization. Finally, at high temperatures (500 
K) the strong dynamical disorder results in a splitting of the wave packet and partial 
localization. 
 
3.2 Diffusion coefficient and charge carrier mobility  
The QDCP propagation scheme also enables us to obtain observables that characterize the 
charge carrier transport. One of these observables is the diffusion coefficient of holes, D, 
plotted in Fig. 5 (black solid line) at T=300 K as a function of time. According to the data 
presented in this figure the time behavior of the diffusion coefficient differs in different time 
intervals. For the first few femtoseconds, the large diffusion coefficient reflects the initial 
delocalization of the charge carrier due to a quasi-ballistic motion as follows from the initial 
steep linear increase of the diffusion coefficient with time. This is related to the localization of 
the hole on a single site at t=0. Later, however, the motion of the charge carrier becomes 
diffusive. As a result the D values drop down and do not change in the range from 150 fs to 
625 fs (for the diffusive-like regime, see shaded region in Fig. 5).  The long-time tail of the 
time-dependence found for D(t) can be associated with the irreversible localization of the 
wave packet on the last site serving as a trap of the moving charge. It is remarkable that in the 
limit where a charge does not affect the values of MO energies and transfer integrals, the 
diffusion coefficient exhibits a completely different temporal behavior. This is evident from 
the comparison of solid and dashed lines in Fig. 5, the latter obtained without the influence of 
charge carriers on the parameters controlling their motion. In the case where the impact of 
moving carriers on the values of the CT parameters is neglected -as it happens in most of the 
approaches dealing with charge transport- the diffusive regime does not set in within the time 
scale studied (dashed line in Fig. 5); instead, only a ballistic behavior with D(t)~t is obtained. 
As a result, we expect a strong overestimation of the charge carrier mobility if the influence of 
the propagating charge onto the CT parameters is not explicitly taken into account. Based on 
these findings we conclude that a moving charge can affect its own motion in a self-consistent 
way. We emphasize at this point the main difference between the approach presented in this 
study and other standard techniques which solve a time-dependent problem (either using the 
Schrödinger equation or the density matrix formalism) to study charge migration [24-26,28-
30]: In the latter methodologies no influence of the charge carrier on the CT parameters is 
considered. As a result, the Hamiltonian matrix used as input for the time propagation does 
not need to be updated at each time step to include the changes in the electronic structure 
induced by the moving charge. In other words, in standard approaches we have an input 
geometry, a parameterization step (coarse-graining) and then the computation of the charge 
density time evolution from where the required transport observables can be obtained. In 
more complex situations where structural fluctuations play a dominant role, an additional MD 
simulation is performed and the previously mentioned steps are carried out at each snapshot 
along the MD trajectory.  In either case, the time propagation and the computation of the CT 
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parameters can be decoupled from each other. In contrast, within the current approach, 
molecular dynamics, parameterization, and time propagation steps are coupled and build a 
single loop. Hence, our methodology reduces to the standard approach as the excess charge 
becomes equal zero at the parameterization step. 
Using the computed diffusion coefficients D(t) in the range from 70 fs to 300 fs together with 
the  Einstein relation μ(t,T)= D(t)/kBT, we can estimate the charge carrier mobility μ for 
different temperatures. The results are shown in Fig. 6. As follows from the upper   panel of 
this figure, the hole mobility increases as the temperature rises up to 400 K in accordance with 
experiments in which the temperature dependence of the mobility was measured for similar 
systems [36].  
This behavior can be understood since for higher temperatures the thermal fluctuations allow 
for a more effective coupling along the stack, thus leading to larger μ values. Moreover, the 
QDCP calculations predict that the dependence μ vs. T has a maximum between 400 K and 
450 K. For T>450 K, however, the influence of thermal fluctuations becomes detrimental for 
charge transport: a thermally induced increase of the inter-molecular distances in the coronene 

stack leads to a weakening of the - coupling and thus to a reduction of the mobility. The 
latter effect is consistent with the experimentally observed sublimation region [45].  Although 
it is difficult to clearly distinguish the crossover between different transport regimes, ballistic 
and diffusive-like mechanisms can be described by the QDCP propagation scheme (see Fig. 6, 
lower panel). In particular, at 450 K a transition from the initial ballistic regime to diffusive-
like transport regime occurs after 70 fs, whereas at e.g. 350 K the crossover takes place 
already after 25 fs. We emphasize that our approach based on the QDCP propagation 
methodology can equally be applied to other π-π stacked systems with transport properties 
which have been studied experimentally (see e.g. Refs. 46 and 47).   
 
4. Conclusions 
In summary, we have developed a computational methodology that allows us to quantify 
charge transport in molecular materials via a quantum dynamical propagation of the carrier 
wave function. The proposed methodology takes into account the influence of the charge on 
the physical quantities controlling its propagation. Our approach provides a common basis for 
studying charge transport on different length and time scales as well as in different systems 
including single molecules, biomolecular assemblies and stacks of organic molecules. The 
essential feature of our method is the influence of the moving charge on the electronic 
coupling matrix elements and molecular orbital energies which are considered to be the main 
physical quantities governing charge motion. Due to this influence the moving charge can 
affect its own motion in a self-consistent way. Using the QDCP computational, the 
experimentally measured hole mobility on a coronene stack as well as its temperature 
dependence were reproduced. This enables us to expect that the proposed methodology will 
have a strong impact in understanding the mechanisms controlling charge migration at the 
nanoscale and that it will help in the rational design of molecular organic materials with 
optimized charge transport properties. 
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Figure captions 
 
 
 

 
 
 
 
 
 
Figure 1: The QDCP methodology. (a) The motion of a charge through a material is 
monitored in time and space by exploiting successively ab initio parameterization tools, 
quantum dynamics and molecular dynamics in form of a closed loop propagation. As an 
essential new feature, the effect of the moving charges is consistently taken into account in the 
quantum mechanical evaluation of the electronic transfer integrals and molecular orbital 
energies, as well as in the molecular dynamics trajectory (black arrows). If the influence of 
the propagating charges onto the material CT parameters is included (black line in panel b), 
D(t) becomes nearly constant after very short transient times, thus indicating diffusive charge 
motion. In contrast, if the influence of the propagating charge onto the electronic structure of 
the underlying system is not taken into account (gray line in panel b), the charge motion 
remains ballistic (linear time-dependence of D(t)) over a broad time window. As a 
consequence, the diffusion coefficient and hence the mobility of the charge carriers can be 
strongly overestimated. 
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Figure 2:  System setup. To benchmark the QDCP method a one-dimensional model system 
consisting of ten coronene molecules has been chosen. Source and drain reflect the boundary 
conditions applied in the QDCP propagation. Point charges qm and net charges Qm were 
included in the method to account adequately for the influence of the moving charge carriers 
on the values of charge transport parameters of the molecular material. As a result, the 
charge transfer properties - molecular orbital energies (εi

m) and electronic couplings between 
the orbitals of neighboring molecules (Tij

mn) - evaluated in the presence of the charge carriers 
strongly differ from corresponding neutral calculations.  This is illustrated in the inset which 
displays the orbital energy profile for hole motion at a certain time point (t=150 fs). The 
excess charge is mainly spread over the first three molecules (gray region); however, it also 
influences the molecular orbital energies of the neighbors up to site 7.  
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Figure 3: Charge migration in the stack of organic molecules. a) The electrostatic potential 
(EP) determined for an equivalent charge distribution as in the inset of Fig. 2 at the time step 
t=150 fs clearly indicates the decisive role of the charge carriers explicitly included in the 
calculations. As a consequence of the EP and the energetic profile of the molecular orbital 
energies adapting to the charge distribution, the HOMO and LUMO molecular orbitals 
(obtained from QM/MM calculations) of the stack localize as shown in panel b). The QDCP 
calculations enable one to follow the real-space distribution of the density of the charge 
carriers. In panel c) the hole density distribution is shown for the specified populations per 
site (bottom line). It is expressed as the difference in electron densities for the neutral ρ0 and 
charged ρ+1 system. 
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Figure 4: QDCP charge dynamics. The quantum time evolution of the charge carriers under 
the influence of the atomic dynamics is visualized as a function of time and of the populated 
molecular sites. The QDCP charge propagation was performed for different temperatures 
from 300 K to 500 K in steps of 50 K. Note the rapid broadening of the charge distribution 
along the stack when the temperature increases.  
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Figure 5: Time-dependent diffusion coefficient calculated with the QDCP method. The 
migration of a hole through a stack of coronene molecules modeled with the QDCP method 
can be quantified in terms of the diffusion coefficient. A corresponding result for 300 K is 
shown by the gray solid line. After an initial increase, a time window (shaded box, from 170 fs 
to 600 fs) is reached where the diffusion coefficient does not vary significantly with time 
indicating the onset of a diffusive-like transport regime. Using the same molecular system at 
300 K, but neglecting the explicit effect of the charge carriers on the  values of the charge 
transport parameters leads to a ballistic-like behavior of the diffusion coefficient  (black 
dashed line) and thus to a considerable overestimation of the mobility. 
 
 
 
 
 



18 

 

 
 
 
 
 
 
Figure 6: Hole mobility along the stack of coronene molecules vs. temperature and time. 
From the diffusion coefficient the mobility of the charge carriers can be evaluated using the 
Einstein relation. In the upper panel the calculated hole mobility across the coronene stack is 
shown as a function of the temperature. In each case, the nearly time-independent diffusion 
coefficient was used, as indicated in Fig. 5 by the shaded box.  In the lower panel the time-
resolved hole mobility is depicted for the same temperature range starting from 20 fs after the 
hole was localized on the first coronene molecule. The behavior shown partly reflects the fact 
that two types of mechanisms interfere at these early times in the transport process. A 
transition from a ballistic to a diffusive regime can be found at 50 fs (70 fs) for T=400 K 
(T=450 K). 
 


