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Abstract

Adapting a simple biological model, we study the effects of control on the market.
Companies are depicted as sites on a lattice and labelled by a fitness parameter (some
‘company–size’ indicator). The chance of survival of a company on the market at any
given time is related to its fitness, its position on the lattice and on some particular
external influence, which may be considered to represent regulation from governments
or central banks. The latter is rendered as a penalty for companies which show a very
fast betterment in fitness space. As a result, we find that the introduction of regulation
on the market contributes to lower the average fitness of companies.
PACS: 05.65 self organized criticality - 87.23.Ge Biological physics: ecology and evolu-
tion: Dynamics of social systems - 89.90.+n Other areas of general interest to physicists
Keywords: Critical dynamics, Self–organization, Economic regulation, Evolutionary
models.

Complex extended systems showing critical behavior, a lack of scale in their features, appear to
be widespread in nature, being as diverse as earthquakes [1], river networks [2], and biological
evolution [3]. The common characteristic of these systems is that they do not need any fine
tuning of a parameter to be in a critical state. In an attempt to explain this behavior, Bak,
Tang and Wiesenfeld introduced the concept of self–organized criticality (SOC) [4]. In the
critical state, there are long range interactions, by which each part of the system feels the
influence of all the others. More precisely, this means that many of the relevant observables
in the system follow a power–law or Pareto–Lévy distribution with a non-trivial exponent.
Human society is, by far, one of the more complex extended systems. Its self–organisation
is evident: Every single characteristic (historical, cultural, etc.) of a member of a society
influences all the other members around him, and through them all the others, in a non–trivial
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way. However, despite this complexity, it is universally accepted that cultural details play an
interesting but somewhat “marginal” role in the human history. Economic development has
always been considered the driving (or relevant) force in determining the relationships inside
a society (for new perspectives on this old topic, the reader is kindly referred to [5]).
Moreover, it has been confirmed, first in the context of paleontology, that evolution and
extinction follow a pattern of punctuated equilibrium [6]. In a nutshell, punctuated equilib-
rium means that long periods of stasis, during which no significant changes take place, are
interrupted by sudden bursts of activity, that may last for a very short time, after which
the qualitative structure of the system might be completely changed. Models for biological
evolution have shown how punctuated equilibrium–like behavior arises naturally if the system
is in a self–organized critical state [3].
Something similar could be said about human history. Indeed, the fact that it follows a
“punctuated” pattern is a widely acknowledged observation: Wars, famines, revolutions and
counter–revolutions are the most evident (and extreme) illustrations of these bursts of histori-
cal activity. There is enough data in the last ten years (not to speak of the last ten centuries),
to illustrate this fact. It is then natural, if nothing else by the force of mere analogy, to look
for evidences of critical behavior in social systems. In this paper we will concentrate on one
particular aspect of social systems, namely economic processes. Since economy is the one
of the most relevant factors in determining the structure of a society, a great deal of effort
has been devoted in recent years to the analysis of economic data. From stock–exchange
fluctuations [7], models of production [8], to size distribution of companies [9], it has finally
been shown that market economy exhibits properties characteristic of a critical system [10].
Although we are still far from being able to predict large–scale phenomena, such as recessions,
crashes, etc., these results lend credence to the theory that economy is indeed a self–organized
critical system. Bearing these considerations in mind, we present here a simple model that
shows SOC on a macroeconomic level together with some of its implications.
In particular, we consider a modified version of the model proposed by Bak and Sneppen
(BS) to describe the co–evolution of natural species [3]. In our model, an economical system
(a market) will be described by a one–dimensional lattice, every site of which represents a
company or a production sector. Companies with stronger mutual interactions (because they
offer the same product or one furnishes goods to the other) are arranged on neighboring sites
(this is similar to the food–chain in the biological case). Each company is characterized by a
number (its fitness) describing, for example, the size of the company, its average earnings or
any suitable combination of both. In more general terms, the fitness represents the chance
a company has to survive in the market. As we shall see in the context of our model, this
represents only the microscopic point of view. Indeed, from a macroscopic point of view, any
company with a fitness beyond a certain threshold survives with the same probability. Thus,
the company with the lowest fitness is the one that feels the strongest pressure to change. One
can then say that, formulated in these terms, the fitness carries global information about, and
over to, all the market chain. As an example, the company with the lowest fitness may be
one working in a rapidly expanding sector or in a sector that, for some reason, cannot develop
any further. However, on a macroeconomic level we do not need to explain which sector or
which company might be involved or why. Indeed, at any given time, there are production or
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distribution sectors which are developing or shrinking and companies that are in a key position
in those sectors. Moreover, on a long time basis, it is rather hard to predict which sector
will be the most active and what will be the consequences of that on a microeconomic level.
Correspondingly, in the simplified situation we are considering, we neglect the distinction
among different specialisations: This is justified by the observation that, on a macroeconomic
level, all different branches are necessary and in mutual interaction [11].
The fate of the worst fit company is either to evolve or go bankrupt with its place taken by
some new company in the same economical niche. The nearest neighbour companies will find a
different environment, and their fitnesses will be changed too. As a result the system exhibits
sequences of causally connected evolutionary events called avalanches [3]. An avalanche has
a duration s distributed as follows

Q(s) ∼ s−τ , (1)

where s is the duration of the avalanche and τ ∼ 1.07 [12] is the avalanche critical expo-
nent. This kind of behavior, which is the essence of self–organized criticality, is also the one
responsible for the above–mentioned punctuated equilibrium.
In the original (biological) BS model, the mutation of the least fit species is realized by giving
to it a new fitness taken at random [3] from a uniform distribution. More precisely, each
lattice site j is assigned a random number fj between 0 and 1. At each time step the smallest
fmin = minj{fj} is found. Then, fmin and the two nearest neighbors are updated according
to the rule

fnew = F (f old) (2)

that assigns a new fitness fnew to the chosen lattice site. The function F is just a random
function with a uniform distribution between 0 and 1. After a transient time, the system
reaches a stationary critical state in which the distribution of fitnesses is zero below a cer-
tain threshold fc ∼ 0.66702(8) [12] and uniform above it. It has also been shown that the
updating rule (2) need not be a random function. Indeed, deterministic updating has also
been considered [13, 14] and, provided the updating rule has no long–time correlations, SOC
is preserved together with the universality class.
There is, however, a very important difference between an ecosystem and an economic market.
In a competitive market, a company does not change at random. Quite on the contrary, it will
always try to increase its fitness, i.e. to move “upwards” towards higher efficiency in order to
improve its chances to stay in business. Thus, when modelling the change the company makes
to survive in the market, one has to include a deterministic component, while still keeping the
“random character” of the market [15]. The introduction of chaotic (deterministic) instead
of random updatings take into account both the rather unpredictable variation of the market
and the voluntary moves of the head of the company. Indeed, according to [14], chaotic
(deterministic) updatings do not change the statistical properties of the system.
One very important difference between markets and ecosystems still requires consideration:
For a given company, too rapid a growth might be a source of problems in the very near
future. Indeed, a very rapidly growing company may face a series of new duties (from new
tax rates to new delivery and/or new advertising systems or new very expensive technology)
that its structures are not able to support. In other words, the market rules may be different
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according to the size of the company. Adaptation to new rules/tasks might require time,
and when time is not enough this may lead to bankruptcy. From this point of view, we are
looking for a version of the BS model which still shows self–organized criticality but which
nevertheless includes some instability for those companies that have experienced too big an
increase in their fitness.
For instance, let us suppose that the parameter f represents the size (suitably normalized to
1). Let us consider the simplified situation in which there are two taxation rates: Companies
whose size is bigger than η have to pay a bigger rate than those whose size is smaller. From
this point of view, if a company changes its class from small to big size, it may face a higher
taxation rate that prevents it from consolidating its new position. We then implement a
dynamic rule in the following way: After having assigned to each site j a random value fj we
proceeds in four basic steps:

1. Find the site of the absolute minimum on the lattice (this site will be called the active
site) and those of the two nearest neighbors.

2. Change at the same time their values by giving them new numbers according to the
given map F .

3. If after applying 2, some of the three fj moves from the lower to the upper sector, we
apply again the map on it.

4. Go to step 1.

Step 3 is tantamount to saying that when a company changes from the category of “small
business” to the category of “big business”, the rules are different and it has to re–adapt to
its different environment. Clearly, this step can be accommodated to consider any possible
interpretation of the microscopic parameter fj at any given time–step. Thus, the dynamic
rule we have introduced can be considered as being a general, if anything a little abstract,
way of saying that too fast a betterment may turn into its contrary.
With the rules explained above, the universality class is preserved and the stationary distri-
bution of the fj’s follows also a pattern similar to that of the random updating (see Fig. 1).
The difference between applying or not step 3 can be observed in Fig. 1. The “control”
applied on the market, namely the re–adaptation to different (size dependent) rules, helps
companies of lesser fitness to survive. In a sense, this means that controlling the market helps
more companies to stay in business at the expense of reducing the “average” fitness. In fact
the average fitness goes like 〈f〉 ≃ (1 + fc)/2 and since the threshold decreases, the average
fitness decreases also.
Fig. 2 shows the resulting dependence of the critical fitness fc on the value η, (according to
rules 1–4). Notice that in the curve, there is a particular value of η where a minimum occurs.
This means that slight variations of the parameter η do not influence the average and critical
value of the fitness. On the other hand, when η is sensibly away from its minimum, but still
far from its extreme values, any tiny variation of the taxation levels has amplified effects on
the average fitness. In particular it should be noticed that, although the boundary cases η = 0
and η = 1 lead to the same critical fitness, in a neighbourhood of them the derivative of the
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Figure 1: Probability density distribution of the fitness parameter f (see text). In solid line the

distribution shows the effect of regulations while the dashed line distribution corresponds to the

deregulated market. The non–uniformity comes from the fact that the invariant measure of the

applied chaotic map is also non–uniform. All simulations were performed on a lattice with 5 000

sites.

curve is different. Tiny variations around η = 0 have smaller effects on the average fitness
than those of tiny variations around η = 1.
The results presented here indicate that, on a global scale, the behavior of the market is not
affected by the exact details of the control rules. On the other hand, time correlations in
the chaotic map used for the updating can push the threshold towards bigger values [14].
These time–correlations take into account how strongly fnew is correlated to f old in Eq. (2),
i.e. they are related to the decrease in the average randomness in the movements of the
variables fj . In other words, an on–average stronger control (less “erratic” decisions, due for
instance to better management) on the part of the management of the companies would have
a global consequence, namely an increase of the value of the threshold fc. In a world where
management skills increase with time (as our world is likely to be), the threshold fc will also
increase with time and consequently it will be always more difficult to stay in business.
Summarizing, the model introduced in this paper shows which kind of changes appear when
some control is applied on an SOC system. The exact nature of the control is, in this simplified
model, irrelevant. In particular, we show that a control, like the one introduced here, produces
always a decrease in the average fitness of the companies operating in the market. This could
in principle explain why, when deregulated, a market shows initially a big percentage of
companies going out of business. This percentage represents those “protected” by the control
that are left unprotected once the control is removed.
Caution should be exercised, however, in order to avoid misleading interpretations or too

5



0 0.2 0.4 0.6 0.8 1
η

0

0.2

0.4

0.6

0.8

1

fc

Figure 2: The dependence of the critical fitness fc on the value η separating taxed and non taxed

sectors.

simplistic analogies with Darwinian evolution. On the one hand , if we look at the fitness
parameter, as it is often intended in the biological context, one could infere that regulation
subsidizes the less economically adapted companies. On the other hand, as we mentioned
above, the word fitness could refer to economical indicators –or to functions of them– related
to the size of a company (income, number of employees, sale size, economic value added. . . ).
In this sense, a smaller average fitness means a richer variety in the economic system.
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