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Inelastic quantum transport in a ladder model: Measurements of DNA conduction

and comparison to theory
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We investigate quantum transport characteristics of a ladder model, which effectively mimics the
topology of a double-stranded DNA molecule. We consider the interaction of tunneling charges with
a selected internal vibrational degree of freedom and discuss its influence on the structure of the
current-voltage characteristics. Further, molecule-electrode contact effects are shown to dramatically
affect the orders of magnitude of the current. Recent electrical transport measurements on suspended
DNA oligomers with a complex base-pair sequence, revealing strikingly high currents, are also
presented and used as a reference point for the theoretical modeling. A semi-quantitative description
of the measured I-V curves is achieved, suggesting that the coupling to vibrational excitations plays
an important role in DNA conduction.

PACS numbers: 05.60.Gg 87.15.-v, 73.63.-b, 71.38.-k, 72.20.Ee, 72.80.Le, 87.14.Gg

I. INTRODUCTION

The past decade has seen an extraordinary progress in
the field of molecular electronics. The possibility of us-
ing single molecules or molecular groups as the basic
building units of electronic circuits has considerably trig-
gered the refinement of experimental techniques. As a
result, transport signatures of individual molecules have
been successfully probed and exciting physical effects like
rectification, Coulomb blockade, and the Kondo effect
among others have been demonstrated, see e.g. Ref. [1]
for a recent review of the field.

Within the class of biopolymers, DNA is expected to
play an outstanding role in molecular electronics. This
is mainly due to its unique self-assembling and self-
recognition properties, which are essential for its per-
formance as carrier of the genetic code, and may be
further exploited in the design of electronic circuits.2,3

A related important issue is to clarify if DNA in some
of its possible conformations can carry an electric cur-
rent or not. In other words, if it could also be applied
as a wiring system. In the early 1990’s charge transfer
experiments in natural DNA in solution showed unex-
pected high charge transfer rates,4,5 thus suggesting that
DNA might support charge transport. However, elec-

trical transport experiments carried out on single DNA
molecules displayed a variety of possible behaviors: in-
sulating,6,7 semiconducting,8,11,12,13 and ohmic-like.9,10

This can apparently be traced back to the high sensi-
tivity of charge propagation in this molecule to extrinsic
(interaction with hard substrates, metal-molecule con-
tacts, aqueous environment) as well as intrinsic (dynam-
ical structure fluctuations, base-pair sequence) factors.
Recently, experiments on single poly(GC) oligomers in
aqueous solution10 as well as on single suspended DNA
with a complex base sequence11,12 have shown unexpect-
edly high currents of the order of 100-200 nA. These re-
sults strongly suggest that DNA molecules may indeed
support rather high electrical currents if the appropriate

conditions are warranted. The theoretical interpretation
of these experiments and, in a more general context, the
mechanism(s) for charge transport in DNA have not ,
however, been revealed so far.

Both ab initio calculations14,15,16,17,18,19,20,21,22,23

as well as model-based Hamiltonian ap-
proaches24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 have been
recently discussed. Though the former can give in prin-
ciple a detailed account of the electronic and structural
properties of DNA, the huge complexity of the molecule
and the diversity of interactions present in it (internal
as well as with the counterions and hydration shells)
precludes a full systematic first principles treatment of
electron transport for realistic molecule lengths, this
becoming even harder if the dynamic interaction with
vibrational degrees of freedom is considered. Thus,
Hamiltonian approaches can play a complementary
role by addressing single factors that influence charge
transport in DNA.

In this paper, we will address the influence of vibra-
tional excitations (vibrons) on the quantum transport
signatures of a ladder model, which we use to mimic the
double-strand structure of DNA oligomers. As a refer-
ence for our calculations we will take the previously men-
tioned experiments on single suspended DNA molecules
with a complex base-pair sequence.11,12 Our main goal
is to disclose within a generic Hamiltonian model the in-
fluence of different parameters on the charge transport
properties: the system-electrode coupling, the strength
of the charge-vibron coupling, and the vibron frequency.
Our model suggests that strong coupling to vibrational
degrees of freedom may lead to an enhancement of the
zero-current gap, which is a result of a vibron blockade ef-
fect.39 Further, asymmetries in the ladder-lead coupling
have a drastic effect on the absolute values of the cur-
rent. Finally, we show that a two-vibron model can
describe the shape of the experimental I-V curves of
Ref. [11], suggesting that interaction with vibrational de-
grees of freedom may give a non-negligible contribution
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FIG. 1: (a) Scheme (not drawn to scale) of the experimental
setup showing dithiolated dsDNA (thicker lines for clarity)
chemically bonded to two metal electrodes (upper - GNP,
lower - gold surface), supported by a monolayer of thiolated
ssDNA. (b) AFM topography image showing top view of the
sample. Several GNPs are clearly seen on the background of
the ssDNA monolayer. The GNPs mark the position of the
hybridized dsDNA. The inset is a height profile of the GNP
lying on the ssDNA surface. (c) Collection of I-V curves from
different samples. In some other cases we measured smaller or
no voltage gap. Note that several curves show saturation of
the current amplifier at 220 nA. (d) An F-Z curve of one of the
curves in (c), (green-forward, red-backward) demonstrating
the tip-GNP adhesion (red line) without pressing the GNP
through the monolayer. The I-V is recorded at the closest
point of the tip to the GNP without pressing it through the
ssDNA monolayer.

to the measured currents. Obviously, other factors re-
lated e.g. to the specific metal-molecule interface atomic
structure which govern the efficiency of charge injection,
or the potential profile along the molecule can give impor-
tant contributions. They can be taken into account by a
more realistic, fully self-consistent treatment of the prob-
lem, which lies outside the scope of the present study.
In the next section we briefly present the experimental re-
sults. In Sec. III.A the model Hamiltonian is introduced
and the relevant parameters are defined. The theoretical
formalism is discussed in Sec. III.B. Finally, the results
are presented and discussed in Sec. IV.

II. EXPERIMENTAL ASPECTS

Detailed description of the sample preparation is re-
ported elsewhere.11,12,13 Briefly, a thiolated 26 bases long
single-stranded DNA (ssDNA) with a complex sequence
was adsorbed on a clean flat annealed gold surface to
create a dense monolayer. The ssDNA molecules had a
thiol-modified linker end group (CH2)3-SH at the 3’-end.
The sequence of the ssDNA that was adsorbed on the

gold surface in 0.4 M phosphate buffer with 0.4 M NaCl
is 5’-CATTAATGCTATGCAGAAAATCTTAG-
3’-(CH2)3-SH. The surface density of the monolayer
on the gold was appropriate for hybridization with
complementary thiolated ssDNA that were separately
adsorbed on 10 nm gold nanoparticles (GNPs) through
another thiol group at their 3’-end by a (CH2)3-SH
group. The monolayer serves also as an insulating
support to the GNPs.11,12,13 Direct measurements by
conductive atomic force microscope (cAFM) with tip-
sample bias of up to 3 V confirmed that the monolayer
was insulating. 11,12 The double-strand DNA (dsDNA)
hybridization was done at ambient conditions in the
presence of 25 mM Tris buffer with 0.4 M NaCl. Before
AFM characterization and electrical measurements the
samples were thoroughly rinsed to remove excess salts.

The measurements were done with a commercial AFM
(Nanotec Electronica S.L. Madrid) in dynamic mode40

to avoid damage to the sample and the metal coated tip.
Rectangular cantilevers with Pyramidal tips (Olympus,
OMCL-RC800PSA, Atomic Force F&E GmbH, spring
constant of 0.3 to 0.7 N/m and resonance frequency of 75
to 80 KHz) were used in order to perform combined force-
distance (F-Z) and current-voltage (I-V) curves with a
minimal load on the sample. For the electrical mea-
surements the tips were sputter coated by Au/Pd that
increased their spring constant to about 1 N/m and low-
ered their resonance frequency to 50-70 KHz. Through-
out the measurements the cantilever was oscillated close
to its resonance frequency and feedback was performed
on the amplitude of its vibrations. Fig. 1(a) shows a
schematic view of the sample and set-up. Fig. 1(b) is an
AFM image showing several GNPs, indicating the posi-
tion of the hybridized dsDNA on the background of the
ssDNA monolayer. A line profile along one of the 10 nm
GNPs implies that the 26 bp dsDNA, which is ∼9 nm
long, is not protruding vertically out of the ∼ 3 − 4 nm
thick ssDNA monolayer and is probably tilted and lying
on the surface of the ssDNA monolayer. The electrical
I-V curves (Fig. 1(c)) were recorded while the GNP was
contacted during an F-Z curve by the metal covered tip
without pressing the tip onto the GNP. This was done
by applying a feedback on the tip oscillation amplitudes,
while approaching the GNP, that enabled to stop the
tip movement towards the GNP just before the jump to
contact, as demonstrated in the F-Z curve showed in Fig.
1(d).

The current voltage curves, shown in Fig 1(c), demon-
strate in a clear and reproducible way, the ability of ∼9
nm long dsDNA to conduct relatively high currents (>
200 nA), when the molecule is not attached to a hard sur-
face along its backbone and when charge can be injected
efficiently through a chemical bond. Such behavior was
measured for many dsDNA molecules on tens of sam-
ples and with various tips and humidity conditions, with
similar results.11 This behavior was also measured in the
absence of the GNPs using a different technique.12
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FIG. 2: Upper panel: Schematic representation of the double-
strand DNA with the experimentally relevant base-pair se-
quence.11 The (CH2)3-SH linker groups are omitted for sim-
plicity (see the text for details). Lower panel: Two-legs ladder
used to mimic the double-strand structure of a DNAmolecule.
L and R refer to left and right electrodes, respectively. The
coupling terms to the electrodes Γℓ,α, ℓ =X,X̄, α =L,R are as-
sumed to be energy-independent constants (wide -band limit,
see the text for details).

III. THEORETICAL ASPECTS

A. Model Hamiltonian

Our aim is to formulate a minimal model taking into
account the double-strand structure of DNA. Hence, we
do not consider the full complexity of the DNA electronic
structure. We neglect environmental effects and assume
that charge transport will mainly take place along the
base-pair stack. We further adopt the perspective that
to describe low-energy quantum transport within a
single-particle picture, only the frontier π orbitals of
the base pairs are relevant. We will then consider a
planar ladder model with a single orbital per lattice
site within a nearest-neighbor tight-binding picture. In
this sense, we are neglecting helical effects arising from
the real structure of the DNA. We assume that these
and similar effects may have already renormalized the
electronic parameters. We will focus in this paper on
the experimentally relevant11 base-pair sequence X=5’-
CATTAATGCTATGCAGAAAATCTTAG-3’, see
Fig. 2 and the foregoing section. It is worth mentioning
that ladder models have been previously used to study
quantum transport in DNA duplexes.37,41,42,43,44,45

The Hamilton operator describing the ladder and its cou-
pling to left (L) and right (R) electronic reservoirs is given
by:

Hel =
∑

r=X,X̄

∑

ℓ

ǫr,ℓb
†
r,ℓbr,ℓ

−
∑

r=X,X̄

∑

ℓ

tr,ℓ,ℓ+1[b
†
r,ℓbr,ℓ+1 + h.c.]

−
∑

ℓ

t⊥,ℓ[b
†
X,ℓbX̄,ℓ + h.c.]

+
∑

k∈L

[tk,Xc†
k
bX,1 + h.c.] +

∑

k∈L

[tk,X̄c†
k
bX̄,1 + h.c.]

+
∑

k∈R

[tk,Xc†
k
bX,N + h.c.] +

∑

k∈R

[tk,X̄c†
k
bX̄,N + h.c.]

In the previous expression, X, X̄ refer to the two legs
of the ladder, ǫr,ℓ are energies at site ℓ on leg r, tr,ℓ,ℓ+1

are the corresponding nearest-neighbor electronic hop-
ping integrals along the two strands while t⊥,ℓ describes
the inter-strand hopping. In order to obtain estimates
of onsite energies and hopping integrals, ab initio cal-
culations are obviously the most reliable reference point.
Recently, Mehrez and Anantram23 carried out a care-
ful analysis of a hierarchy of tight-binding models that
gave effective onsite energies and hopping parameters
for Poly(GC) and Poly(AT) molecules. We will use
these values as a reference point in part of our discus-
sion and take the onsite energies as the LUMO ener-
gies given in Ref. [23]: ǫG = 1.14 eV,ǫC = −1.06 eV,
ǫA = 0.26 eV,ǫT = −0.93 eV. We are thus considering
electron transport, although hole transport can be dealt
with in a similar way by choosing the HOMO instead
of the LUMO energies. Other choices e. g. the ioniza-
tion potentials of the base pairs are also possible;28 they
are expected to only change our results quantitatively.
More difficult is the choice of the intra- and inter-strand
electronic transfer integrals. They will be more sensi-
tive to the specific base sequence considered. For the
sake of simplicity and in order to reduce the number of
model parameters we have adopted a simple parameteri-
zation taking a homogeneous hopping along both legs,
i. e. tr,ℓ,ℓ+1 = tX = tX̄ = t ∼ 0.25 − 0.27 eV and
t⊥,ℓ = tXX̄ ∼0.2-0.3 eV. Though calculations23,46 show
that the inter-strand hopping is usually very small, ∼
few meV, we do not consider the hopping integrals as
bare tight-binding parameters but as effective ones, thus
keeping some freedom in the choice of their specific val-
ues. Electronic correlations41 or structural fluctuations
mediated by the coupling to other vibrational degrees of
freedom47 can lead to a strong renormalization of the
bare electronic coupling.
The interaction with the electronic reservoirs will be de-
scribed in the most simple way by invoking the wide-
band approximation, i. e. neglecting the energy depen-
dence of the leads’ self-energies (see below). To model
the coupling to vibrational degrees of freedom we con-
sider the case of long-wave length optical modes with
constant frequencies Ωα, e. g. small-q torsional modes
and assume they couple to the total charge density op-
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erator N =
∑

r,ℓ nr,ℓ of the ladder. This approximation
can be justified for long-wave length distortions. In other
words, the strength of the electron-vibron interaction λ
is assumed to be site-independent. Moreover, we will not
consider in this study non-local coupling to vibrational
excitations. Though this interaction can give an im-
portant contribution to the modulation of the inter-site
electronic hopping, its inclusion would increase the com-
plexity of the model and the number of free parameters.
Such effects deserve a separate investigation; research
along these lines has been recently presented by other
authors.48,49,50,51,52 The total Hamiltonian thus reads:

H = Hel +
∑

α

ΩαB
†
αBα +

∑

r,ℓ,α

λαb
†
r,ℓbr,ℓ(Bα +B†

α) (1)

B. Green function techniques

In this section we present the theoretical approach to
deal with electrical transport properties in the presence
of electron-vibron coupling. Taking as a starting point
the Hamiltonian of Eq. 1, we perform a Lang-Firsov
(LF) unitary transformation53 in order to eliminate the
electron-vibron interaction. The LF-generator is given

by U = exp[−
∑

α,r,ℓ gαb
†
r,ℓbr,ℓ(Bα − B†

α)], which is basi-
cally a shift operator for the harmonic oscillator position.
The parameter gα = λα/Ωα gives an effective measure
of the electron-vibron coupling strength. In the resulting
Hamiltonian, the onsite energies ǫr,ℓ are shifted to ǫr,ℓ−∆
with ∆ =

∑

α λ2
α/Ωα being the polaron shift. There is

an additional renormalization of the tunneling Hamilto-
nian, but we will not consider it explicitly, since we will
assume a regime (within the wide-band approximation in
the leads’ spectral densities) where the effective broad-
ening ∼ Γ arising from the coupling to the leads is bigger
than the polaron formation energy ∼ λ2/Ω . As shown
in Ref. [54] in this special case the tunneling renormal-
ization can be approximately neglected.
Concerning the transport problem, we can use the stan-
dard current expression for lead p=L,R as derived e.g. by
Meir and Wingreen.55

Ip =
2i e

h

∫

dE Tr[Γp{fp(G> −G<) +G<}], (2)

and then perform the LF unitary transforma-
tion under the trace going over to the trans-
formed Green functions. In the previous equation,
Γp(E) = i (Σp(E) − Σ†

p(E)) are the leads’ spectral
functions, fp(E) = f(E − µp) is the Fermi function of
the p-lead and µp=L = EF + eV/2 (µp=R = EF − eV/2)
are the corresponding electrochemical potentials. We
assume hereby a symmetrically applied bias. Within
the wide-band limit in the electrodes’ spectral densities,
we introduce the following 2N × 2N ladder-lead energy-
independent coupling matrices:

(ΓL)nm =







ΓL,Xδn,1δm,1 if n,m ∈ X
ΓL,X̄δn,1δm,1 if n,m ∈ X̄

0 if 6= 1

(ΓR)nm =







ΓR,Xδn,Nδm,N if n,m ∈ X
ΓR,X̄δn,Nδm,N if n,m ∈ X̄

0 if n,m 6= N

We remark at this point that these coupling terms also
include effectively the (CH2)3-SH linkers used in the ex-
periments to attach the DNA molecule to the metallic
electrodes..
Let’s define the fermionic vector operator (see Fig. 2 for
reference):

Ψ† = (bX,1 bX,2 · · · bX,N bX̄,1 · · · bX̄,N ). (3)

The lesser- and greater-matrix Green function (GF) are
then defined as:

G>(t) = − i

~

〈
Ψ(t)Ψ†(0)

〉
, (4)

G<(t) =
i

~

〈
Ψ†(0)Ψ(t)

〉
.

Since Eq. 2 does not explicitly contain information on
the specific structure of the “molecular” Hamiltonian, we
can now transform the lesser- and greater-GF as well as
the lead spectral functions to the polaron representation.
The operator Ψ transforms according to Ψ̄ = UΨU† =
ΨX , where X = exp[

∑

α(λα/Ωα)(Bα − B†
α)]. Thus, we

obtain Ḡ>(t) = −(i /~)
〈
Ψ(t)X (t)Ψ†(0)X †(0)

〉
and sim-

ilar for Ḡ<(t). Strictly speaking, a further direct decou-
pling of the foregoing expression into purely fermionic
and vibronic components, as is usual in the independent
vibron model53 is not possible, since the transformed tun-
neling Hamiltonian contains both types of operators and
hence, the transformed canonical density operator does
not factorize into separate fermion and vibron density
operators. However, for the case considered here, where
vibron-induced renormalization effects of the tunneling
amplitudes are not taken into account, the decoupling is
still approximately possible. We thus obtain:

Ḡ>(t) = − i

~

〈
Ψ(t)X (t)Ψ†(0)X †(0)

〉

≈ − i

~

〈
Ψ(t)Ψ†(0)

〉

el

〈
X (t)X †(0)

〉

B

= G>(t)
〈
X (t)X †(0)

〉

B
= G>(t)e−Φ(t).

A similar expression holds for the lesser-than GF by
changing the time argument t by −t in Φ(t). We note
that Φ(t) satisfies the symmetry relations: Φ(−t) =
Φ†(t).
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C. Single-vibron case

In the case of dispersionless modes, the vibron correlation
function Φ(t) can be evaluated exactly and reads:53

e−Φ(t) = e−g2(2N+1)
∞∑

n=−∞

In(τ)e
βΩn/2e−inΩt, (5)

where τ = 2g2
√

N(N + 1) and g = λ/Ω. Using this
expression, one easily finds for the Fourier transformed
lesser and greater GFs:

Ḡ<(>)(E) =
∞∑

n=−∞

φn(τ)G
<(>)(E + (−)nΩ), (6)

φn(τ) = e−g2(2N+1) × In(τ) e
βΩn/2.

(7)

where +(−) corresponds to < (>). The bare lesser-
and greater-GF can now be obtained from the kinetic

equation G<(>) = Gr(Σ
<(>)
L + Σ

<(>)
R )Ga, since the full

electron-vibron coupling is already contained in the pref-
actor function φn(τ). The leads self-energy matrices
Σ<

p ,Σ
>
p are given in the wide-band limit by i fp(E)Γp

and −i (1 − fp(E))Γp, respectively. Using these expres-
sions, the total symmetrized current in the stationary
state JT = (JL − JR)/2 is given by (see Appendix):

JT =
e

2h

∞∑

n=−∞

φn(τ)

∫

dE {[fL(E) (1− fR(E − nΩ))

− fR(E) (1 − fL(E − nΩ))] t(E − nΩ)

+ [fL(E + nΩ) (1− fR(E))

− fR(E + nΩ) (1− fL(E))] t(E + nΩ)}, (8)

where t(z) = Tr[ΓRG
r(z)ΓLG

a(z)] is the conventional
expression for the transmission coefficient in terms of
the molecular Green function G(E), which satisfies the
Dyson-equation: G−1 = G−1

0 − ΣL − ΣR. The above re-
sult for the current has a clear physical interpretation.
So, e.g. a term like fL(E) (1 − fR(E − nΩ))t(E − nΩ)
describes an electron in the left lead which tunnels into
the molecular region, emits n vibrons of frequency Ω and
tunnels out into the right lead. However, it can only
go into empty states, hence the Pauli blocking factor
(1− fR(E − nΩ)). Other terms can be interpreted along
the same lines, when one additionally substitutes elec-
trons by holes.

Finally, the spectral density A(E, V ) is defined as:

A(E, V ) = i [Ḡ>(E)− Ḡ<(E)] (9)

= i
∑

n

φn(τ) [G
>(E − nΩ)−G<(E + nΩ)]

0 π/2a π/a
k

-1

0

1

E
-E

F (
eV

)

0
A(E,V=0)(arb. u.)

0

-1

0

1

0

(a) (b) (c) (d)

-2 -1 0 1 2
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-100
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T=300 K

-2 -1 0 1 2
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g(
V
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(e

2 /h
)
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E-E

F
(eV)

10
-12

10
0

t(
E

)

(e)

(f) (g)

FIG. 3: (a) Tight-binding electronic band structure of an in-
finite DNA system, obtained by a periodic repetition of the
26-base sequence of Ref. [11]. Notice the strongly fragmented
band structure with very flat bands. The open yellow rect-
angles indicate for reference the approximate position of the
bands for a periodic poly(GC) oligomer. (b)-(d) spectral den-
sity A(E,V = 0), which at zero voltage coincides with the
projected density of states onto the molecular region, for the
finite size DNA chain contacted in different ways by left and
right electrodes, see Fig. 2: (b)ΓL,X = ΓR,X̄ = 0,ΓL,X̄ =
ΓR,X = 250meV, (c) ΓL,X = ΓR,X̄ = 250meV,ΓL,X̄ =
ΓR,X = 0meV, (d) ΓL,X = ΓR,X̄ = ΓL,X̄ = ΓR,X = 250meV.
The onsite energies were set at the LUMO values reported
in Ref. [23] and the hopping parameters were set to tX =
tX̄ = t = 0.27 eV, tXX̄ = 0.25 eV. (e) I-V characteristics for
two different temperatures and the contact situation (b); (f)
corresponding transmission function t(E) and (g) differential
conductance g(V ).

IV. RESULTS

In Fig. 3(a) we first show the electronic band structure
of an infinite periodic array of the 26-base-pairs DNA
molecule without considering charge-vibron interactions.
The unit cell thus contains 2×26 sites. Due to the large
unit cell and since the electronic hopping integrals are
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roughly a factor four smaller than the onsite energies,
one gets a strongly fragmented electronic spectrum with
very flat bands. We may thus rather speak of valence
and conduction manifolds as of true dense electronic
bands.56 The band gap ∆ of about 0.3 eV is considerably
smaller than that obtained in the periodic poly(GC) lad-
der when using the same parameterization, ∆GC ∼ 2.0
eV. In Fig. 3(a) we also show schematically the positions
of the conduction and valence manifolds of the periodic
poly(GC) system (open rectangles). We note in passing
that similar small gaps have been estimated in experi-
ments on λ-DNA57 and in bundles58. A direct compari-
son to our results is however not possible due to the dif-
ferent experimental conditions and length scales probed
in these investigations. Figs. 3(b)-(d) show the spectral
density at zero voltage of the finite DNA ladder con-
tacted by electrodes in three different ways: (b) only the
3’-ends, (c) only the 5’-ends, and (d) all four ends of
the double-strand are contacted. Though the general ef-
fect consists in broadening of the electronic manifolds,
we also see that depending on the way the molecule is
contacted to the leads the electronic states will be af-
fected in different ways. Thus e.g. states around 1.7 eV
above the Fermi level are considerably more broadened
than states closer to EF. Figs. 3(e)-(g) show the cur-
rent, transmission and differential conductance for one
of the typical contact situations (case (b)). The irregular
step-like structure in the current-voltage characteristics
is reflecting the fragmented electronic structure of the
system. Notice that despite the small gap found in the
band structure resp. DOS, a large (∼ 2 V) zero-current
gap is seen in the I-V characteristics. The reason is that
many of the states close to the band gap have a very low
transmission probability (are highly localized) as a result
of the random base sequence, see t(E) in Fig. 3(f), so
that they do not contribute to transport. The effect of
the temperature is only to smooth the current and the
differential conductance, as expected. We remark at this
point that the absolute values of the current can be dra-
matically modified by the way the molecule is contacted
by the electrodes (see below).

We now consider the coupling to vibrational degrees of
freedom in the ladder. The probability of opening in-
elastic transport channels by emission or absorption of
n vibrons becomes higher with increasing thermal en-
ergy kBT and/or electron-vibron coupling g. As a result,
the spectral density A(E) will consist of a series of elas-
tic peaks (corresponding to n = 0) plus vibron satellites
(n 6= 0). If the separation between contiguous molec-
ular eigenstates is of the order of the vibron frequency
Ω, then the satellites corresponding to a given molecular
state will not be clearly separated from the elastic peaks
but will overlap with those of nearby molecular states
leading to an effective broadening of the spectrum and
possibly to complex interference effects.

The influence of the transverse electronic hopping and
the leads-ladder coupling on the current is shown in
Fig 4. The inter-strand hopping turns out to be cru-
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)
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(a)

(b)

FIG. 4: I-V characteristics for different values of the reduced
inter-strand hopping tXX̄/t in DNA26 for a fixed electron-
vibron coupling strength g = 1. Upper and lower panels corre-
spond to two different (asymmetric) ways of coupling the lad-
der to the electrodes: (a) ΓL,X = ΓR,X̄ = 0,ΓL,X̄ = ΓR,X =
250meV and (b)ΓL,X̄ = ΓR,X = 0,ΓL,X = ΓR,X̄ = 250meV.
Notice the strong variation in the current when going from
case (a) to case (b).

cial in determining the absolute values of the current. In
the general case of symmetric coupling (ΓL,X = ΓR,X =
ΓL,X̄ = ΓR,X̄), a charge propagating along one of the
strands will see a rather disordered system, so that a
non-zero inter-strand hopping may increase the delo-
calization of the electronic states. The effect should
be more obvious in the case of asymmetric coupling
(a) ΓL,X̄ = ΓR,X 6= 0,ΓL,X = ΓR,X̄ = 0, and (b)
ΓL,X̄ = ΓR,X = 0,ΓL,X = ΓR,X̄ 6= 0 since now there is
a single pathway for an electron tunneling from the elec-
trodes into the ladder, e.g. L → X → X̄ → R. We thus
see in Fig. 4 that relative small variations of tXX̄ consid-
erably modify the current. We note in passing that recent
transport measurements on DNA oligonucleotides have
displayed considerable differences in the conductance of
single- vs. double-stranded DNA, thus suggesting that,
apart from other factors, inter-strand interactions may
play a role in controlling charge transport.59

Our above results are, moreover, very sensitive to the
way the ladder is coupled to the electrodes, as seen from
the upper and lower panels of Fig. 4. These cases are
related respectively to the situation where only the 5’-end
(a) or only the 3’-end sites (b) of the ladder have non-
zero coupling to the electrodes, see Fig. 2 for reference.
Notice that (b) would correspond to the experimental
contact geometry in Ref. [11] where only the 3’-end of
each strand in the double helix is connected − via the
linker groups − to one of the electrodes (Au-substrate
and GNP). Configuration (b) also leads to considerably
higher currents than the case (a).
More generic assertions require, however, a detailed
atomistic investigation of the DNA-metal contact topol-
ogy and base-pairs energetics, which goes beyond the
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FIG. 5: Dependence of the current on the effective electron-
vibron coupling strength g = λ/Ω at T = 300 K and for
tXX̄ = 0.71 t. The vibron frequency was fixed at 20 meV.
With increasing coupling the total current is reduced and the
zero-current gap is enhanced. The lower panels show the spec-
tral density at V ∼ 1.5Volt for the three values of g. Despite
the increased number of vibron satellites with increasing cou-
pling, the total intensity is reduced.

scope of this study.

Fig. 5 shows the influence of the coupling to the vi-
bron mode on the magnitude of the current and of the
zero-current gap. The slope of the I-V curves is con-
siderably reduced with increasing g. The correspond-
ing spectral densities at V ∼ 1.5 Volt, see Fig. 5, lower
panel, show broadening due to the emergence of an in-
creasing number of vibron satellites (inelastic channels)
with larger coupling, but at the same time a redistri-
bution of spectral weights takes place. This is simply
the result of the sum rule

∫
dE A(E) = 2π. The rea-

son for the current reduction can be qualitatively un-
derstood by looking at the spectral density. The reduc-
tion in the intensity of A(E) will clearly lead to a reduc-
tion in the current at a fixed voltage, since it is basically
the area under A(E, V = const.) within the energy win-
dow [EF − eV/2, EF + eV/2] which really matters. No-
tice also the increase of the zero-current gap with increas-
ing electron-vibron coupling (vibron blockade), which is
related to the exponential suppression of transitions be-
tween low-energy vibronic states.39Alternatively, this can
be interpreted as an increase of the effective mass of
the polaron which thus leads to its localization and to
a blocking of transport at low energies.

Fig. 6 shows in a more systematic way the influence of
λ and Ω on the elastic and inelastic components of the
total current. The dependence on λ is easier to under-
stand since only the prefactors φn(τ) do depend on it.
One can show that φn=0(τ) is a monotonous decreas-
ing function of g(or λ), while φn6=0(τ) grows up first,
reaches a maximum, and then exponentially decays for
larger g. As a result, the elastic current starts at its

bare value for zero coupling to the vibron mode and then
it rapidly decreases when increasing the coupling, be-
cause the probability for emission/absorption of vibrons
accordingly increases. The inelastic component, on the
other hand, will first increase for moderate coupling and
thus gives the dominant contribution to the total cur-
rent over some intermediate range of g’s (which will also
depend on the temperature and the vibron frequency).
For even larger g’s the inelastic current also goes to zero
and the current will be finally suppressed, since there is
an increasing trend to charge localization with increasing
coupling to the vibron. The behavior at large frequen-
cies is also plausible, see lower panel of Fig. 6, since the
average distance between the elastic peak and the inelas-
tic channels is of the order nΩ; if Ω is large enough an
electron injected with a given energy (fixed voltage) will
not be able to excite vibrons in the molecular region and
thus only the elastic channel will be available. Alterna-
tively, a very stiff mode (Ω → ∞) will clearly have no
influence on the transport. For very low Ω the inelastic
current will obviously vanish, but the elastic component
should simply go over into its bare value without charge-
vibron coupling. The fact that also the elastic part goes
to zero in Fig. 6, lower panel, is simply an artifact re-
lated to the fact that at Ω = 0 the LF transformation is
ill-defined. Since we only consider finite frequencies, this
limiting case is not relevant for our discussion.Technical
details are presented in Appendix B.
We finally show that extending the previous model to
include two vibrational excitations allows for a semi-
quantitative description of the experimental results of
Ref. [11]. One should, however, keep in mind that these
calculations are not giving an explanation of the high cur-
rents observed; from the experimental point of view there
are some issues like the number of molecules contacted or
the specific details of the DNA-metal contacts which are
not completely clarified. Our aim is rather to point out
at the possible influence of vibrational degrees of free-
dom in these recent experiments. Using the formalism of
Sec. II it is straightforward to obtain expressions for the
current in the two-vibron case. One finds (gs = λs/Ωs,
s=1,2):

jtot(V ) =
e

2h

∞∑

n=−∞

∞∑

m=−∞

φn,1 φm,2

∫

dE ×

{[fL(E)(1 − fR(E − (nΩ1 +mΩ2)))

− fR(E)(1 − fL(E − (nΩ1 +mΩ2)))]

× t(E − (nΩ1 +mΩ2))

+ [fL(E + (nΩ1 +mΩ2))(1− fR(E))

− fR(E + (nΩ1 +mΩ2))(1 − fL(E))]

× t(E + (nΩ1 +mΩ2))}
φn,s(τ) = e−g2

s
(2Ns+1) × In(τs) e

βΩs n/2.

The interpretation of the individual contributions is simi-
lar to the single-mode case. In Fig. 7 two different experi-
mental curves are shown together with the corresponding
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FIG. 6: Dependence of the elastic (n = 0) and inelastic (n 6=
0) components of the current at a fixed voltage on the electron-
vibron coupling strength λ and the mode frequency Ω. A more
detailed analysis of the behavior is presented in the text. The
dashed lines correspond to the total current (sum of elastic
and inelastic components)

theoretical I-V plots. Taking into account the simplicity
of the model presented in this paper, the agreement is
rather good. The values used for the charge-vibron cou-
pling (λ1 = 15(35)meV, λ2 = 15(20)meV) and vibron
frequencies (Ω1 = 20meV,Ω2 = 6meV) for the yellow
(black) theoretical curves have reasonable orders of mag-
nitude for low-frequency modes, see e.g. Ref. [21]. We
stress, however, that the absolute values of the current
are mainly determined in our model by the size of the
electronic hopping integrals; the influence of the vibrons
is to modify the shape and slope of the curves.

To conclude, we have investigated in this paper signa-
tures of electron-vibron interaction in the I-V charac-
teristics of a DNA model. Our main motivation were
recent experiments on short suspended DNA oligomers
with a complex base-pair sequence.11,12 The complexity
of the physical system under investigation does not allow
to draw a definitive conclusion about the mechanism(s)
leading to the observed high currents. We have shown
that vibrons coupled to the total electronic charge den-
sity can considerably influence the current outside the
zero-current gap. The “quality” of the molecule-electrode
coupling was also shown to modify the orders of magni-
tude of the current. Another critical parameter in this
model, the electronic hopping, may be modified by non-
local electron-vibron coupling related, e.g., to inter-base
vibrations49,51 or by electron-electron interactions41 and
as a result, the current profile is also expected to be mod-
ify.
Finally we would like to comment on a recent estimation
of the maximum current which could be attained in a
DNA molecule, which was based on a kinetic model for
a molecular wire.31 This approach assumes thermal hop-
ping, i.e. sequential tunneling with complete destruction

-1 0 1
V(Volt)

-100

0

100

I(
nA

)

exp.
exp.
t
XX

/t=1.02, g1=0.75   g2=3.3
t
XX

/t=1.07, g1=1.75   g2=2.5

FIG. 7: Theoretical curves (solid lines) compared with two
different I-V curves as obtained on suspended double-strand
DNA oligomers contacted by a GNP.11 In both cases the tem-
perature and the coupling to the electrodes were kept fixed at
T = 300 K and ΓL,X = ΓR,X̄ = 250meV,ΓR,X = ΓL,X̄ = 0,
respectively.

of the phase coherence previous to each hopping process
between nearest neighbors. Strikingly, the authors pre-
dict a maximum current of the order of pico-Amperes, in
contrast to recent experimental results.10,11,12 As shown
in the present paper, the absolute value of the current
can be dramatically changed by varying the electronic
hopping integrals as well as by the way the two strands
are contacted to the electrodes. Moreover, since the elec-
tronic matrix elements used in our investigation are on
the average larger than the polaron localization energy
∼ g2Ω, we are not working in the purely incoherent hop-
ping limit, where the former quantities can be treated as
a small perturbation and golden-rule-like expressions do
hold. In this respect our model differs from the approach
in Ref. [31]. Additional theoretical work is required to
bridge kinetic and microscopic model approaches as well
as to obtain reliable estimates of the electronic param-
eters in specific DNA wires including structural fluctua-
tion effects.47,52 From the experimental point of view it
would be highly desirable: (i) to perform a systematic
study on the effect of base pair sequence and length de-
pendence on the current and the conductance within the
set-up of Ref. [11,12], since the length-scaling of the lin-
ear conductance is an important benchmark for disclosing
the most effective transport channels in molecular wires;
(ii) to explore different contact geometries.
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APPENDIX A: DERIVATION OF EQ. (8)

In order to derive Eq. 8, all we need to show is that terms
proportional to Tr{ΓLΓL · · · } and Tr{ΓRΓR · · · } identi-
cally vanish. Let’s assume e. g. , that ΓR = 0. Thus, the
left-going current, which is proportional to ΓLΓL must be
zero. From Eq. 2, we first obtain:

JL =
2i e

h

∞∑

n=−∞

φn(τ)

∫

dE Tr[ΓL{fL(E)G>(E − nΩ)

+ (1− fL(E))G<(E + nΩ)}]. (A1)

Use now the kinetic equation for the Green function

G<(>)(E) = Gr(E)Σ
<(>)
L (E)Ga(E), where ΓR = 0

has been already set, and insert it in the above equa-
tion with the short-hand notations C± = Tr{ΓLG

r(E ±
nΩ)ΓLG

a(E ± nΩ)}. We get:

JL =
2e

h

∞∑

n=−∞

φn(τ)

∫

dE{fL(E) (1 − fL(E − nΩ))C−

− (1 − fL(E)) fL(E + nΩ)C+}. (A2)

If we now change n → −n in the second term and use
the symmetry φ−n = φne

−βnΩ together with the identity
(1− fL(E)) = eβ(E−µL)fL(E), we find:

JL =
2e

h

∞∑

n=−∞

φn(τ)

∫

dE fL(E) (1 − fL(E − nΩ))C−

× {1− eβ(E−µL)e−β(E−µL−nΩ)e−βnΩ} = 0. (A3)

This means that only mixed terms containing
Tr{ΓL · · ·ΓR} contribute to the current. It is then
straightforward to show along the same lines that Eq. 8
comes out.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF
THE CURRENT AS A FUNCTION OF λ AND Ω

The asymptotic behavior of the current as a function of
the electron-vibron coupling can be immediately under-
stood by looking at the prefactors φn(τ), since only at
this place λ does appear. Using the asymptotic behav-
ior of the Bessel functions, In(z ≪ 1) ∼ zn/2nn! and

In(z ≫ 1) ∼ ez/
√
2πz, one sees that:

φn(g ≪ 1) ∼ e−g2(2N+1) eβΩn/2 g2n

n!
[N(N + 1)]n/2

∼ e−g2(2N+1)g2n,

φn(g ≫ 1) ∼ e−g2(2N+1) eβΩn/2 e2g
2NeβΩ/2

√

4πg2NeβΩ/2

=
eβΩn/2

√

4πg2NeβΩ/2
e−g2

A>0!

︷ ︸︸ ︷

N [eβΩ − 2eβΩ/2 + 1],

φn(g ≫ 1) ∼ e−g2A

g
→ 0.

From here it follows that the inelastic current will grow
as some power of g2 and then decay to zero, while the
elastic part (n = 0) starts from its bare value (at λ = 0)
and then rapidly decays for larger values of the electron-
vibron interaction.
In order to analyze the behavior of the current for small
and large frequencies, it is appropriate to write Eq. 8 in
a slightly different form. Doing a change of variables in
the + and − components, we arrive at:

jT = φ0(τ) 2
e

h

∫

dE t(E) (fL(E)− fR(E)) +

+
e

h

∑

n6=0

φn(τ)

∫

dE t(E) Λn(E,Ω)

= jel + jinel

Λn(E,Ω) = fL(E + nΩ)(1− fR(E)) −
− fR(E + nΩ)(1− fL(E))

+ fL(E)(1 − fR(E − nΩ))−
− fR(E)(1 − fL(E − nΩ)).

The sum can be now split into terms with n > 0 and
terms with n < 0. Using the symmetry φ−n(τ) =
φn(τ)e

−βΩn, the above expressions can be cast into the
following form:

jT = φ0(τ) 2
e

h

∫

dE t(E) (fL(E)− fR(E)) +

+
e

h

∑

n≥1

φn(τ)

∫

dE t(E)
{
Λn(E,Ω) + Λ−n(E,Ω)e−βΩn

}

Let’s consider the case of large vibron frequency. We
can use the fact that f(E ± nΩ) goes to 0 (+) or 1 (−)
when Ω → ∞. Note that in this case Λn(E,Ω) vanishes
while Λ−n(E,Ω) goes over into 2(fL(E)− fR(E)). Using
this result together with the asymptotic behavior of the
Bessel functions for small arguments leads to:

jinel ≈ 2
e

h

∑

n≥1

∫

dE t(E) (fL(E)− fR(E)) ×

× e−g2 g2n

n!
e−βΩn/2 eβΩn/2e−βΩn Ω→∞−→ 0

Hence, the inelastic current vanishes at very large fre-
quencies. The elastic current, however, saturates at the
value (2e/h)

∫
dE t(E)(fL(E)− fR(E)), since φn=0(τ) ∼

e−g2

I0(2g
2e−βΩ) → e−g2 → 1 when Ω → ∞.

In the case Ω → 0, the inelastic part of the current will
adopt the following form (with x = ~Ω/kBT ):

jinel ≈ 4
e

h

∑

n≥1

∫

dE t(E) (fL(E)− fR(E)) ×

× e−2g2/x e2g
2/x

√

4πg2

√
x eβΩn ∼

√
x

x→0−→ 0,

where the asymptotic expansion of the Bessel functions
for large argument has been used. A similar scaling would



10

follow for the elastic part of the current, so that for Ω → 0
the total current is suppressed. This is clearly an artifact

of the limiting procedure, since the Lang-Firsov transfor-
mation is obviously ill-defined at zero frequency.
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