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Abstract Charge and thermal conductivities are the most important parameters of carbon
nanomaterials as candidates for future electronics. In this paper we address the effects of
Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge
conductivity and lattice thermal conductivity using the atomistic Green function approach.
The electron and phonon transmissions are analyzed as a function of the length of the dis-
ordered nanostructures. The thermal conductance as a function of temperature is calculated
for different lengths. Analysis of the transmission probabilities as a function of length of the
disordered device shows that both electrons and phonons with different energies display dif-
ferent transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the
light of the results we discuss heating of the semiconductor device in electronic applications.

PACS 65.80.-g, 61.46.Fg, 63.22.-m, 66.70.-f, 68.65.-k

1 Introduction

Electron transport in carbon nanostructures, namely nanotubes and graphene nanoribbons,
is in the focus of experimental and theoretical research during last years. In particular, the
Anderson disorder model and localization of electrons in CNTs have been studied exten-
sively in the past decade [[1H4]. It is important to note that also phonon thermal transport in
low-dimensional systems is of central importance for applications. By properly controlling
thermal properties it is possible to enhance the device performance. In electronic applica-
tions, high values of both electronic and phononic conductances are desired. On the other
hand a low phonon conductance is required in order to have efficient thermoelectric energy
conversion. In this paper we focus on the phonon thermal conductivity in disordered sys-
tems and compare the effects of disorder on the phonon conductivity with the effect on the
electron transport.
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In semiconductor materials heat transport is governed mostly by phonons and it is previ-
ously shown that the thermal conduction is strongly influenced by device dimensions [5]]. For
example, it was observed recently that phonon conduction can be reduced without effecting
the electronic transport importantly in Si nanowires which leads to an enhancement in the
thermoelectric figure of merit by two orders of magnitude compared to its bulk value [|648]..
This decrease in thermal conduction is mainly due to the scattering of phonons at disordered
surface whereas electron transfer is maintained by bulk-like states. Thus, surface to volume
ratio is a parameter to control the transport properties of these devices. Graphitic allotropes
have the exceptional property that they are one atom tick. There is a growing interest in the
field of phononic energy transport through carbon based materials. It is shown that thermal
conductance of nanotubes can be tuned by sliding the inner shell inside the outer shell [9].
Disorder induced localization is believed to be a possible explanation of the exponential de-
pendence of thermal resistance on the telescoping distance. Conductance is independent of
the device length if the device is pristine. Real systems, on the other hand, always include
disorder which we model with a distribution in force constants. Recently the effect of iso-
topic disorder on thermal conduction through nanotubes is studied theoretically [10l/11]] and
good agreement with experiment [12] is achieved.

In this paper, we analyze the effects of Anderson disorder in semiconductor CNTs on
electron and phonon transport. First we summarize the atomistic Green function method in
calculating the transport properties. Then we investigate the dependence on length of the
device and on the operating temperature. The energy dependence of transport regimes are
shown to coexist and their role on device performance depending on system parameters is
discussed.

2 Model and Method

As it is common in transport calculations, we apply the partitioning scheme and divide the
system into left electrode, center (scattering region) and right electrode subsystems (o = L,
C, and R respectively). Left and right electrodes are considered to be equilibrium, but with
different electrical potentials ¢ and @, as well as different temperatures 77, and Tx (Fig.[T).

2.1 Electron transport

We describe electron states in carbon nanotubes in the framework of the 7w-electron tight-
binding model [13]]. This approach is complementary to an ab initio one and allows to obtain
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Fig. 1 Considered system: a carbon nanotube between electrodes.
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Fig. 2 Electron (a) and phonon (b) dispersions in pristine CNT(10,0).

physically transparent results. We write the first nearest neighbor single orbital tight-binding
Hamiltonian of our system (for fixed spin o =1 or o =/, the spin index is omitted) as

FI:ZSI'C}—C["‘ZI‘[J‘C;CJ', (1)
i ij

where hopping matrix elements #;; between lattice sites are given by #;; =t for nearest neigh-
bor sites and the on-site energies & can be chosen zero for pristine structures. We take below
t = 2.7 eV. As an example, the electron dispersion in ideal infinite CNT(10,0) is shown in
Fig. Zh.

In calculating the transport properties, we follow an atomistic approach and employ
nonequilibrium Green functions within the Landauer formalism, and a decimation tech-
nique to obtain transmission functions .7,,(®) and 7, (E) for phonons and elec-
trons, respectively. We refer the reader to Refs. for details of the Green function
technique. We neglect the electron-phonon coupling in this work since it is shown that
electron-phonon mean free path in nanoscale carbon tubes and ribbons is tens of um even
at room temperature [20].

The electron current is given by the Landauer formula

1=3 [~ ZuB)AE) - (BN dE. @
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where f; g is the electron distribution function in the left (right) electrode and the transmis-
sion function .7, is defined as

Ta(E) =Tr (IL(E)GE(E)R(E)GE(E)) , 3)
where the Green matrix functions in the central region Gg(A) and level-width functions IA“R(L)
are determined by the Hamiltonian of the central region A and the contact self-energies £

Glg(g) = [(8+i0+)i—ﬂc—2L—2R]_l s (4)
Lopr=i(ER-22) = —2mER. (5)

While we use the tight-binding model, all Green functions are matrices in the atomistic
basis.

2.2 Phonon transport

In the harmonic approximation the vibrational Hamiltonian can be written as

Hy, = ZHa + (uL|kLC\uC) + (uR|I€RC|uC) , (6)
(04
where in the first term | :
Hy = > (a*|a®) + 3 (u®|K**|u®) (7

is the Hamiltonian of the decoupled subsystem ¢, the second and third terms stand for the
coupling between the central region and the reservoirs. Here [u®) is the vector, and (u®| is
its transpose, of mass renormalized displacement coordinates u¥ = /mx¥, x* being the it
degree of freedom of subsystem a with m; the mass associated to this degree of freedom.

Kgﬁ is the matrix element representing the coupling between mass renormalized coordinate

i of subsystem «a with j subsystem 3, and Ki‘;ﬁ = kgﬁ //mint; with kf‘jﬁ being the spring
constant in direct coordinates. In our calculations, we use the fourth nearest neighbor force
constant approximation (4NNFC), which yields phonon dispersions in agreement with den-
sity functional theory (DFT) calculations for graphene and carbon nanotubes [21-23]]. For
the case of GNRs, modification of force constants for the edge carbon atoms will improve
the results, in the sense that it will result in a blue shift in the phonon density of states. The-
oretical calculations show that hydrogenated and dehydrogenated ribbons have very similar
phonon dispersions [24]]. Therefore, we neglect the effects of hydrogenization in our phonon
calculations. A subsequent reduction of lattice thermal conductance and a further but minor
improvement to our results in reducing lattice thermal conductivity can be expected, but it is
neglected for the sake of simplicity. As an example, the phonon dispersion in ideal infinite
CNT(10,0) is shown in Fig. 2p.

Phonon heat transport in mesoscopic systems at low enough temperatures (lower than
the Debye temperature 7p, which is about 2300 K in graphene and is of the order of 1000K
in CNTs) is essentially quantum and at T < Tp the heat flow is determined by coherent
transport of noninteracting phonons. In this case the Landauer approach can be used. The
thermal conductance in the limit of small temperature difference dT = Ty, — T is defined as

Tdo . 9 o, T
™) = [ 223020 7, 0), ®
0
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where ,;,(®) is the phonon transmission function, fp is the Bose distribution with @ being
the phonon frequency and 7 being the temperature [25,[26].

To actually calculate the phonon transmission function for nonideal nanotubes we use
the atomistic single-particle Green function method [27H36], equivalent to the Meir-Wingreen
method for electron transport [37].

Tpn(®) is determined by the matrix retarded phonon Green function in the central region

Dc(®) and the phonon level-width functions I?ZZ) () of the left and right electrodes:

Ton(@) =Tr [lzph(a))DZ(a))f}eph(w)ﬁc(w)} . )

The retarded Green functions for subsystems in the absence of coupling between the central
system with the electrodes are defined as

DY (@) = [(0+i07)2 - k]! (10)
with  being the identity matrix. The matrix inversion can not be applied directly for
semi-infinite electrodes and the surface Green functions are calculated numerically using
the iterative method [[144/15]].

The retarded phonon Green function for the central region in the presence of electrodes
reads
De(0) = [(@+i07)2F — REC — M (0) - Ir(0)] (11)

where the polarization operator (phonon self energy) due to coupling to the reservoir « is
My (0) = RE“DY (@) R*C. (12)

Finally, the level-width function is determined by the relation

I (w) =i (I (0) — 1} (0). (13)

3 Results for disordered nanotubes

Anderson disorder represents random small-scale fluctuations of system parameters. In this
paper we consider simple local and uncorrelated disorder. For phonons we introduce An-
derson type disorder by a random distribution of m; at the C region, in the range plus/minus
10% of the original mass, which transforms to a distribution of disordered coupling ma-
trix elements KSC Green functions of the disordered region are obtained using decimation
techniques and the transmission functions are obtained by averaging over 250 sample con-
figurations. The results are presented in Fig.[3]and Fig.[]

First of all we note that, unlike its electronic counterpart, phononic heat transmission
takes place not only in a small energy window but phonons of all energy values contribute
to the conductance. In this sense, low energy phonons play a special role in phonon thermal
conduction in both pristine and disordered systems as it will be discussed below. We consider
(10,0) CNT which is placed between reservoirs made of the same material [Fig. [3(a)]. The
reservoirs are kept at different temperatures T and T + dT. We introduce Anderson type
disorder in the central region and analyze the dependence of the transmission function and
thermal conductance to disorder for CNTs with different lengths. The transmission function
for the pristine CNT reflects the fact that each phonon branch is contributing to transport
with unit probability.
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Namely, the transmission function at energy ® is the number of phonon branches N(®)
crossing at this energy each acting as an independent transmission channel [Fig. |Zkb)]. In-
creasing the length of the C-region, the transmission is reduced but the low energy trans-
mission is almost unaffected by disorder [Fig.[3|c)]. On the other hand high energy phonons
are extremely sensitive to disorder in the sense that the transmission is blocked to a great
extend even for the shortest regions with disorder. We also note that disorder induced scat-
tering is more important near van Hove singularities in the density of states. We observe
that thermal conductance drops as the length of the central region is increased but this drop
is significant only at high temperatures [Fig. B[b)]. As the temperature increases the dif-
ference in conductance for different lengths increase and then saturates. The low tempera-
ture thermal conductance is insensitive to disorder because of two reasons. First, because
the transmission of low energy phonons itself is insensitive to disorder. Second, the term
p(0,T) = 0dfg(®,T)/dT in the integrand of Eq. (8) is filtering out the contribution of
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Fig. 3 (a) Schematics of the system under consideration. (10,0) CNT is placed between reservoirs which
have a temperature difference d7. We include Anderson type disorder at the central region whose length L
is varied. (b) Thermal conductance as a fnction of temperature 7 for (10,0) CNTs with diffrent lengths. (c)
Transmission versus energy for CNTs with diffrent lengths L (solid curves). Black curve is the transmission
function of pristine (10,0) CNT. Dashed curves are the prefactors p(w,T') for T =25, 100, 300 K (see text).
(Same color code is used in subplots (b) and (c)).
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Fig. 4 Different regimes of phonon transport through (10,0) CNTs. Normalized transmission values are
plotted as a function of length for various energies. At low energies (25 cm™!, 50 cm™!) .7 (®)/N(®) can
be fit to a line (a). Intermediate energies like 100 cm~! and 200 cm~! deviate from the linear behavior and
show 1/L behavior (a). High energy phonons are best described with an exponential law (b).

high energy phonons to low temperature conductance. At high temperatures p(®) flattens
and the filter effect diminishes.

In order to identify the different transport regimes, we analyze 7,,(®,L)/N(w) for a
number of @ values, and as a function of L. Transmission amplitudes are normalized in this
way using their pristine values N(®) in order to enable comparison. In Figa), it is shown
that low energy transmission (@ =25, 50 cm™") decreases linearly with L reflecting the fact
that low energy phonons display a quasi-ballistic behavior. For higher energies (®w =100,
200 cm ') the transmission function deviates from the linear fit to short device transmission
(see Fig. [@[a)) and a diffusive behavior is observed. On the other hand, energetic phonons
(@ =800, 1200, 1500 cm™ ') experience localization at different lengths depending on their
energies as it is shown in Fig. fb).

Different transport regimes coexist for phonons with different energies. Altough high
energy phonons experience localization, a pure localization regime or an exponential de-
pendence of thermal conductance on CNT length is not observed.

Therefore heating of the semiconductor CNT device in electronic applications is depen-
dent on the length of the device and the frequency distribution of generated phonons. Low
energy phonons will be discharged effectively while localization of energetic phonons may
cause overheating of long devices. Localization induced heating becomes more dramatic at
high operating temperatures.

The Anderson disorder for electron transport is introduced by random variation of the
hopping matrix elements 7;;, which are sensitive to geometry fluctuations. We take the range
of t;; fluctuations to be plus/minus 10% of the average value (2.7 eV) corresponding to mass
disorder. We average the curves over 50 configurations, the results are presented in Figs. [j]
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Fig. 5 (Color online) Electron transport through CNT(10,0) with Anderson disorder. Transmission as a func-
tion of energy is shown for different lengths.

and [6] As the model for electrodes we take the wide-band metal edge electrodes coupled
to the edge carbon atoms of nanotubes, so that strong quantum interference oscillations of
the transmission are observed in the pristine case (Fig.EI). Oppositely, transmission through
disordered CNTs is more regular because of the self-averaging. The transmission as a func-
tion of length demonstrates exponential suppression at large lengths, which is a signature
of localization in quasi one-dimensional system. In Fig.[6] the length dependence at three
different energies is shown, it is clear that scattering increases and the localization length
decreases at larger energies, when large number of electron bands is involved.

It is interesting to compare the energy dependence of disorder effect on electron and
phonon transport. Phonon transport is not affected only at very low energies, so that at
room temperature the thermal conductance is effectively suppressed. Electron transport at
the energies within the first band of transverse quantization is not affected by moderately
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Fig. 6 (Color online) Electron transport through CNT(10,0) with Anderson disorder. Transmission as a func-
tion of length is shown for different energies.
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strong disorder of the considered type. It means that the conductance of doped nanotubes
(which are semiconducting with large enough gap) or finite-voltage conductance due to
injection of carriers into the conduction band will not be changed essentially by disorder,
while the phonon conductance can be suppressed.

4 Conclusions

In summary, we analyzed the effects of disorder on phonon thermal transport and elec-
tron charge transport in semiconductor CNTs. We show that different transport regimes
for phonons of different energies coexist and their relative weight on thermal conductance
depends on temperature. Long wavelength phonons are transmitted effectively, but short
wavelength phonons are likely cause overheating and the effect of localization will be more
pronounced at higher operating temperatures. On the other hand, electron transport is much
less sensitive to disorder. One can conclude that disorder can be an effective mechanism of
engineering the thermoelectric properties of carbon nanostructures, as was shown by two of
us in Ref. [38] for graphene nanoribbons.
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