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Chapter 19
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R. Bullaa, R. Gutierrezb and G. Cunibertib

aTheoretische Physik III, Elektronische Korrelationen undMagnetismus,
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Measurements of electron transfer rates as well as of chargetransport charac-
teristics in DNA produced a number of seemingly contradictory results, ranging
from insulating behaviour to the suggestion that DNA is an efficient medium for
charge transport. Among other factors, environmental effects appear to play a
crucial role in determining the effectivity of charge propagation along the dou-
ble helix. This chapter gives an overview over charge transfer theories and
their implication for addressing the interaction of a molecular conductor with
a dissipative environment. Further, we focus on possible applications of these
approaches for charge transport through DNA-based molecular wires.

1. Introduction

The discovery of long-range electron transfer processes indouble stranded
DNA [1] considerably attracted the attention of biologists, chemists and physi-
cists. The motivation is threefold: i) the possible use of DNA-molecules in
nanotechnology applications [2], ii) the biological role of electron transfer in,
for example, radiation damage and repair, [3] and iii) the potentials of biochem-
ical sensors based on electron transfer in DNA [8].

Despite the intensive experimental efforts, the results for electrontransport
still appear to be contradictory, ranging from metallic conduction [4,5] to insu-
lating behaviour with very large bandgaps [6,7]. We refer the reader to Ref. [8]
for a recent review. The measurements of electrontransfer, on the other hand,
appear to be much better controlled and earlier discrepancies on the distance
dependence of the electron transfer rate are now attributedto the different ex-
perimental setups [3].
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Theoretically, several classes of factors have been meanwhile identified, which
considerably determine the effectivity of charge propagation along the double
helix. They can be roughly classified as being related to (i) static disorder asso-
ciated with the random or quasi-random sequence of bases in DNA oligomers
[9–11], (ii) dynamical disorder arising from strong structural fluctuations of the
molecular frame [12–14], and (iii) environmental effects related to the presence
of an aqueous environment and counterions [15–21]. While the first two factors
can still be addressed in a first approximation by considering only the atomic
structure of isolated DNA oligomers, environmental effects require the consid-
eration of the solvation shells and counterions and their interaction with the
DNA molecules. Though the performance ofab initio approaches has consid-
erably improved in the last years, the description of the dynamical interaction
of DNA with an environment is still a formidable computational task involv-
ing at least several thousands of atoms. As a consequence, only relatively few
first principle studies addressing this issue have been carried out in the past
years [15–21]. Thus, model Hamiltonian approaches describing charge prop-
agation in presence of a dissipative environment are very valuable and help to
gain some insight into the subtleties of the physical behavior of a quantum me-
chanical system interacting with a macroscopic number of degrees of freedom.

This chapter will give an overview of different approaches to address charge
propagation in a dissipative environment. In the next section, we discuss some
results fromab initio calculations of DNA oligomers in presence of an aqueous
environment. In section3 some basic facts on how to model the interaction be-
tween an arbitrary quantum mechanical system in interaction with a dissipative
environment are introduced. Finally, in subsection3.1, a special application to
a DNA model is discussed.

2. Environmental effects within ab-initio approaches

For the purpose of illustrating some basic facts concerningthe electronic
structure of adried DNA oligomer, let us look at a recent band-structure calcula-
tion of poly(GC) carried out with the density-functional-based code SIESTA [23].
First-principle results for poly(AT) oligomers have also been recently presented [24–
26]. The natural advantage of Poly(GC) or Poly(AT) is its periodic structure
which considerably minimizes the computational efforts. In Fig. 1, the result-
ing band-structure is shown. From the practical point of view, it is also expected
that this kind of periodic structures will have a higher potential applicability in
molecular electronics than their disordered counterpartslike λ-DNA.

The top-most valence band (HOMO) and the lowest conduction band (LUMO),
both havingπ-character, are separated by a bandgap of∆ = 2.0 eV. The HOMO



Fig. 1. Left: Schematic representation of a double-stranded DNA oligomer with an arbi-
trary base-pair sequence. Right: Electronic band-structure of Poly(GC) DNA within density-
functional theory. The figures are reproduced from Refs. [22,23] with permission.

and LUMO bands are basically derived from the overlap of guanine and cyto-
sineπ orbitals, respectively. As a consequence, the charge density of HOMO
and LUMO bands is confined along the G- and C-strands, respectively. The
Fermi level lies between these two bands so that the system appears to be a
insulator.

Most striking are the very small bandwidths of the bands close to the Fermi
level. The top-most valence band has a width ofWH = 40meV while the
lowest conduction band has a somewhat broader bandwidth ofWL = 270meV.
Part (b) of Fig. 2 of Ref. [23] (see Fig. 1, right panel, in thischapter) shows a
tight-binding modeling of the top-most valence band using asingle orbital per
base pair. The resulting hopping matrix elements aret = 10meV (for nearest
neighbor hopping) andt′ = 1.5meV (for next-nearest neighbor hopping).

In principle, such a scenario allows for electronic transport mediated by car-
riers which are introduced by doping either in the top of the valence band or
the bottom of the conduction band. The extremely small bandwidths, however,
suggest that Bloch states mediated transport cannot be stable under the various
perturbations present in DNA [23].

One of the possible perturbations which have been studied insome detail



is the role of the environment [15–19]. As shown in Ref. [15],the existence
of rather different time scales of the environment may have astrong impact
on a charge propagating along the DNA molecule. First-principle simulations
were performed, including four base pairs of B-DNA in the sequence GAGG,
together with Na+ counterions and the hydration shell. It turns out that holescan
be gated by the temperature dependent dynamics of the environment, i. e. there
may exist configurations that localize the hole. Dynamical fluctuations of the
counterions can lead, however, to configurations which support hole motion. A
hole thus experiences transitions between quantum-mechanical states that are
correlated with different environmental configurations [27]. These results have
been partly confirmed by recentab initio simulations in Ref. [19]. The authors
have additionally pointed out at a different, proton-mediated mechanism for
hole localization, which may be quite effective in Poly(GC)DNA.

Theab initio-based studies in Refs. [16–18] have yielded further insight into
the role played by water and counterions in modifying the low-energy electronic
structure of DNA oligomers. Despite the differences in the DNA-conformations
(Z- [16] vs. B-DNA [17,18]) as well as in computational approaches (differ-
ent basis sets and approximations for the exchange-correlation potentials), they
nevertheless indicate that the environment can introduce midgap states. Though
these electronic states do not form truly extended electronic bands, they may
support activated charge hopping at high-temperatures andthus lead to an en-
hancement of the conductivity. In this respect, they resemble to some degree
the defect levels induced by impurities in bulk semiconductors.

We can conclude from this that (i) the appearance of a band-gap is not at all
a generic feature for the band-structure of DNA and (ii) the extremely small
values of the bandwidths do appear to be generic. The generalquestion which
arises from that is the relation of the bandwidthsWH andWL to other typical
energy scales due to disorder effects, electron-phonon coupling, and Coulomb-
correlations. Furthermore, the environment can have a dramatic influence on
the electronic structure of the oligomer by inducing defect-like states within
theπ − π∗ gap. However, as previously stated, the complexity of the problem
makes a fullab initio treatment rather difficult. This leads us to the issue of
how the system-environment interaction can be modelled within a Hamiltonian
model approach. Which are the essential ingredients that have to be taken into
account?

3. Modeling the system-environment interaction

The importance of the system-environment interaction has long been recog-
nized in biomolecules (such as proteins), in which electrontransfer reactions



take place. Within Marcus theory [28], the coupling of the electronic degrees
of freedom to a reaction coordinate is the first step of a successful description
of electron transfer processes. The quantum mechanical analog of the reaction
coordinate is a phononic degree of freedom originating fromvibrations of the
protein matrix. In general, there might not be one dominating phononic mode;
such a breakdown of the standard single reaction coordinatedescription has
been suggested in the context of charge transfer between DNAbase pairs [29].
More importantly, even a dominating reaction coordinate iscoupled to the fluc-
tuations of the environment, such as surrounding water molecules, so that the
resulting spectral functionJ(ω) of all relevant phononic modes can be regarded
as continuous over a very broad energy range (in theoreticalcalculations, the
low-energy cutoff is typically set toω = 0).

The coupling of the electronic subsystem (the electron transfered between
donor and acceptor site) to the environment leads to a very important effect:
when an electron initially localized at the donor site tunnels to the acceptor
site (which typically has a lower energy), the energy difference is dissipated
to the environment so that the electron transfer process is irreversible [30]. If
this friction would be too small, or if the electron would couple to a single
phonon mode only, the electron would oscillate between donor and acceptor
sites making the electron transfer process highly inefficient.

In the work of Garget al. [30], the friction term has been modeled quantum
mechanically via a coupling to a bath of harmonic oscillators. A minimal model
for electron transfer processes, similar to the one proposed in [30], then takes
the form:

H =
∑

i=A,D

εic
†
ici − t

(

c†DcA + c†AcD

)

+
∑

n

ωnb
†
nbn + (gAnA + gDnD)

∑

n

λn

2

(

b†n + bn
)

. (1)

The operatorsc(†)i denote annihilation (creation) operators for electrons onthe
donor (i = D) and acceptor (i = A) sites;nA/D is defined asni = c†iσciσ. The
first two terms of the Hamiltonian eq. (1) correspond to a two-site tight-binding
Hamiltonian withεi the on-site energies andt the hopping matrix element.

The last two terms in eq. (1) describe the free bosonic bath (with bosonic cre-
ation and annihilation operatorsb†n andbn) and the coupling between electrons
and bosons, respectively. Assuming symmetric phonon displacements due to
the electronic occupancy at donor and acceptor sites, one can setgA = 1 and
gD = −1 [31].

The coupling of the electrons to the bath degrees of freedom is completely
specified by the bath spectral functionJ(ω) = π

∑

n λ
2
nδ (ω − ωn) . The form



of J(ω) can, in principle, be calculated with molecular dynamics simulations
(see, for example, [32]). To study the qualitative influenceof the environment,
an ohmic bath spectral functionJ(ω) ∝ ω (with a suitable high-energy cut-off)
is sufficient for most cases. In this description, dominant reaction coordinates
lead to additional resonances in the bath spectral function.

Note that such a continuous bath spectral function enforcesa quantum me-
chanical treatment of the phononic degrees of freedom since the temperature
range always lies within the continuum of phononic modes.

The Hamiltonian eq. (1) can be viewed as a paradigm for modeling the system-
environment interaction in biomolecules in which the electronic degrees of free-
dom couple to a dissipative environment. We should add here that the model
eq. (1) can be exactly mapped onto the well-studied spin-boson model [33,34]
for the case ofone electron in the system. In the spin-boson model description,
the state| ↑〉 (| ↓〉) corresponds to the electron localized at the donor (acceptor)
site. More complicated situations arise when the spin degree of freedom of the
electron — not to be confused with the artificial spin in the spin-boson model
— is taken into account, see the discussion in Ref. [[35]].

Calculations for these types of models in the context of electron transfer prob-
lems have been presented in [30,35,36]. It is natural to assume that the electron
environment interaction plays an equally important role for electron transport
through the DNA double helix. The main difference here is that electron trans-
fer/transport occurs over very many sites so that the two-site model eq. (1) has
to be suitably generalized. One such example is discussed inthe following sec-
tion.

3.1. Modeling the system-environment interaction: a DNA-wire in a dissi-
pative bath

The first-principle calculations reviewed in Section1 have shown that the
environment in which DNA oligomers are placed may have a non-negligible
influence on their electronic structure. In this section, wewill illustrate within
an effective model Hamiltonian approach, how the presence of a dissipative en-
vironment does affect the low-energy transport propertiesof a DNA molecular
wire [37,38]. Our reference system will be poly(GC) becauseof its periodic
structure, which should make optimal the interbase electronic coupling along
the strands. Moreover, recent experiments [39] on single poly(GC) molecules
have shown non-zero current at low bias, which is at variancewith the fact
that the molecule should have a (rather large) HOMO-LUMO gap[40]. Since
these experiments were performed in an aqueous environmentand the authors
excluded ionic current contributions, one may consider thepossibility that the
environment is modifying the molecule electronic structure.



bosonic bath

L  R

Poly(GC) wire

Fig. 2. Schematic representation of a double-stranded poly(GC) oligomer coupled to left (L)
and right (R) electrodes and in interaction with a bosonic bath.

In our model, we will exclusively focus on the low-energy transport, i. e. the
charge injection energies are small compared with the molecular band gap of the
isolated molecule (∼ 2 − 3 eV ). Consequently, only equilibrium transport will
be considered and a transmission-like function can still bedefined [37,38,?].
At low energies, only the frontier orbitals (HOMO and LUMO) of the molecule
are expected to contribute to transport. As mentioned in sec. 1 these orbitals
haveπ-character and their charge densities extend along the G- and C-strands
for the HOMO and the LUMO, respectively. Motivated by this, we have for-
mulated a minimal tight-binding model [37,38,41], where a single electronic
π-orbital channel is connected to left and right electrodes.The sugar-phosphate
backbones are assumed to locally perturb the electronic states and lead to the
opening of a semiconducting gap for the infinite chain. As a result, the size of
the band gap can be controlled by the strength of this perturbation, given by the
parametert⊥ in Eq. (2) below. The environment is described by a collection of
harmonic oscillators which linearly couple to the charge density on the back-
bone sites. Assuming zero onsite energies (the Fermi level thus lies atE = 0),
the Hamiltonian reads:

H = −tπ
∑

j

[

c†jcj+1 + h.c.
]

− t⊥
∑

j

[

b†jcj + h.c.
]

+
∑

α

ΩαB
†
αBα +

∑

α,j

λαb
†
jbj(Bα +B†

α)

+
∑

k∈L,R,σ

ǫkσd
†
kσdkσ +

∑

k∈L,σ

(Vk,1 d
†
kσ c1 + h.c.) +

∑

k∈R,σ

(Vk,N d†
kσ cN + h.c.)

= Hel +HB +Hleads. (2)



In the above equation,Hel = Hc +Hb is the Hamiltonian of the HOMO (or
LUMO) channel (Hc) and the backbone sites (Hb),HB contains both the Hamil-
tonian of the bath and the mutual interaction of the bath withthe electronic de-
grees of freedom at the backbone sites (second row). Finally, Hleads contains
the electrode Hamiltonians as well as the tunneling Hamiltonian describing the
propagation of a charge from the leads onto the HOMO (or LUMO)channel
and viceversa. In absence of coupling to the bath, the eigenstates ofHel yield
two manifolds containingN states each and separated by a band gap, whose
magnitude basically depends on the size of the tranversal coupling t⊥. The bath
is completely described by introducing its spectral density as given by [34]:
J(ω) = J0(

ω
ωc

) exp−ω/ωc, whereωc is a high-frequency cut-off and we assume
ohmic dissipation,J(ω) ∼ ω. By performing a unitary transformation, the lin-
ear coupling to the bath can be eliminated. However, the transversal coupling
terms will be renormalized by exponential bosonic operators [37,38]. Using
equation of motion techniques, one can show, to lowest orderin t⊥, that the
Green function of the wire satisfies the following Dyson-equation:

G
−1(E) = E1−Hc − ΣL(E)− ΣR(E)− t2⊥P(E). (3)

In this expression, the influence of the electrodes is captured by the complex
self-energy functionsΣL/R(E). The functionP (E) is an entangled electron-

boson Green function:Pjℓ(t) = −iΘ(t)
〈[

bj(t)X (t), b†ℓ(0)X
†(0)

]

+

〉

andX =

exp
[
∑

α(λα/Ωα)(Bα − B†
α)
]

. Note thatP (E) acts as an additional self-energy
and that the influence of the backbones is contained only in this function.

Several coupling regimes to the bath can be analyzed [38]. Wefocus here
only on the strong-coupling limit (SCL), defined by the condition J0/ωc > 1,
which basically means that the time scales of the charge-bath interaction are
much shorter compared with typical electronic time scales.We refer the reader
to Refs. [37,38] for technical details.

The impact of the bath on the electronic structure is twofold[37,38]. On one
side, the strong coupling to the bath leads to the emergence of new bath-induced
electronic statesinside the wire band gap. On the other side, however, these
states are strongly damped by the dissipative action of the bath. In other words,
the bath completely destroys the coherence of transport through the wire. This
effect has also been discussed for transport through molecular chains under the
influence of external time-dependent fields, see [42,43]

As a result, the bath-induced states will not manifest as resonances in the
transmission spectrum, see Fig. 3, left panel. Nevertheless, they induce atem-
perature dependent background which leads to a (small) finite density of states
inside the gap. Charges injected at low energies will now findstates supporting
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Fig. 3. Left panel: Transmission and current for different electron-boson coupling strengths. At
high temperatures, a small density of states is present at low energies. Right panel: correspnding
dependence of the transmission at the Fermi energy on the number of sitesN in the wire. A
very weak exponential scaling is found, hinting at a strong contribution of incoherent processes.

transport at high temperatures and thus, a finite current at low bias may flow.
Hence we call the new gap a pseudogap, in contrast to the intrinsic band gap
found in the isolated wire. Note that increasing the interaction with the bath
(increasingJ0/ωc) does not necessarily lead to a global increase of the current,
since the frontier orbitals of the wire are strongly damped with increasing cou-
pling.

Signatures of this situation are seen in the length dependence of the transmis-
sion at the Fermi energy, see Fig. 3, right panel. Tunneling through an intrinsic
gap would lead to a very strong exponential length dependence t(EF) ∼ e−γ N

with with typical inverse decay lengthsγ ∼ 1.5 − 2 Å
−1

[40]. We find, how-
ever, much smaller values∼ 0.1 − 0.2 Å

−1
. With increasing bath coupling the

exponential dependence weakens, reflecting the increase ofthe density of states
in the pseudogap and the strong contribution of incoherent processes [44]

4. Conclusions and Outlook

In conclusion, we have shown that generic model approaches can deal with
experimentally relevant situations. One of the major problems for the theo-
retical modeling of charge transport in DNA oligomers is thelack of a clear
experimental picture of their transport signatures. Thus,focusing on individual
factors affecting charge propagation helps to shed light onto the relevant mech-
anisms controlling the charge dynamics in DNA. We have addressed in this
chapter environmental effects in the charge transport through DNA oligomers



within a minimal Hamiltonian model approach. Obviously, other factors not
treated here, like electronic correlations, static disorder or internal vibrational
excitations can also have a non-negligible influence on charge propagation.
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