
ar
X

iv
:c

on
d-

m
at

/0
50

81
43

v2
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

1 
O

ct
 2

00
5

Nonequilibrium excitations of molecular vibrons
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We consider the nonequilibrium quantum vibrations of a molecule clamped between two macro-
scopic leads in a current-carrying state at finite voltages. Our approach is based on the nonequilib-
rium Green function technique and the self-consistent Born approximation. Kinetic equations for
the average populations of electrons and vibrons are formulated in the weak electron-vibron coupling
case and self-consistent solutions are obtained. The effects of vibron emission and vibronic instabil-
ity are demonstrated using few-orbital models. The importance of the electron-vibron resonance is
shown.

During the past several years, nonequilibrium quantum
transport in nanostructures and, in particular, transport
through single molecules, has been in the focus of both
experimental and theoretical investigations because of
possible electronic device applications. Recently, the in-
teraction of electrons with molecular vibrations attracted
attention after experiments on inelastic electron trans-
port through single molecules [1, 2, 3, 4, 5, 6, 7, 8]. New
theoretical treatments were presented in Refs. [9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. In this Letter, we
consider a quantum theory of nonequilibrium vibronic
excitation.

Basically there are two main nonequilibrium effects:
the electronic spectrum modification [21] and excitation
of vibrons (quantum vibrations). In the weak electron-
vibron coupling case the spectrum modification is usually
small (which is dependent, however, on the vibron dis-
sipation rate, temperature, etc.) and the main possible
nonequilibrium effect is the excitation of vibrons at fi-
nite voltages. We develop an analytical theory for this
case. This theory is based on the self-consistent Born
approximation (SCBA), which allows to take easily into
account and calculate nonequilibrium distribution func-
tions of electrons and vibrons.

If the mechanical degrees of freedom are coupled
strongly to the environment (dissipative vibron), then
the dissipation of molecular vibrations is determined by
the environment. However, if the coupling of vibrations
to the leads is weak, we should consider the case when
the vibrations are excited by the current flowing through
a molecule, and the dissipation of vibrations is also de-
termined essentially by the coupling to the electrons. In
this Letter, we show that the effects of vibron emission
and vibronic instability are important especially in the
case of electron-vibron resonance.

We describe a molecule coupled to free conduction elec-
trons in the leads by a usual tunneling Hamiltonian. Fur-
thermore, the electrons are coupled to vibrational modes.
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We do not consider Coulomb interaction to avoid fur-
ther effects, such as Coulomb blockade and Kondo effect,
which could dominate over the physics which we want
to address, however self-consistent mean-field effects can
be included easily in our approach. The full Hamilto-
nian is the sum of the molecular Hamiltonian ĤM , the
Hamiltonians of the leads ĤR(L), the tunneling Hamil-

tonian ĤT describing molecule-lead coupling, the vibron
Hamiltonian ĤV including electron-vibron coupling and
coupling of vibrations to the environment

Ĥ = ĤM + ĤL + ĤR + ĤT + ĤV . (1)

A molecule (as well as a system of small quantum dots)
is described by a set of localized states |α〉 with energies
ǫα (tight-binding model) by the following model Hamil-
tonian:

Ĥ
(0)
M =

∑

α

(ǫα + eϕα(t)) d
†
αdα +

∑

α6=β

tαβd
†
αdβ , (2)

where d†α,dα are creation and annihilation operators in
the states |α〉, and ϕα(t) is the (self-consistent) electrical
potential.
The Hamiltonians of the right (R) and left (L) leads

are

Ĥi=L(R) =
∑

kσ

(ǫikσ + eϕi(t))c
†
ikσcikσ , (3)

dissipation
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L R

Figure 1: (Color online) Schematic picture of the considered
system.
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ϕi(t) are the electrical potentials of the leads, and the
tunneling Hamiltonian

ĤT =
∑

i=L,R

∑

kσ,α

(

Vikσ,αc
†
ikσdα + h.c.

)

(4)

describes hopping between the leads and the molecule.
Direct hopping between two leads is neglected (weak
molecule-lead coupling case).
Vibrations and the electron-vibron coupling are de-

scribed by the Hamiltonian [14, 15, 16]

ĤV =
∑

q

~ωqa
†
qaq +

∑

αβ

∑

q

M
q
αβ(aq + a†q)d

†
αdβ . (5)

Here vibrations are considered as localized phonons and
q is an index labelling them, not the wave-vector. We in-
clude both diagonal coupling, which describes a change of
the electrostatic energy with the distance between atoms,
and the off-diagonal coupling, which describes the de-
pendence of the matrix elements tαβ over the distance
between atoms.
We use the nonequilibrium Green function (NGF)

method [22, 23], which now is a standard approach in
mesoscopic physics and molecular electronics [1]. We
follow the formulation of Meir, Wingreen, and Jauho
[24, 25, 26], which has been already applied to the case
of self-consistency in Ref. [21].
The current in the left (i = L) or right (i = R) contact

to the molecule is described by the well-known expression

Ji=L,R =
ie

~

∫

dǫ

2π
Tr

{

Γi(ǫ− eϕi)
(

G
<(ǫ)+

+f0
i (ǫ − eϕi)

[

G
R(ǫ)−G

A(ǫ)
])}

,

(6)

where f0
i (ǫ) is the equilibrium Fermi distribution function

with chemical potential µi, and the level-width function
is

Γi=L(R)(ǫ) = Γiαβ(ǫ) = 2π
∑

kσ

Vikσ,βV
∗
ikσ,αδ(ǫ − ǫikσ).

The matrix lesser (retarded, advanced) Green func-

tions of a nonequilibrium molecule G
<(R,A) ≡ G

<(R,A)
αβ

can be found from the Dyson-Keldysh equations in the
integral form or from the corresponding equations in the
differential form [21] (and references therein).
In the standard self-consistent Born approximation,

using the Keldysh technique, one obtains for the vibronic
self-energies [13, 14, 15, 16, 18, 19, 26, 27]

Σ
R(V )(ǫ) =

i

2

∑

q

∫

dω

2π

(

M
q
G

R
ǫ−ωM

qDK
qω+

+M
q
G

K
ǫ−ωM

qDR
qω − 2DR

qω=0M
qTr

[

G
<
ωM

q
])

, (7)

Σ
<(V )(ǫ) = i

∑

q

∫

dω

2π
M

q
G

<
ǫ−ωM

qD<
qω, (8)

where G
K = 2G< + G

R − G
A is the Keldysh Green

function, and M
q ≡ M

q
αβ .

In our model the retarded vibron function is calculated
from the Dyson-Keldysh equation

DR(q, ω) =
2ωq

ω2 − ω2
q − 2ωqΠR(q, ω)

, (9)

where Π(q, ω) is the polarization operator (boson self-
energy). The equation for the lesser function (quantum
kinetic equation in the integral form) is

(ΠR
qω −ΠA

qω)D
<
qω − (DR

qω −DA
qω)Π

<
qω = 0, (10)

this equation in the stationary case considered here is
algebraic in the frequency domain.
The polarization operator is the sum of two parts, en-

vironmental and electronic: ΠR,<
qω = Π

R,<(env)
qω +Π

R,<(el)
qω .

The environmental equilibrium part of the polarization
operator can be approximated by the simple expressions

ΠR(env)(q, ω) = −
i

2
γqsign(ω), (11)

Π<(env)(q, ω) = −iγqf
0
B(ω)sign(ω), (12)

where γg is the vibronic dissipation rate, and f0
B(ω) is

the equilibrium Bose-Einstein distribution function.
The electronic contribution to the polarization opera-

tor within the SCBA is

ΠR(el)(q, ω) = −i

∫

dǫ

2π
Tr

(

M
q
G

<
ǫ M

q
G

A
ǫ−ω+

+M
q
G

R
ǫ M

q
G

<
ǫ−ω

)

, (13)

Π<(el)(q, ω) = −i

∫

dǫ

2π
Tr

(

M
q
G

<
ǫ M

q
G

>
ǫ−ω

)

. (14)

We obtained the full set of equations, which can
be used for numerical calculations. We simplify these
equations and obtain some analytical results in the vi-
bronic quasiparticle approximation, which assumes weak
electron-vibron coupling limit and weak external dissipa-
tion of vibrons:

γ∗
q = γq − 2ImΠR(ωq) ≪ ωq. (15)

So that the spectral function of vibrons can be approxi-
mated by the Dirac δ, and the lesser function reads

D<(q, ω) = −2πi [(Nq + 1)δ(ω + ωq) +Nqδ(ω − ωq)] ,
(16)

where Nq is (nonequilibrium) number of vibrations in the
q-th mode. So, in this approximation the spectrum modi-
fication of vibrons is not taken into account, but the pos-
sible excitation of vibrations is described by the nonequi-
librium Nq. The dissipation of vibrons is neglected in the
spectral function, but is taken into account later in the
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kinetic equation for Nq. A similar approach to the single-
level problem was considered recently in [13, 18, 19].
The more general case with broadened equilibrium vi-
bron spectral function seems to be not very interesting,
because in this case vibrons are not excited. Neverthe-
less, in the numerical calculation it can be easy taken
into consideration.
From the general quantum kinetic equation for vibrons

(10) we obtain in this limit

Nq =
γqN

0
q − ImΠ<(ωq)

γq − 2ImΠR(ωq)
. (17)

This expression describes the number of vibrons Nq

in a nonequilibrium state, N0
q = f0

B(ωq) is the equi-
librium number of vibrons. In the linear approxima-
tion the polarization operator is independent of Nq

and −2ImΠR(ωq) describes additional dissipation. Note
that in equilibrium Nq ≡ N0

q because ImΠ<(ωq) =

2ImΠR(ωq)f
0
B(ωq). See also detailed discussion of vibron

emission and absorption rates in Refs. [18].
For weak electron-vibron coupling the number of vi-

brons is close to equilibrium and is changed because of vi-
bron emission by nonequilibrium electrons, Nq is roughly
proportional to the number of such electrons, and the
distribution function of nonequilibrium electrons is not
change essentially by the interaction with vibrons (per-
turbation theory can be used). The situation changes,
however, if nonequilibrium dissipation −2ImΠR(ωq) is
negative. In this case the number of vibrons can be essen-
tially larger than in the equilibrium case (vibronic insta-
bility), and the change of electron distribution function
should be taken into account self-consistently.
In the stationary state the nonlinear dissipation rate

γ∗
q = γq − 2ImΠR(ωq) (18)

is positive, but the nonequilibrium contribution to dissi-
pation −2ImΠR(ωq) remains negative.
Additionally to the vibronic quasiparticle approxima-

tion, the electronic quasiparticle approximation can be
used when the coupling to the leads is weak. In this
case the lesser function can be parameterized through
the number of electrons Fη in the eigenstates of the non-

interacting molecular Hamiltonian H
(0)
M

G<
αβ = i

∑

γη

AαγSγηFηS
−1
ηβ , (19)

we introduce the unitary matrix S, which transfer the

Hamiltonian H ≡ H
(0)
Mαβ into the diagonal form H̃ =

S
−1

HS, so that the spectral function of this diagonal
Hamiltonian is

Ãδη(ǫ) = 2πδ(ǫ− ǫ̃δ)δδη, (20)

where ǫ̃δ are the eigenenergies.
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Figure 2: (Color online) Vibronic emission in the symmetric
multilevel model: voltage-current curve, differential conduc-
tance, and the number of excited vibrons in the off-resonant
(triangles) and resonant (crosses) cases (details see in the
text).

Note that in the calculation of the self-energies and po-
larization operators we can not use δ-approximation for
the spectral function (this is too rough and results in the
absence of interaction out of the exact electron-vibron
resonance). So that in the calculation we use actually
(19) with broadened equilibrium spectral function. This
approximation can be systematically improved by includ-
ing nonequilibrium corrections to the spectral function,
which are important near the resonance. It is important
to comment that for stronger electron-vibron coupling
vibronic side-bands are observed in the spectral function
and voltage-current curves at energies ǫ̃δ ± nωq, we do
not consider these effects in the rest of our paper and
concentrate on resonance effects.
After correspondingly calculations we obtain finally

Nq =
γqN

0
q −

∑

ηδ κηδ(ωq)Fη(Fδ − 1)

γq −
∑

ηδ κηδ(ωq)(Fη − Fδ)
, (21)

where coefficients κηδ are determined by the spectral
function and electron-vibron coupling in the diagonal
representation

κηδ(ωq) =

∫

dǫ

2π
M̃

q
ηδÃδδ(ǫ− ωq)M̃

q
δηÃηη(ǫ), (22)

Fη =
Γ̃Lηηf

0
Lη+Γ̃Rηηf

0
Rη+

∑

qη

[

ζ
−q
ηδ FδNq+ζ

+q
ηδ Fδ(1+Nq)

]

Γ̃Lηη+Γ̃Rηη+
∑

qη

[

ζ
−q
ηδ (1−Fδ+Nq)+ζ

+q
ηδ (Fδ+Nq)

] ,

(23)

ζ
±q
ηδ = M̃

q
ηδÃδδ(ǫ̃η ± ωq)M̃

q
δη, (24)

here Γ̃iηη and f0
iη are the level width matrix in the diago-

nal representation and Fermi function at energy ǫ̃η−eϕi.
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Figure 3: (Color online) Vibronic instability in an asymmetric
multilevel model: voltage-current curve, differential conduc-
tance, and the number of excited vibrons (crosses). Dashed
line show the voltage-current curve without vibrons (details
see in the text).

These kinetic equations are similar to the usual golden
rule equations, but are more general.

Now let us consider several examples of vibron emission
and vibronic instability.

(i) Vibron emission. First we consider the most sim-
ple case, when the instability is not possible and only
vibron emission takes place. This corresponds to a neg-
ative imaginary part of the electronic polarization oper-
ator: ImΠR)(ωq) < 0. From the Eq. (22) one can see
that for any two levels with the energies ǫ̃η > ǫ̃δ the coef-
ficient κηδ is larger than κδη, because the spectral func-

tion Ãδδ(ǫ) has a maximum at ǫ = ǫ̃δ. The contribution
of κηδ(ωq)(Fη − Fδ) is negative if Fη < Fδ. This takes
place in equilibrium, and in nonequilibrium for transport
through symmetric molecules, when higher energy levels
are populated after lower levels. The example of such
a system is shown in Fig. 2. Here we consider a sim-
ple three-level system (ǫ̃1 = 1, ǫ̃2 = 2, ǫ̃3 = 3) coupled
symmetrically to the leads (ΓLη = ΓRη = 0.01). The
current-voltage curve is the same with and without vi-
brations in the case of symmetrical coupling to the leads
and in the weak electron-vibron coupling limit (if we ne-
glect change of the spectral function). The figure shows
how vibrons are excited, the number of vibrons NV in the
mode with frequency ω0 is presented in two cases. In the
off-resonant case (green triangles) NV is very small com-
paring with the resonant case (ω0 = ǫ̃2 − ǫ̃1, red crosses,
the vertical scale is changed for the off-resonant points).
In fact, if the number of vibrons is very large, the spec-
tral function and voltage-current curve are changed. We
shall consider this in a separate publication.

(ii) Vibronic instability. Now let us consider the situ-
ation when the imaginary part of the electronic polariza-
tion operator can be positive: ImΠR(ωq) > 0. Above we
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Figure 4: (Color online) Floating level resonance: voltage-
current curve and the number of excited vibrons (crosses).
Dashed line show the voltage-current curve without vibrons
(details see in the text).

considered the normal case when the population of higher
energy levels is smaller than lower levels. The opposite
case F2 > F1 is known as inversion in laser physics. Such
a state is unstable if the total dissipation γ∗

q (18) is neg-
ative, which is possible only in the nonstationary case.
As a result of the instability, a large number of vibrons is
excited, and in the stationary state γ∗

q is positive. This
effect can be observed for transport through asymmetric
molecules, when higher energy levels are populated be-
fore lower levels. The example of a such system is shown
in Fig. 3. It is the same three-level system as before,
but the first and second levels are coupled not symmet-
rically to the leads (ΓL1 = 0.001, ΓR1 = 0.1, ΓL2 = 0.1,
ΓR2 = 0.001). The vibron couple resonantly these lev-
els (ωq = ǫ̃2 − ǫ̃1). The result is qualitatively different
from the symmetrical case. The voltage-current curve is
now asymmetric, a large step corresponds to the resonant
level with inverted population.

Note the importance of the off-diagonal electron-vibron
coupling for the resonant effects. If the matrix M̃ in the
eigen-state representation is diagonal, there is no reso-
nant coupling between different electronic states.

(iii) Floating-level resonance. Finally, let us consider
the important case, when initially symmetric molecule
becomes asymmetric when the external voltage is ap-
plied. The reason for such asymmetry is simply that
in the external electric field left and right atoms feel dif-
ferent electrical potentials and the position of the levels

ǫα = ǫ
(0)
α + eϕα is changed (float) with the external volt-

age. The example of a such system is shown in Fig. 4.
Here we consider a two-level system, one level is coupled
electrostatically to the left lead ǫ̃1 ∝ ϕL, the other level
to the right lead ǫ̃2 ∝ ϕR, the tunneling coupling to the
leads also is not symmetrical (ΓL1 = 0.1, ΓR1 = 0.001,
ΓL2 = 0.001, ΓR2 = 0.1). The frequency of the vibration,
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coupling these two states, is ω0 = 1. When we sweep the
voltage, a peak in the voltage-current curve is observed
when the energy difference ǫ̃1− ǫ̃2 ∝ eV is going through
the resonance ǫ̃1 − ǫ̃2 ≈ ω0.
In conclusion, we considered the excitations of quan-

tum molecular vibrations in the nonequilibrium state and
their influence on the voltage-current curves of a single
molecule placed between two equilibrium leads. The im-
portance of vibron emission and vibronic instability in
molecular transport is demonstrated.
We thank J. Keller and K. Richter for valuable dis-

cussions. This work was supported by the Volkswagen
Foundation under grant I/78 340 and by the EU under
contract IST-2001-38951.
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