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We investigate the combined influence of structural defects and uniaxial longitudinal strain on
the electronic transport properties of armchair graphene nanoribbons using the numerical approach
based on the semi-empirical tight-binding model, the Landauer formalism and the recursion method
for Green functions. We calculate the conductance of graphene nanoribbons in the quantum co-
herent regime with different types and concentrations of defects. Further, we apply uniform planar
tension to the non-ideal graphene ribbons with randomly distributed and oriented single and dou-
ble vacancies and Stone-Wales defects. Since transport characteristics of graphene nanoribbons are
found to be very sensitive to edge termination and aspect ratio and it has been shown that energy
gaps can emerge under critical strain, the interplay of both effects needs to be studied. We show
that band gap engineering using strain is still possible for non-ideal armchair ribbons with a small
defect concentration, as the oscillatory behaviour of the gap is preserved.

PACS numbers: 73.63.-b, 72.80.Vp

I. INTRODUCTION

Since its first isolation by Novosolev and Geim1 in
2004, graphene has been under intensive studies. Re-
cently, tremendous interest in the use for electronic nan-
odevices has been raised because of its outstanding fea-
tures, especially the ballistic transport and high electron
mobility at room temperatures.

Graphene with its zero-gap property is not applica-
ble for logic electronics. Therefore, semi-conducting
graphene nanoribbons (GNR) are in high demand for
many applications in future nanodevices, raising the
question how to effectively tune the energy gap. Besides
constraining the ribbon width to several nanometers or
doping, mechanical deformation is a suitable candidate.
The effect of uniaxial mechanical strain in ideal GNRs
has been adressed by several theoretical studies2–11 be-
fore and there is consensus that the spectral band gap is
indeed sensitive to external strain. For zigzag graphene
nanoribbons (ZGNR) one observes a monotonous in-
crease for tensile uniaxial strain, whereas for armchair
terminated ribbons (AGNR) the situation becomes more
involved. AGNRs display a triangular oscillating feature,
with a width dependent periodicity and amplitude. The
two substantially different observations can be related
to the totally distinct underlying mechanisms. For arm-
chair termination the oscillatory band gap emerges due
to shifting of the Fermi point perpendicular to the k val-
ues of allowed electronic states forming parallel lines.12

Whereas in ZGNRs the band gap widening is caused by
strain improved spin polarization in the edge states.2

In this paper, we deepen the understanding of elec-
tronic properties of non-ideal strained GNR by studying
the combined effect of uniaxial strain and structural de-
fects on the conductance properties. We combine ab ini-
tio structure studies with a semi-empirical tight-binding
model for large scale electron transport calculations in

(a)

(b)

Figure 1: (a) Conceptual sketch of the model setup. Longitu-
dinal tensile uniaxial strain is applied to a defected armchair
graphene nanoribbon, which is contacted to metallic wide-
band electrodes at each side. (b) Visualization of the modu-
lar approach to construct a large defected ribbon from small
geometry optimized segments.

the quantum coherent regime of a ribbon, strongly cou-
pled to metallic electrodes in the wide-band limit.

As all previous studies assumed the ribbons to be
ideal, we analyze the effect of uniaxial strain in a more
realistic setup with reference to potential applications.
We include the existence of several vacancy defect types
with various concentrations and adopt an improved con-
tact model in contrast to the widely used semi-infinite
graphene leads. In addition to the case of straining the
system on purpose for band gap engineering, there are
also many circumstances where strain is not intentional
but can not be avoided, e.g. due to lattice mismatch with
the substrate or contacting to electrodes. Therefore, the
understanding of the interplay between strain and de-
fects in non-ideal ribbons gets even more important. We
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will only focus on AGNRs, because its band gap is more
sensitive to strain resulting in better tuning capabilities
and the fact that in ZGNRs the transport properties are
mainly governed by edge states, requiring spin polarized
transport calculations.

The paper is organized as follows. In Sec. II we briefly
introduce our model, in particular we explain our mod-
ular approach for the ribbon geometry and provide de-
tails on the contact type, defect varieties and mechanical
straining. Furthermore, we explain our used methods for
geometry optimization and transport calculations. Sub-
sequently we present our results on mechanical properties
and transport characteristics in Sec. III and discuss the
combined effect of strain and defects on the conductance
properties of AGNRs. We conclude in Sec. IV.

II. MODEL AND METHOD

Throughout this work we have used a long and narrow
armchair graphene nanoribbon, which consists of 1120
zigzag rows in longitudinal direction with 98 atoms each,
resulting in dimensions of approximately 11 nm in width
and 220 nm in length. This high aspect ratio ribbon is
side-contacted to metallic wide-band leads, with a con-
tacted length of about 3.3 nm, i.e. 16 zigzag rows, at
each end. We include several defect types, such as Stone-
Wales, single and double vacancies, randomly distributed
and oriented to account for a non-ideal, more realistic
geometry (see Fig. 1a), but the contact areas remain un-
defected. We want to point out, that Stone-Wales de-
fects are actually no vacancy defects, but just 90◦-rotated
carbon-carbon bonds producing two pentagon-heptagon
pairs. However, as it has been often identified in TEM
images, we included it here. For the double vacancies,
there exist actually three different configurations: V2(5-
8-5), V2(555-777) and V2(5555-6-7777), all emerging from
each other by bond rotation. As experimental values for
the concentrations of the individual defect types are still
missing, we use equal probabilities for all varieties. To
set up our system geometry, we start from a modular ap-
proach. Using various kinds of small and equally sized
graphene patches, which include one of the defect types
described above (see Fig. 2) and are uniaxially strained
by a certain value, we construct a large, high aspect-
ratio ribbon. This technique allows us to investigate
much larger defected structures, not being constrained
by computational intense geometry optimizations.

For the mechanical straining, we obtain the strained
lattice vectors by performing structural optimization
of atomic positions and supercell vectors of an infi-
nite graphene sheet with external stress using first-
principle density functional theory, as implemented in the
SIESTA package.13 We employ Troullier-Martins pseu-
dopotentials to treat valence electrons with Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functionals
in the general gradient approximation (GGA) using a
double-zeta basis set with polarization orbitals. A real-
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Figure 2: (Color online) The six various types of building
blocks, which were used to construct a large defected GNR:
(a) pure, (b) single vacancy V1(5-9), (c) Stone-Wales SW (55-
77), (d) double vacancy V2(5-8-5), (e) double vacancy V2(555-
777), (f) double vacancy V2(5555-6-7777). Additionally, all
possible defect orientations have been considered.

space grid equivalent to an energy cutoff of 400 Ry and
a Monkhorst-Pack grid of 15x15x1 has been set up. For
the self-consistent calculation, we chose an energy tol-
erance of 10−5 eV, force tolerance of 0.01 eV/A, stress
tolerance of 0.1 GPa and a target stress tensor in tensile,
longitudinal direction of various strengths, up to 14 GPa.
The largest strain value observed was about 15% and we
concentrated only on elongating deformations, longitu-
dinal compression has not been considered here but the
qualitative picture should be the same.

Using those relaxed lattice vectors, we construct small
graphene patches, consisting of 8 zigzag rows with 14
atoms each, where we inserted one of the above men-
tioned defect types. For each of those individual frag-
ments we performed again a geometry optimization with
similar settings, but without external stress tensor and no
k-sampling, as the system is reasonably large. We fixed
the atomic positions of boundary atoms, namely the out-
most zigzag line and the first two dimer lines, to allow for
a seamless joining of the segments. The patch size has
been chosen large enough that the boundary conditions
do not perturb the defect. The relaxed defect geometries
strongly resemble structures observed in TEM images,14

confirming the structural results. Finally, nearly one
thousand of randomly selected fragments, pure and de-
fected, were used to construct the system of about 220
nm in length. The influence of edge vacancies has not
been studied in particular, but edge effects do not play
any significant role in AGNRs compared to ZGNRs. Fur-
ther it has been shown, that in AGNRs transmission is
nearly independent by the depth of edge defects,15 veri-
fying the validity of our approach.

To investigate the electronic transport properties of
this system in the quantum coherent regime, we mapped
the structure to an one-orbital tight-binding Hamiltonian
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to describe noninteracting π-electrons, considering only
nearest neighbor hopping:

H = ε0
∑
i

c†i ci +
∑
〈i,j〉

t(|~rij |) c†i cj . (1)

Here ε0 is the on-site energy, which gives only an en-

ergy offset and thus can be set to zero, ci and c†i are
the creation and annihilation operators for an electron
in the pz orbital centered on the i-th carbon atom and
〈i, j〉 indicates all pairs of nearest neighbors. We assume
a distance dependent hopping parameter t with an expo-
nential decay6

t(|~rij |) = t0 exp

(
−3.37

(
|~rij |
a
− 1

))
, (2)

where |~rij | is the distance between two neighboring

atoms, a = 1.428 Å the equilibrium carbon-carbon bond
length and t0 = 2.7 eV the hopping in equilibrated
graphene.16 In an atomic basis, Ĥ becomes a block-
tridiagonal matrix and the usual lead-system-lead tri-
partitioning scheme can be applied.

A nearest-neighbor approximation has been chosen for
simplicity and is found to describe low energy properties
good enough for many applications. The transport prop-
erties can now be obtained by using the standard Green
function formalism.17–20 The retarded Green function of
the system is determined by the expression

ĜR(E) =
[
EŜ − Ĥ − Σ̂L − Σ̂R

]−1
, (3)

with the hermitian Hamiltonian Hij = 〈i|H|j〉, energy

E, overlap matrix Ŝ which is defined as the overlap in-
tegral Sij = 〈i|j〉 and the left and right self-energies Σ̂α
(α = L,R) to include coupling to the leads. Note that
in our case the basis is orthogonal, i.e. Sij = δij . The
transmission function of the system

T (E) = Tr(Γ̂LĜ
RΓ̂RĜ

A) (4)

can then be calculated by Eq. (4) with the left and right

broadening functions Γ̂α = −2 ImΣ̂α. Using the Lan-
dauer formalism, the conductance is then proportional
to T (E) with the conductance quantum G0 as prefactor
with spin taken into account:

G(E) =
2e2

h
T (E). (5)

The density of states can also be expressed in terms of
ĜR:

DOS(E) = − 1

π
Im(Tr ĜR). (6)

The direct calculation of the retarded Green function
by means of matrix inversion as indicated in Eq. (3) be-
comes computationally intractable for large systems. To
bypass this bottleneck, we exploit the recursive Green

function technique, which is based on the Dyson equa-
tion and allows a very fast calculation of ĜR especially
for high aspect-ratio systems, by cutting the system in
small slices and building it up slice by slice. Note that
this slicing is completely independent from our modular
construction of the ribbon geometry. This recursive ap-
proach speeds up the calculation from third order O(N3)
in number of atoms N to a first order scaling O(NM3)
with M being the number of states per slice. One gets
the system of recursive equations:33

Ĝ→i+1
i+1,i+1 =

[
EŜ − Ĥi+1,i+1 − Σ̂Lδi,0 − Σ̂Rδi,N−1

−(EŜ − Ĥi+1,i)Ĝ
→i
i,i (EŜ − Ĥi,i+1)

]−1
(7)

Ĝ→i+1
1,i+1 = Ĝ→i1,i (EŜ − Ĥi,i+1 )Ĝ→i+1

i+1,i+1. (8)

Here, Ĝ→i1,i is the propagator between the first and the
i-th slice of the system connected up to the i-th slice to
the left lead and Ĥi,i+1 is the coupling of slice i and

(i + 1). The effect of the leads is again described by

the self-energies Σ̂α, which have to be considered only
for the first and last slice. Ĝ→N1,N is sufficient to calcu-

late the transmission function, as can be seen in Eq. (9).
Additional computational effort, called backward recur-
sion, is required for the density of states, see Eq. (10), as

one needs all diagonal elements Ĝ→Ni,i , but it scales with

O(NM2) faster than Eq. (7) - (8).

T (E) = Tr(Γ̂LĜ
→N
1,N Γ̂RĜ

→N†
1,N ) (9)

DOS(E) = − 1

π
Im(

N∑
i=1

Tr Ĝ→Ni,i ) (10)

For a detailed description of this algorithm we refer to
the respective literature.21–23

III. RESULTS

Armchair type ribbons can be grouped into three fam-
ilies according to their width. They are classified by
Na = 3m, 3m + 1 or 3m + 2, where m is an integer
number and Na the number of atoms per zigzag row.
Only in the latter case AGNRs are metallic in the tight-
binding model, the left two-thirds are semiconducting.
Ab initio calculations have shown that no truly metallic
AGNR exist, but the gap remains very small.26 However,
our system studied in this paper belongs to the (3m+2)-
class and therefore shows metallicity in a simple nearest-
neighbor tight-binding approximation, as can be nicely
seen in Fig. 4. We want to point out that our findings
are qualitatively independent on the chosen class. The
band gap oscillation discussed later in the text (see Fig. 6)
is only shifted along the strain axis and is affected by de-
fects in the same way.
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By applying longitudinal uniaxial strain ε‖ = ∆L/L
of up to 15% one observes a transverse compression
ε⊥ = ∆W/W of up to 1.7%, leading to a positive Pois-
son’s ratio ν = −ε⊥/ε‖, which tends to decrease with
increasing strain (see Fig. 3). Its values are consistent
with other ab-initio studies.3,24,25 For simplicity and due
to the chosen modular model used here, we have ne-
glected the edge effect,4 i.e. stronger carbon bonds for
edge atoms in AGNRs resulting in a slightly different ge-
ometry at the boundaries.

To account for a more realistic contact model in an
application point of view, the ribbon is side-contacted to
metallic wide-band electrodes, in contrast to the widely
used semi-infinite graphene leads. In the latter case the
conductance turns out to be an integer multiple of the
conductance quantum G0, as the channels are transpar-
ent. This step function resembles the quantum upper-
limit for the observed conductance and is therefore also
shown in the conductance plots. For our model, the ad-
ditional constraint in length leads to pronounced Fabry-
Pérot-like oscillations of the transmission, see Fig. 4.
Those Fabry-Pérot oscillations can be useful in experi-
ments as they allow to measure the length of the scatter-
ing region. On the other hand, weakly coupled contacts
can lead to a different behaviour, the Coulomb blockade
regime.27–29 We will not consider this in the present pa-
per, as we assume a rather good contact. As Palladium
turns out to be one of the most favorable electrode ma-
terial for carbon nanostructures,30,31 we have used the
Palladium-specific coupling parameter γC−Pd = 0.15 eV
for the wide-band coupling. This value for the Pd-C cou-
pling has been proposed by Nemec et al.30 by fitting
the tight-binding Pd-C hopping integral to reproduce
the electronic band structure of the hybridized metal-
graphene system near the Fermi level.
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Figure 3: (Color online) Stress-strain curve for an infinite
graphene sheet as obtained by density-functional theory. As
expected, a longitudinal tensile uniaxial strain ε‖ leads to
compression in transverse direction ε⊥, resulting in a positive
Poisson’s ratio ν which values are consistent with other ab-
initio studies (see inset).3,24,25
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Figure 4: (Color online) Conductance spectra for the 98-
AGNR with (a) randomly distributed vacancy defects and
zero strain, (b) longitudinal uniaxial strain without defects
and (c) both, vacancy defects and uniaxial strain combined.
The step-wise behaviour of the ribbon with semi-infinite leads
is shown on top for reference, which gives an upper quantum
limit for the conductance. The spectrum for the non-defected
unstrained ribbon with side-contacted metal electrodes is also
shown in black for comparison, while the effect of strain and
defects can be seen in the colored spectra. All data sets for
defected ribbons have been averaged over 20 equivalent sam-
ples. The density of states (DOS) is presented as an inset to
show the effect on the DOS of the ideal ribbon for each of the
three cases.
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An inverse scaling behaviour can be observed, i.e. G(E =
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Figure 6: (Color online) Strain dependent energy gap in the
conductance for different defect concentrations, illustrating
the combined effect of uniaxial strain and vacancy defects on
the conductance properties of AGNRs. Oscillation is well pre-
served for small defect concentrations, but being suppressed
for high enough values and saturates at a certain level for
concentrations of about 0.1% or higher.

When incorporating a finite defect concentration in the
unstrained ribbon, the conductance properties are dra-
matically changed,32 see Fig. 4a. Transmission is strongly
suppressed even for very small concentrations of 0.02%
and the graphene-like features disappear, i.e. conduc-
tance plateaus vanish, electron-hole symmetry is broken
and metallicity is destroyed. This effect gets enhanced by
increasing the amount of defects, as can be seen in Fig. 5.
One observes an inverse dependency of the conductance
on defect concentration.

The picture is completely different if one considers the
effect of tensile uniaxial strain in the ideal ribbon. The
conductance is only slightly suppressed for high ener-
gies, but symmetry and plateaus remain to be visible,
see Fig. 4b. The largest effect is observed near the Fermi
level, as strain can induce a band gap in metallic AG-

NRs, or change an existent band gap in semiconduct-
ing ribbons in a non-monotonous way. This peculiarity,
exhibiting a zigzag feature has been studied extensively
before and is now well understood.2–11

The open question was how this observed behaviour
is altered by vacancy defects, as they are present in ex-
perimental realizations. It is important to note, that the
conductance gap near the Fermi level opened by defects
is not a spectral band gap, as it is the case for mechanical
deformation. This gap is induced by enhanced scattering
and localization at the defected sites, as can be seen in
the density of states (DOS). Thus we will use the word
pseudo gap instead of band gap in the remaining part of
the present work to account for this circumstance.

Figure 6 shows, how strain and defects affect the
pseudo gap. In the case for no disorder, the linear oscilla-
tory dependency of the band gap can be nicely observed.
Including a small defect concentration, this zigzag fea-
ture is still preserved, but due to localization of low-
energy states the gap can not be re-closed completely
by applying further strain. The same holds true vice
versa, an existing band gap generated by strain can not
be closed by disorder. Hence, the inclusion of defects pro-
vides an additional offset of the energy gap but also leads
to strong suppression of the conductance. The oscillation
is expected to disappear for high concentrations of about
0.1% or higher, as more and more states will be localized,
but this regime is not interesting for applications because
of its low conductivity. However, low disorder shows lit-
tle effect on the qualitative behaviour of the energy gap,
proving that mechanical strain is a real tool for effective
band gap engineering.

IV. CONCLUSIONS

In summary, we presented in this work a novel ap-
proach to set up geometries of large scale strained
graphene nanoribbons with structural defects to account
for more realistic system configurations and showed how
one can effectively investigate its transport properties.
The inclusion of vacancy defects shows a strong suppres-
sion of transmission due to scattering and localization,
whereas mechanical strain affects largely only the con-
ductance near the Fermi level by modifying the spectral
band gap. The known oscillatory behaviour of the en-
ergy gap induced by uniaxial strain has been reproduced.
Combining the effects of strain and defects, we revealed
how a finite concentration of several vacancy defects af-
fects this peculiarity. As it turns out, the zigzag feature
is preserved for low disorder, which leaves mechanical
strain as a valuable tool to tune the energy gap in non-
ideal GNRs, applicable for future nanodevices.
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