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Local fields in non–linear quantum transport
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Abstract. We investigate the dynamical interplay between currents and electromagnetic
fields in frequency-dependent transport through a single-channel quantum wire with an im-
purity potential in the presence of electron-electron interactions. We introduce and discuss a
formalism which allows a self-consistent treatment of currents and electromagnetic fields.
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1 Introduction

In order to describe frequency-dependent quantum transport properties, it is necessary
to take into account local fields. However, since the microscopic charge and current
distributions are rapidly varying functions of space and time the solution of Maxwell’s
equations is a complex task. Especially in the presence of non–linear effects, a self-
consistent theory of frequency and time dependent transport is very challenging [1].

Here, we address this question for a simple but nonetheless non-trivial system,
namely a single-channel quantum wire of interacting electrons with one potential bar-
rier embedded in three dimensions (3D). The interaction is taken into account using
the Luttinger model [2, 3]. The system has a non–linear dc-current-voltage charac-
teristic due to the simultaneous presence of both, the electron-electron interaction
and the tunnel barrier [4, 5]. We demonstrate explicitly the essential features of self–
consistency for an infinite barrier. The connection between local and external field
is worked out and generalized to the situation of a finite barrier. The results of the
present considerations are the starting point for the more general case, namely the non-
linear, frequency dependent transport effects in (1D) disordered systems containing
many impurities.

2 Local fields

For a discussion of local-field effects one has to distinguish between longitudinal electric
fields, ∇ × EL(r, ω) = 0, and transverse electric fields, ∇ · ET (r, ω) = 0. Using the
microscopic Maxwell equations and the continuity equation, they are connected with
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each other and with the currents as well as in general an external field [1],

EL(q, ω) = EL,ext(q, ω) +
1

iǫ0ω
JL(q, ω) (1)

ET(q, ω) = ET,ext(q, ω) + iµ0ωg0(q, ω)JT(q, ω), (2)

where g0(q, ω) = [|q |2 − (ω/c)2]−1. The longitudinal and transverse currents are
related to the total current J by JL(q, ω) = q [q ·J(q, ω)]/q2 and JT(q, ω) = J(q, ω)−
JL(q, ω). In order to evaluate the local fields one has to close eqs. (1) and (2) by a
transport equation which connects currents and local fields in terms of a microscopic
theory. In a linear system, this would be the Kubo theory. In the general case, the
non-linear relation between the current and the local field has to be used.

3 The model

In order to apply Maxwell’s equations, which incorporate naturally Coulomb inter-
action, the quantum wire has to be considered as embedded in 3D. This is achieved
by assuming a confinement perpendicular to the, say, x-direction and projecting the
relevant operators onto the eigenfunctions of the confinement Hamiltonian. We use
Φnk(r) = eikxϕn(R)/

√
L as a complete set of functions where k is the wavenumber

along the direction of the wire, L the system length along x, ϕn(R) the confinement
wave function (R = (y, z)), and n the corresponding quantum numbers.

The Hamiltonian consists of the kinetic energy, the electron-electron interaction,
the confinement energy, the coupling to the scalar electric potential V (r, t), and the
potential barrier of height Ub at xb, H = Hkin +Hconf +Hint +Hem +Hb, with

Hint =
∑

n,l,s,p

∫ ∫
dxdx′Ψ†

n(x)Ψl(x)Unlsp(x− x′)Ψ†
s(x

′)Ψp(x
′) (3)

Hem = e

∫
drρ(r)V (r, t), (4)

Hb =

∫
drρ(r)Ub(r), (5)

where,

Unlsp(x− x′) =

∫
S

∫
S′

d2R d2R′ ϕ∗
n(R)ϕl(R)Uee(r − r ′)ϕ∗

s(R
′)ϕp(R

′) (6)

is the projected interaction potential, Ψn(x) the fermion field of the n-th band,

ρ(r) =
∑
n,l

ϕ∗
n(R)ϕl(R)Ψ†

n(x)Ψl(x), (7)

the charge density. The current is related to ρ(r) via the 3D continuity equation.
The scalar electric potential in eq. (4) is the local potential. In general, the local

vector potential should also be included because even for a longitudinal external source,
a transverse field is generated. However, the amplitude of the induced transverse field
is of the order (vF/c)

2, thus negligible [6], and eq. (2) does not contribute.
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The above general expressions are needed in order to treat especially quantum
wires with more than one subband. Here, we restrict to only one subband, thus
n = l = s = p = 0.

The dispersion relation of the collective excitations obtained by using the Luttinger
model [2, 3] is ω(q) = |q|vF[1 + U(q)/πh̄vF]

1/2, where q ≡ qx. It reflects the Fourier
transform of the interaction potential, U(q) ≡ U0000(q) [7].

4 Some simple examples

Neglecting currents and induced fields perpendicular to the wire, eq. (1) can be rewrit-
ten in terms of the local field projected onto the lowest subband,

E(q, ω) = Eext(q, ω)−
iq2

e2ω
U(q)J(q), (8)

where J(q) is the x component of the current.
The clean Luttinger wire was already discussed in [7]. The frequency–dependent

conductivity is in this case

σ(q, ω) =
ie2vF
πh̄

ω

ω2 − ω2(q)
. (9)

One can show that the current of the non–interacting system driven by the local
field is equivalent to the current through the interacting system in response to the
external field, E(q, ω)σ0(q, ω) = Eext(q, ω)σ(q, ω), where σ0(q, ω) corresponds to the
conductivity of the non–interacting wire. In the following we will see that this remains
true in the presence of a tunnel barrier of infinite strength where the non–linearity
does not play any role.

In the presence of a single potential barrier, assumed to be uniform over the cross–
section of the wire, Ub(r) = Ubδ(x − xb), a relation can be derived which links the
current at different positions [8]. In wave number space,

I(q, ω) = I0(q, ω) + r(q, ω)[Ib(ω)− I0,b(ω)] (10)

where I0(q, ω) represents the current in the clean system, Ib(ω) is the current at the
barrier, and the ratio of conductivities without barrier at the two positions considered
is r(x, ω) = σ(x − xb, ω)/σ(x = 0, ω). The total current is non–linear due to the
presence of Ib [9].

In order to demonstrate how self–consistency affects the electric field inside the
wire, we start with an infinite barrier, Ib = 0, decoupling the system into two separate
wires. In this case, dc–transport is forbidden but the displacement contribution to the
current is finite.

We evaluate the linear current in eq. (10) in terms of the local field by using the
conductivity of the non–interacting system. Inserting this into eq. (8), gives a self–
consistent equation for the local field. The solution is

E(q, ω) =
σ(q, ω)

σ0(q, ω)
Eext(q, ω)−

σ(q, ω)

σ0(q, ω)
eiqxb

∫
dq σ(−q, ω)e−iqxbEext(q, ω)

σ(x = 0, ω)
. (11)
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It is important to note that an equivalent result would have been obtained by driving
the current with the external field using the conductivity of the interacting system in
complete analogy with the single clean wire mentioned above. This is consistent with
the common textbook knowledge [10] that without a non–linearity the Coulomb inter-
action is automatically taken into account self–consistently in the Luttinger model.

The second term in eq. (11) represents the contribution due to the barrier. In
order to show its influence on the local field we consider ω → 0. For zero–range
interactions it generates a delta peak at the position of the barrier which is broadened
when increasing the range of the interaction.

For a finite barrier, Ib is highly non–linear due to the presence of the interaction
[4]. It is then easy to show from eq. (10) that the two cases, (i) interacting system
driven by external field and (ii) non–interacting system driven by local field are no
longer equivalent. In order to take properly into account the combined effect of the
interaction, the non–linearity as well as the local fields, the current at the barrier has
to be driven by the local field but here incorporating also the interaction.

5 Summary

We investigated self-consistency in time-dependent transport through a non–linear
system, in particular through a quantum wire with a tunnel barrier. For an infinite
barrier, we obtained that by renormalising the electric field the current is given by the
conductivity of the non-interacting system. In the non-linear case, one has to consider
both, the renormalized field and the interaction.
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