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PIVOTALITY, TWISTED CENTRES AND THE ANTI-DOUBLE
OF A HOPF MONAD

SEBASTIAN HALBIG AND TONY ZORMAN

ABSTRACT. Finite-dimensional Hopf algebras admit a correspondence between
so-called pairs in involution, one-dimensional anti-Yetter—Drinfeld modules and
algebra isomorphisms between the Drinfeld and anti-Drinfeld double. We extend
it to general rigid monoidal categories and provide a monadic interpretation
under the assumption that certain coends exist. Hereto we construct and study
the anti-Drinfeld double of a Hopf monad. As an application the connection with
the pivotality of Drinfeld centres and their underlying categories is discussed.
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1. INTRODUCTION

The aim of this paper is to study the relationship between the Drinfeld centre of
a monoidal category and a ‘twisted’ version of it, which arises in the study of Hopf
cyclic cohomology. Our approach splits into two parts. First, we deploy general
categorical tools in order to identify equivalences of the aforementioned categories
with ‘invertible’ objects in a twisted centre. Second, we take the monadic point of
view and explain which of these equivalences translate into isomorphisms of monads
generalising the Drinfeld and anti-Drinfeld double. As a byproduct we show that a
rigid category which admits these monads is pivotal if and only if the generalised
double and anti-double are isomorphic.

The Hopf algebraic case. Our goal is best explained by first recalling the interac-
tions between the various objects and categories in the setting of finite-dimensional
Hopf algebras. This is covered in greater detail in [Hal21].

A peculiarity of the Hopf cyclic cohomology, as defined by Connes and Moscovici
[CM99], is the lack of ‘canonical’ coefficients. Originally, see [CMO00], modular
pairs in involution were considered. These consist of a group-like and a character
implementing the square of the antipode by their respective adjoint actions. Later,
Hajac et.al. obtained a quite general source for coefficients in what they called the
category of anti-Yetter—Drinfeld modules, [HKRS04]. Their name is due to the
similarity with Yetter—Drinfeld modules: Like their well-known ‘cousins’, they are
simultaneously modules and comodules satisfying a compatibility condition between
the action and coaction. In general, they do not form a monoidal category but a
module category over the Yetter—Drinfeld modules. This is reflected by the fact that
they can be identified with the modules over the anti-Drinfeld double, a comodule
algebra over the Drinfeld double. The special role of pairs in involution is captured
by the following theorem due to Hajac and Sommerhé&user:

Theorem 1 ([Hal21, Theorem 3.4]). For any finite-dimensional Hopf algebra H
the following statements are equivalent:
(i) The Hopf algebra H admits a pair in involution.

(ii) There exists a one-dimensional anti- Yetter—Drinfeld module over H.
(iii) The Drinfeld double and anti-Drinfeld double of H are isomorphic algebras.

Furthermore, these pairs are of categorical interest as they give rise to pivotal
structures on the Yetter—Drinfeld modules. That is, they provide a natural monoidal
isomorphism between each object and its bidual.
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Twisted centres and pivotality. We want to reformulate this theorem in a
categorical framework with an emphasis on pivotal structures.

First, let us discuss appropriate replacements for the concepts described above.
The role of the Hopf algebra is taken by a rigid monoidal category C. Roughly
speaking, that means a category with a suitably associative and unital product in
which every object has a left and right dual. Due to the monoid-like nature of C, we
can study its bimodule categories. Of special interest is the regular bimodule, whose
actions are given by respectively ‘multiplying’ from the left or right. Its centre Z(C),
called the Drinfeld centre of C, provides us with an analogue of the category of
Yetter—Drinfeld modules, see [Kas98, Chapter XIII]. Anti-Yetter—Drinfeld modules
were generalised in [HIKS19] to what one might call the anti-Drinfeld centre A(C) of
C. As in the Hopf algebraic case, it is a module category over Z(C). An adaptation
of pairs in involution are, what we will call, quasi-pivotal structures, studied for
example in [Shil6]. They consist of an invertible object, which replaces the character,
and, instead of a group-like element, a certain natural monoidal isomorphism.

The main observation needed to generalise Theorem 1 is that the anti-Drinfeld
centre admits a ‘dual’. In Theorem 4.6 this allows us to identify equivalences of Z(C)
modules between Z(C) and A(C) with ‘invertible’ objects in A(C). Subsequently, we
prove that these objects correspond to quasi-pivotal structures on C and obtain the
categorical version of Theorem 1 as Theorem 4.13.

Theorem 2. Let C be a rigid monoidal category. The following are equivalent:
(i) The category C is quasi-pivotal.
(ii) There exists an ‘invertible’ object in A(C).
(iii) The Drinfeld and anti-Drinfeld centre of C are equivalent module categories.

The pivotal structures of the Drinfeld centre Z(C) of a finite tensor category C
were studied by Shimizu in [Shil6]. We contribute to these results with the following
observations: the set Pic A(C) of isomorphism classes of ‘invertible’ objects in A(C)
forms a heap, see Lemma 4.7. That is, it behaves like a group but without a fixed
neutral element. Note that this provides a parallel with the aforementioned fact that
Hopf cyclic cohomology has no canonical coefficients. Equipping the set of pivotal
structures PivZ(C) of Z(C) with the same algebraic structure, we construct a heap
morphism k: PicA(C) — PivZ(C). In general, we cannot expect x to be injective.
This is analogous to the Hopf algebra case where one shows that multiplying a
pivotal element with a central group-like does not alter the induced pivotal structure.
Our adaptation of ‘central group-like elements’ are invertible objects in the centre
Z(C) which admit a ‘trivial’ braiding. As these act nicely on PicA(C), we can
consider a quotient heap Pic A(C)/. and indeed, the induced morphism

t: PicA(C)/~ — PivZ(C),

is injective, see Theorem 4.22. In many cases, such as C being a finite tensor category,
it is moreover surjective. However, by constructing a counterexample, we show in
Theorem 4.37 that this is not true in general.

Reconstruction: Comodule monads. To reconcile our results with the inital
Hopf algebraic formulation, we provide a monadic interpretation under the assump-
tion that certain coends exist.

The starting point for our considerations is a Hopf monad H: V — V on a rigid,
possibly pivotal, category V of which we think as a replacement of finite-dimensional
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vector spaces. Its modules form a rigid monoidal category V. Utilising the
centralisers of Day and Street, [DS07], Bruguiéres and Virelizier described in [BV12]
the Drinfeld double D(H) of H. It is obtained through a two-step process. First,
the central Hopf monad on V¥ is defined. Then, the double D(H): V — V arises
by applying a variant of Beck’s theorem of distributive laws to it. As in the classical
setting, the modules of D(H) are isomorphic as a braided rigid monoidal category
to the Drinfeld centre Z(V*). By adapting the procedure outlined above for our
purposes, we construct the anti-central monad and derive the anti-Drinfeld double
Q(H): ¥V — V of H from it. It is a comodule monad over D(H) in the sense of
[AC12] which implements the ‘dual’ of the anti-centre Q(V*) as a module category.
Having all ingredients assembled, we show in Theorem 6.25, that certain module
equivalences between Z(VH) and Q(V*) materialise as isomorphisms between their
associated monads. Applying our general categorical results to V¥ and combining it
with a monadic version of pairs in involution, we obtain in Theorem 6.26 an almost
verbatim translation of Theorem 1:

Theorem 3. Let H be a Hopf monad on a pivotal category V that admits a Drinfeld
and anti-Drinfeld double. The following are equivalent:

(i) The Hopf monad H admits a pair in involution.
(ii) There exists a module over Q(H) whose underlying object is 1 € V.
(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as monads.

An immediate consequence of the above result is the observation that pivotal
structures on V¥ equate to isomorphisms between the central and anti-central
monads, see Corollary 6.27.

Outline. The article is divided into two parts comprising Sections 2, 3 and 4
as well as Sections 5 and 6. We give a self-contained overview of the necessary
categorical tools for our study in Section 2. In Section 3, we recall the concept of
heaps. Section 4 starts with a discussion about twisted centres and their Picard
heaps, before studying the notion of quasi-pivotality and establishing the categorical
version of the correspondence given in Theorem 1. Section 5 provides an overview
of the theory of Hopf monads and comodule monads. In Section 6 the central and
anti-central monad are constructed and from them the Drinfeld and anti-Drinfeld
double. By expressing our abstract categorical findings in the monadic language
we then obtain Theorem 3 and comment on how it can be used to detect pivotal
structure.



PART 1:

TWISTED CENTRES AND PIVOTALITY



2. MONOIDAL CATEGORIES, BIMODULE CATEGORIES AND THE CENTRE
CONSTRUCTION

Let us recall some background on the theory of monoidal categories needed
for our study of pivotal structures in terms of module categories. We assume
the readers familiarity with standard concepts of category theory, as given for
example in [MLI8, Leil4, Riel7]. As a convention, the set of morphisms between
two objects X, Y € C of a category C will be written as C(X,Y’). We will denote the
composition of two morphisms g € C(X,Y) and f € C(W, X) by the concatenation
gf =gofeC(W,)Y). Adjunctions play an important role in our investigation.
A right adjoint of a functor F': C — D is a functor U: D — C together with two
natural transformations n: Ide — UF and e¢: FU — Idp, called the unit and counit
of the adjunction, satisfying for all X e C and Y € D

F(nx) idr(x)
——

(2.1) F(X) =" FUF(X) % F(X) = F(X) F(X)
(2.2) UY) 2, gruy) L9 uy) = uy) 2249 gy,

These conditions determine U: D — C uniquely up to natural isomorphism. We
write F: C2D :Uor FHU.

To navigate the proverbial ‘sea of jargon’, [BS11], we provide the reader with a
table, inspired by [HPT16, Figure 2], in order to help us outline the main topics we
are about to encounter in this section.

module categories

- Modules are :
! defined over : The centre of the

: idal cate- : regular bimodule is
E : ;)C;?;l at cate : braided monoidal.

B is obtained from A by

forgetting properties or : :
structure. monoidal I 7 braided

..... 4

i |, [ e ]
B is obtained from A by Z

..... -y

the centre construction.

| pivotal I 7 braided pivotal |

_____ -7

monoidal categories

FIGURE 1. Various types of monoidal and module categories, as
well as (some) relations between them.

In Subsection 2.1 we work our way down the first column, encountering monoidal,
rigid and pivotal categories. This is based on [EGNO15, Chapter 2]. The concept
of braided monoidal categories, responsible for the second column, is discussed in
Subsection 2.2. See [EGNO15, Chapter 8] for a reference. Our approach to module
categories, see Subsection 2.3, is derived from [EGNO15, Chapter 7]. We pay special
attention to the (Drinfeld) centre construction, responsible for the arrows labelled
with a ‘Z’, in Figure 1.



2.1. From monoidal to pivotal categories. Monoidal categories were introduced
independently by Mac Lane, [ML63], and Bénabou, [Bén63], under the name
‘categories with multiplication’! The prime examples we draw our inspiration from
are finite-dimensional modules over Hopf algebras or, more generally, finite tensor
categories, see [EGNO15, Chapters 5 and 6].

2.1.1. Monoidal categories, their functors and natural transformations.

Definition 2.1. A strict monoidal category is a triple (C, ®, 1) comprising a category
C, a bifunctor ®: C x C — C, called the tensor product, and an object 1 € C, the
unit, satisfying associativity and unitality in the sense that

(2.3) (—®-)®—=-®(-®~) and 1@ —=Ide = —®]1.

Many natural examples of monoidal categories, such as the category of vector
spaces, are not strict. That is, the associativity and unitality of the tensor prod-
uct only hold up to (suitably coherent) natural isomorphisms. However, we can
compensate this by Mac Lane’s strictification theorem. It states that any monoidal
category is, in a ‘structure preserving manner’, equivalent to a strict one. A proof is
given for example in [EGNO15, Theorem 2.8.5]. For this reason, and to keep our
notation concise, we shall omit the prefix ‘strict’ from now on.

The next definition slightly extends the scope of [EGNO15] but is standard in
the literature, see for example [AM10, Chapter 3].

Definition 2.2. An oplax monoidal functor between monoidal categories (C,®,1)
and (C',®',1’) is a functor F': C — C’ together with a natural transformation

Axy: F(X®Y) - F(X)® F(Y), for all X,Y € C,
and a morphism e: F (1) — 1’ satisfying for all W, X, Y € C
(2.4) (idrpawy) ® Axy)Awxey = (Aw,x @ idpy))Awex,y,
(2.5) (e® idp1))Ar,1 = F(id1) = (idpa) @ €)Aq 1.

If the coherence morphisms, A and e, are isomorphisms or identities, we call F'
(strong) monoidal or strict monoidal, respectively.

We think of an oplax monoidal functor (F, A, ¢) as a generalisation of a coalgebra.
To emphasise this point of view, we refer to A and e as the comultiplication and
counit of F. The dual concept is that of a lax monoidal functor, which resembles
the notion of an algebra.

Assume F': C — D to be strong monoidal and an equivalence of categories. Its
quasi-inverse G: D — C can be turned into a monoidal functor such that the natural
isomorphisms F'G — Idp and GF — Id¢ are compatible with the monoidal structure
in a sense we will explain in the next definition. This justifies calling F' a monoidal
equivalence.

Definition 2.3. An oplax monoidal natural transformation between oplax monoidal
functors F,G: C — C’ is a natural transformation p: F' — G such that for all
X, YeC

(2.6) Aﬁgipmy = (px ® PY)AEZ%/ and e @p; =)

IParts of the historical development of the study of monoidal categories is sketched in [Str12]
and, to a lesser extend, in [BS11].



If p is additionally a natural isomorphism, we call it an oplax monoidal natural
isomorphism.

In case we want to emphasise that the underlying functors of an oplax monoidal
natural transformation p: F — G are strong or strict monoidal, we replace the
prefix ‘oplax’ with either ‘strong’ or ‘strict’.

Adjunctions between monoidal categories are a broad topic with many facets,
see [AM10, Chapter 3]. For our purposes, we can restrict ourselves to the following
situation.

Definition 2.4. We call an adjunction F': C &= D :U between monoidal categories
C and D oplax monoidal if F and U are oplax monoidal functors and the unit and
counit of the adjunction are oplax monoidal natural transformations. If F' and U are
moreover strong monoidal, we call F: C = D :U a (strong) monoidal adjunction.

An efficient means for computations in strict monoidal categories are string
diagrams. They consist of strings labelled with objects and vertices between the
strings labelled with morphisms. If two string diagrams can be transformed into each
other, the morphisms that they represent are equal. A more detailed description is
given in [Selll]. Our convention is to read diagrams from top to bottom and left to
right. Taking tensor products is depicted by gluing diagrams together horizontally;
composition equates to gluing vertically. Identity morphisms are given by unlabelled
vertices. The unit object is represented by the empty edge.

® = o =
X
w Y w Y Y X X
ldw®fW®X~>W®Y gOf:WﬁY h:1—> X

2.1.2. Rigidity and pivotality. Rigidity in the context of monoidal categories refers to
a concept of duality similar to that of finite-dimensional vector spaces. Importantly,
notions like dual bases and evaluations have their analogues in this setting. If,
moreover, there exists an identification between objects and their biduals that is
compatible with the tensor product, the category is called pivotal. The more refined
notion of spherical categories is not discussed here. For a treatment in the context of
Hopf algebras we refer to the articles [BW99] and [AAGI T 14]. Examples of duality
inspired by topology are discussed in [DP80].

Definition 2.5. A left dual of an object X € C in a monoidal category C is a triple

(X7, eVlX, coele) comprising an object X” and two morphisms

(2.7) v X'®X — 1 and coevh: 1 - X ® X",



called the left evaluation and coevaluation of X, such that the snake identities
(2.8a) idy = (idx ® evly)(coevh ®idx) and

(2.8b) idyv = (evly ®idxv)(idx ® coevly)

hold. A right dual of X is a triple ("X, ev’, coev’y) consisting of an object "X and
a right evaluation and coevaluation,

(2.9) eviy: X® X -1 and coevliy: 1 > "X ®X,

subject to analogous identities.

We call C a rigid category if every object has a left and right dual.

Left and right duals are unique up to unique isomorphism. We fix a choice of
duals for every object in a rigid category C and speak of the left or right dual in the
following. Graphically, we represent evaluations and coevaluations by semicircles,
possibly decorated with arrows if we want to emphasise whether we consider their
left or right version.

X XV VX X

ele:Xv®X—>1 coelezl—>X®Xv ev’k:X@vX—>1 coev}}:l—»vX®X

Definition 2.6. An object X € C in a rigid category C is called invertible if its
(left) evaluation and coevaluation are isomorphisms.

It is an illustrative exercise to show that the right evaluations and coevaluations
of an invertible objects must be isomorphisms as well. Tensor products and duals
of invertible objects are invertible too. Hence, we can consider the full and rigid
subcategory Inv C < C' of invertible objects of C.

Definition 2.7 ([May01, Definition 2.10]). The Picard group PicC of a rigid category
C is the group of isomorphism classes of invertible objects in C. Its multiplication is
induced by the tensor product of C, i.e.

(2.10) [a] - [B] = [a® 0], for o, 5 € Inv(C).
The unit of PicC is [1] and for any a € Inv(C) we have [a] ™! = [a"].

The next theorem will play a central role in our studies. To formulate it, we
introduce for any X € C and n € Z the shorthand-notation

The n-fold left dual of X  if n > 0,
(2.11) (X)"=<X ifn=0,
The n-fold right dual of X if n <O0.
Theorem 2.8. For every object X € C in a rigid category C we obtain two chains
of adjoint endofunctors of C:
(2.12) o AERIX) ™M) HERX) A (- (X)) ... and
(2.13) A XN ) HAXR)A(X) TR -) ...

Furthermore, — ® X (or X ® —) are equivalences of categories if and only if X is
invertible.
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Proof. The existence of the stated chains of adjunctions follows from [EGNO15,
Proposition 2.10.8]. The main idea is to define for any Y € C the unit and counit of
the adjunction between — @ X and — ® X to be

i v i v
y MO0 v o X @X and Y ®X QX &k y

Then, Equations (2.1) and (2.2) translate to the snake identities (2.8a) and (2.8b).
From this point of view, it becomes clear that tensoring (from the left or the
right) with an invertible object establishes an equivalence of categories. Conversely,
suppose that X € C is such that F := — ® X is an equivalence of categories. The
functor F' and its quasi-inverse U are part of an adjunction with invertible unit
n: Ide — UF and counit €: FU — Idp, see for example [Riel7, Proposition 4.4.5].
By [Riel7, Proposition 4.4.1], there exists a natural isomorphism 6: U — — ® X"
which commutes with the respective counits and units. Applied to the monoidal
unit 1 € C, we obtain

coele = Oxm and ele(Gl ®idx) = €.

It follows that X is invertible. An analogous argument shows that X ® — being an
equivalence of categories entails X being invertible. (Il

Next, we want to turn taking duals into a functor. Let f: X — Y be a morphism
between two objects X, Y € C in a rigid category C. It admits a left dual f*: Y — X"
defined in terms of the following diagram:

(2.14) [~

= (evh ®idyv)(idyv ® f ® id xv)(idyv ® coevl): YV — XV,

This assignment is contravariantly functorial. Since (X ® V) =~ Y~ ® X", taking
duals is also compatible with the opposite tensor product. In conclusion, we have a
monoidal functor, the left dualising functor,

(2.15) (=)": C — CoP&°P,

mapping objects and morphisms to their left duals. Its coherence morphisms are
given by the isomorphisms induced by the uniqueness of duals. Similarly, we have a
right dualising functor “(—): C — C°P®°P_ To simplify computations, we want to
‘strictify’” both of these.

Definition 2.9. A rigid monoidal category C is called strict rigid” if the dualisation
functors (=), (=): C — C°P®~°P are strict and

(2.16) ("(=) =Ide = “((-)").

2The notion of ‘strict rigidity’ is not prevalent in the literature and does not appear in [EGNO15].
However, hints towards it can be found for example in [Sch01, Section 5].
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Our next theorem, a slight variation of [NS07, Theorem 2.2], shows that every
rigid category admits a rigid strictification, i.e. a monoidally equivalent strict rigid
category. The hinted at compatibility between the respective left and right duality
functors is an immediate consequence of the fact that for any strong monoidal
functor F': C — D between rigid categories there are natural monoidal isomorphisms

(2.17)  ox: F(XV) — (F(X))v7 e F(VX) — v(F(X)), for all X eC.
Theorem 2.10. Every rigid category admits a rigid strictification.

Proof. Taking a rigid and strict monoidal category C as our input, we build a
monoidally equivalent strict rigid category D. The objects of D are (possibly empty)
finite sequences (X7',...,X]") of objects X1,...,X; € C adorned with integers
ni,...,n; € Z. To define its morphisms, recall the notation of Equation (2.11) and
set:

D((X]*,. ., X)), (Y™, YY) = C(X)" @ @ (X)™, ()™ ® - ®(Y;)™).

The category D is strict monoidal when equipped with the concatenation of sequences
as tensor product and the empty sequence as unit. By construction, there exists
a strict monoidal equivalence of categories F': D — C, which maps any object
(X7, .., X")eDto (X1)" ® - ®(X;)" € C and every morphism to itself.”
Now fix an object X := (X7"*,..., X["") € D. We define its left dual to be given by
X = (X;”H, . ,XI“‘H) with evaluation and coevaluation morphisms as shown
in the following diagram

(X))t (X))t (X"t o (X)™

(x)m o T Y xg)matt ) (xg)mtt
evlh F(X'®X) — 1 coevh i1 - F(X®X")
where for all 1 < k < i we set
Pk = {evéank %f =0, and (I {Coevz(x’“)"k %f =0,
V{x,)mi 1 if nx <0, (?oev7("Xk)nk+1 if ng < 0.

We define the right dual of X to be "X := (X', ..., X"~ !) with evaluation and
coevaluation similar to the above construction. It follows that D is strict rigid. O

Many applications require that the objects of a rigid category are isomorphic to
their biduals in a way which is compatible with the monoidal structure. One of our
aims is to gain a representation theoretic approach to detecting such a property.

Definition 2.11. A pivotal category is a rigid category C together with a fixed
monoidal natural isomorphism

(2.18) p:Ide — (—)7,

3In the definition of F: D — C we regard the unit of C as the empty tensor product.
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which is referred to as a pivotal structure of C.

Rigid categories do not have to admit a pivotal structure and, if they do, it need
not be unique. Examples coming from Hopf algebra theory are given in [KR93]
and [HK19, Hal21]. However, Shimizu showed that every rigid category admits a
universal pivotal category, called its pivotal cover, see [Shil5].

2.2. Braided categories. Braidings are natural transformations relating the tensor
product to its opposite. They where introduced by Joyal and Street in [JS93],
building on the notion of symmetries studied amongst others in [ML63, EKG66].

Definition 2.12. A braiding on a monoidal category C is a natural isomorphism
oxy: X®Y =Y R®X, for all X,Y €C,

which satisfies the hezagon azioms*. That is, for all W, X,Y € C

(2.19) ow,xey = (ldx @ owy)(ow,x ®idy) and

(2.20) owex,y = (owy ®idx)(idw ® oxv).

The pair (C, o) is referred to as braided monoidal category.

Remark 2.13. Often, we will make use of the fact that the braiding of any object
X € C with the unit 1 € C of a braided category (C, o) is trivial. This is a consequence
of the hexagon identities as the following considerations exemplify. First, we compute

ox1=0x101 = (id1 ®ox1)(ox1®id1) =ox10x1.

Then, we compose both sides with 0)_(11 and observe that ox ; = idx. Similarly, we
obtain o1 x = idx.

Braidings are depicted in the graphical calculus by crossings of strings subject to
Reidemeister-esque identities, see [Selll]. In the following figure, we show from left
to right a braiding, its inverse, the hexagon identity (2.19) and the naturality of the
braiding in its first argument.

oole sl S YWXY
X AYNEE

Xy (ildx @ ow,v)(ow,x ®idy) = ow,x@Y | ox,v (f ®idy) = (idy ® f)ow,x

/X

2.3. Bimodule categories and the centre construction. Just as monoids can
act on sets, monoidal categories can act on categories. Thinking representation
theoretically therefore advocates studying monoidal categories through their modules.
In parallel with our treatment of monoidal categories, we will focus solely on
their ‘strict modules’. Again, a more general theory is possible by weakening the
associativity and unitality of the action.

4The name ‘hexagon axioms’ is due to the fact, that in the non-strict setting, the defining
Equations (2.19), (2.20) can be organised as a commuting, hexagon-shaped diagram; see [JS93].
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2.3.1. Left right and bimodule categories.

Definition 2.14. A strict left module (category) over a monoidal category C is a
pair (M, ») comprising a category M and an action of C on M implemented by a
functor »: C x M — M such that

(2.21) (-®—)p—=—b(—>—) and 1o — =Idnm.
To keep our notation concise, we will simply speak of modules, instead of strict
module categories, over a monoidal category.

For a functor between modules to be structure preserving, it has to satisfy a
variant of equivariance which is encoded by a natural isomorphism.

Definition 2.15. Let M and N be left modules over a monoidal category C. A
functor of left modules is a functor F': M — N together with a natural isomorphism

oxm: F(X>M)— X v F(M), forall X e C and M e M
such that
(2.22) dIxgv,m = (idx »dy,m)0x vou, forall X,Y €eC and M € M,
(2.23) ida = 01,01, for all M € M.

We call (F,d) strict if § is given by the identity.

With respect to the analogy between oplax monoidal functors and coalgebras,
module functors play the role of (strong) comodules over the identity functor. We
will encounter the more general concept of comodule functors in Sections 5 and 6.

An equivalence of module categories is a functor of module categories F': M — N
that is an equivalence. As with monoidal categories, it admits a quasi-inverse functor
of module categories G: N'— M and the natural isomorphisms F'G — Id and
GF — Idaq are compatible with the respective ‘coactions’ in a way explained in the
next definition.

Definition 2.16. Let F,G: M — N be two functors of left modules over a
monoidal category C. A morphism of left module functors is a natural transformation
¢: F — G satisfying for all X € C and M € M

(2.24) (idx > ¢ar) 0% Ay = 0% oy dxen.

Module adjunctions will be a corner stone of our investigation. They are defined
as adjunctions F': M 2 N :G of module functors between module categories whose
unit and counit are module natural transformations.

A theory of right modules can be formulated in a similar fashion. More precisely,
right modules over a monoidal category C can be identified with left modules over
C®°P_ If we assume some additional conditions on C, we could define its bimodules
as left modules over an ‘enveloping category’ C¢ of C. For our purposes, however,
it will be more beneficial to define them explicitly in terms of categories with
compatible left and right actions.

Definition 2.17. A (strict) bimodule (M, >, <) over a monoidal category C is a
category M which is simultaneously a left and right module and

(2.25) (—p—)a—=—p(—a-).
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Example 2.18. The prime example of a bimodule over a monoidal category C is
the regular bimodule 14.Cra.. As a category, it is simply C and the left and right
actions are given by tensoring from the left and right, respectively.

Remark 2.19. If C is for example a tensor category, its bimodules form a monoidal
2-category, see [Grel(].

Since we will not work with bimodule functors and their natural transformations,
we will not state their precise definitions. Rather, we remark that they equate to
(strong) ‘bicomodules’ over the identity functor.

2.3.2. The Drinfeld centre of a monoidal category. The centre construction can be
used to obtain a braided category from a monoidal one. We work in a slightly more
general setup than [EGNO15, Chapter 7] and define centres for bimodule categories.
See [GNN09, BV12, HKS19, Kow20] for similar approaches.

Definition 2.20. Let M be a bimodule over a monoidal category C and M € M
an object. A half-braiding on M is a natural isomorphism

omx: M<X - X > M, for all X €C,
satisfying for all X,Y € C the hexagon axiom
(226) O'M7X®y = (idX > 0']\47Y)(O'M7X < idy).

Let opr,—: M <« — — — > M be a half-braiding on an object M € M. The same
arguments as in Remark 2.13 show that o1 = idas for all M e M.

Thinking of objects plus half-braidings as ‘central elements’; one can try to mimic
the centre construction from representation theory. This leads to the following
definition.

Definition 2.21. The centre of a bimodule M over a monoidal category C is the
category Z(M). It has as objects pairs (M, o, —) comprising an object M € M
together with a half-braiding ops,— on M. The set of morphisms between two objects
(M,onm,—), (N,on,—) € Z(M), consists of those morphisms f € M(M, N) which
commute with the half-braidings. That is,

(227) (ldX Df)UM,X = 0'N7x(f<1 idx), for all X eC.

There is a canonical forgetful functor UM): Z(M) — M. Unlike classical
representation theory where the centre of a bimodule is a subset, U™) need not be
injective on objects in general.

Example 2.22. The centre Z(C) of the regular bimodule of a monoidal category

C is called the Drinfeld centre or simply centre of C. It is braided monoidal. The

tensor product is defined by (M,op,—) ® (N,on ) = (M ® N,opgn,—) with
OM®N,X = (O‘M’X®idN)(idM®0'N’X), for all X eC.

Its braiding is given by the respective half-braidings. The hexagon axioms follow
from Equation (2.26) and the definition of the tensor product of Z(C).

Our next theorem uses the shorthand notation for iterated duals given in Equa-
tion (2.11).
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Theorem 2.23. Suppose C to be strict rigid. Its Drinfeld centre Z(C) inherits the
rigid structure of C. That is, for all (X,ox,_) € Z(C) we have

U9 ((X,ox-)) = X", U9 ("(X,0x-)) = "X.
Moreover, for every ne€ Z and X € Z(C) we have
(228) g(xX)r (Y)» = (CI’X7y)n7 fOT allY € C.

Proof. Let (X,0x,—) € Z(C). We equip the left dual of X with the half-braiding

(2.29)

oxVy X'RY - YR X"

Using the rigidity of C, we observe that the inverse of the half-braiding ox y is

(2.30) EA;{ B L%ﬂ

oYy Y®X > XQYVY.

Combining equations (2.29) and (2.30) with Y = (V") yields oxvyv = (ox,y)"
The claim follows for any positive n by induction.
To prove the statement for right duals, we proceed analogously. (Il

3. HEAPS

Heaps can be thought of as groups without a fixed neutral element. Priifer studied
their abelian version under the name Schar in [Prii24]. Since then, the notion has
been adapted to the non-abelian case, see [[I1.17]. Recently, their homological
properties were studied in [ESZ21]; a generalisation towards a ‘quantum version’ of
heaps is hinted at in [Sko07]. We follow Section 2 of [Brz20] for our exposition.

Definition 3.1. A heap is a set G together with a ternary operation
(=, —,—:GxGxG— G,

which we call the heap multiplication®, satisfying a generalised associativity axiom
and the Mal’cev identities, of which we think as unitality axioms:

(3'1) <g7h’<i7j7k>>=<<g’h7i>’j’k/’>7 fOI‘ all g)h7i7j7kEG’
(3-2) 9,9.h) = h =<h,g,9), for all g, h € G.
5The terminology ‘heap multiplication’ is not standard in the literature. We use it for purely

psychological reasons. As we will often work with groups and heaps at the same time, we want to
provide the reader with a common, well-known, term.
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There are two peculiarities we want to point out. First, our definition does,
intentionally, not exclude the empty set from being a heap. Second, due to a slightly
different setup, an additional ‘middle’ associativity axiom is required in [HL17].
However, as noted in [Brz20, Lemma 2.3], it is implied by the ‘outer’ associativity
and the Mal’cev identities.

Definition 3.2. A map f: G — H between heaps is a morphism of heaps if
(3.3) [ &g h,ip) = {f(g), f(h), (D)), for all g, h,i€ G.

The next lemma can be shown by mimicking the proof of its group theoretical
version.

Lemma 3.3. A morphism of heaps f: G — H is an isomorphism if and only if it
is bijective.

By forgetting its unit, any group defines a heap. Conversely, any non-empty heap
can be turned into a group by choosing a fixed element to act as unit, see [Cer43].

Lemma 3.4. Every group (G, -, e) is a heap via
(=, —,—:GxGxG -G, {g,h,iy:=g-h1 i
A morphism of groups becomes a morphism of the induced heaps.

Lemma 3.5. A non-empty heap H with a fixed element e € H can be considered as
a group with unit e via the multiplication

——:HxH— H, g-eh={g,e h).

With respect to this multiplication, the inverse of an element g € H is given by
g = {e,g,e). A morphism of heaps is a morphism of the induced groups, provided
it maps the fized element of its source to the fixed element of its target.

We end this section by discussing an example of heaps which will play a prominent
role in our investigation.

Example 3.6. Let F,G: C — C be two oplax monoidal endofunctors. The set
Isog(F, G) := {oplax monoidal natural isomorphisms from F' to G}

bears a heap structure with multiplication
(34) <_7 ) _>: ISO®<Fa G)3 - ISO@(F7 G)a <¢7 ¢7 §> = ¢¢_1§'
4. PIVOTAL STRUCTURES AND TWISTED CENTRES

In this section, we study the relations between pairs in involution, anti-Yetter—
Drinfeld modules and isomorphisms between the Drinfeld and anti-Drinfeld double
from a categorical point of view. Our approach is representation theoretic in nature.
We consider variants of the regular bimodule of a rigid category C with either
the left or right action twisted by a strict monoidal endofunctor. Their centres
are canonically modules over the Drinfeld centre. These twisted centres inherit a
notion of duality which follows in close parallel to that of Z(C). Module functors
between the Drinfeld and a twisted centre are determined by their value on the unit
object. A consequence of the above sketched duality is that module equivalences
correspond to objects in the twisted centre, which behave as if they were invertible.
We gather these objects into the Picard heap of the twisted centre. If we twist with
the left biduality functor, we obtain a generalised version of the anti-Yetter—Drinfeld
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modules, see [HKS19]. Tts Picard heap has an alternative interpretation as quasi-
pivotal structures; appropriate analogues of pairs in involution. This observation
leads us to the desired relations in categorical terms, given in Theorem 4.13.

In [Shil6], Shimizu observed that quasi-pivotality of C induces pivotality of Z(C).
We recall his proof from the perspective of twisted centres and investigate how
this construction is related to the so-called symmetric centre of C. This leads to
an injective heap morphism from a quotient of the Picard heap of the generalised
anti-Yetter—Drinfeld modules to the heap of pivotal structures of Z(C). We end the
section, by constructing a category such that this morphism is not surjective.

In the following, C denotes a strict rigid category.

4.1. Twisted centres and their Picard heaps. The regular action is not the
only way in which we can consider C as a bimodule over itself. Given two strict
monoidal endofunctors L, R: C — C, we can ‘twist’ the action by defining for all
VW, X, YeCand f: V - W,g: X - Y,

X»Y =L(X)®Y, frg=L(f)®y,

Y<X =Y ®R(X), g f=gQ®R(f).

We write Cgr for the bimodule obtained in this manner and call it the bimodule
obtained by twisting with L from the left and R from the right or, if the functors L
and R are apparent from the context, simply a twisted bimodule. Accordingly, we
refer to Z(;Cr) as a twisted centre. In case we want to stress that L or R are the
identity functors, we write Cr := 14.Cr and ,C := Ci4, and speak of a right and
left twisted bimodule, respectively. Following this pattern, Z(Cg) and Z(;C) are
called right and left twisted centres.

The forgetful functor from the centre of a twisted bimodule to the underlying
monoidal category is faithful. Therefore, we can use the graphical calculus discussed
previously as long as we pay special attention to the half-braidings. Given that
we will often deal with multiple twisted centres at once, we introduce a colouring
scheme to help us keep track of the various categories:

(i) Red for objects in the right twisted centre Z(Cr),
(ii) blue for objects in the left twisted centre Z(,C) and
(iii) black for objects in the Drinfeld centre Z(C) or C.

For example, the half-braidings of objects A € Z(Cgr) and @ € Z(;.C) are:

The half-braiding 04,x: A® R(X) - X ® A. | The half-braiding 0g,x: Q® X — L(X)® Q.

(4.1)

Remark 4.1. One can easily imagine a more involved setting than what is described
above by twisting with an oplax monoidal functor (L, A,¢): C — C from the left
and a lax monoidal functor (R, u,n) from the right. We hypothesise that ;Cr would
be a type of ‘oplax-lax’ bimodule over C, whose actions are associative and unital
only up to coherent natural transformations, subject to laws as described in [Sz112,
Section 2]. At least conceptually, this unifies our subsequent considerations with the
centres studied in [BV12]. We will revisit these more general structures in Section 6
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and for now only remark that the half-braiding of an object X € Z(;,Cr) is a natural
transformation ox —: X ® R(—) — L(—) ® X, which has to satisfy:

w R(X) R(Y) R(X) (R(Y)
< J

o /'j\ il
L(X) VL(Y) YW L(X) {(Y) w

(Axy ®idw)ow,x@y (idw ® ux,vy) . . .
— (idL(X) ®ow,y)(ow,x ® idR(Y)) (e®idw)ow,1(idw ®n) = idw

Convention. In what follows, we are predominantly interested in twisting with the
same strict monoidal functor from the left or right. For the purpose of brevity, we
therefore fix such a functor L = R: C — C and consider the categories ;,C and Cg.

Suppose we are given three objects
(A,o4,) € Z(CR), (Q,00,—) € Z(LC) and (X,0x) € Z(C).

The diagrams below show that various tensor products of the underlying objects
in C admit ‘canonical’ half-braidings.

R(Y)

)

oQex,y QX QY - L(Y)®Q®X ox@a,y: XQAQR(Y) > YR®X®A

Q A R(Y) A Q Y
e P

/ L(Y)

—R(Y)
L/(Y) Q A & A Q

oQeAY: QRARR(YY) - L(Y)QQ® A 0ARQ, Y ARQR®Y - Y RA®Q

The top row suggests a right action of Z(C) on left twisted centres and a left
action on right twisted centres.

Theorem 4.2. The tensor product of C extends to a right and left action of the
Drinfeld centre Z(C) on Z(Cgr) and Z(1.C), respectively. The half-braidings are as
defined in Diagram (4.3).

Remark 4.3. Right and left twisted centres are two sides of the same coin. We
write C := CoP®°P_ A direct computation proves the categories Z(Cr) and Z(zC)°P
to be the same. This identification is compatible with the respective actions since
—®°P R(—) = R(—)®— and oxgora,— = 0agx,— for all X € Z(C) and A € Z(CR).
According to these considerations, from now on we deliberately restrict ourselves to
the study of right twisted centres.

The left dual A* of any object (4,04 ) € Z(Cr) can be turned into an object of
Z(gC) if we equip it with the half-braiding
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wR(X)

TAv. Xt A'®X - R(X)®A".

A

The relation between the duality of twisted centres and their underlying categories
is stated more conceptually in our next result. It can be seen as an analogue of
Theorem 2.23.

Theorem 4.4. The left dualising functor (=) : C — CP®°P [ifts to a functor
between right and left twisted centres
(4.5) (=) Z(Cr) — Z(rC)™.

The half-braidings displayed in the right column of Diagram (4.3) show that
every object A € Z(Cg) gives rise to two functors of left modules over Z(C),

(4.6) —®A:Z(C) > Z(Cg) and —®A":Z(Cr) — Z(C).
Before we prove that the adjunction —® A: C = C : —® A", discussed in Theorem 2.8,
lifts to an adjunction of module categories, we fix our notation for the evaluation

and coevaluation morphisms in the context of twisted centres. For any object
(A,04,-) € Z(CRr), we write

AY A i1
(4.7) e A
1 A AY
ele:AV®A—>1, coele:1~>A®Av.

Theorem 4.5. Every object A€ Z(Cr) induces adjoint Z(C)-module functors
(4.8) —®A:Z(C) 2 Z(Cr) :—® A".

Proof. We fix an object (A,04,—) € Z(Cgr). Considered as endofunctors of C, there is
an adjunction —®A: Z(C) 2 Z(Cr) : —®A". As stated in the proof of Theorem 2.8,
its unit and counit are implemented via the evaluation and coevaluation morphisms

Ny = ldY ®Coevi4; Y —» Y®AV®A7 forall Y e Z(C),
ex =idy ®evl: XA ® A — X, for all X € Z(Cg).
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The next diagram shows that ey is a morphism in Z(Cg) for every X € Z(Cg).

X A A/R(Y)
X A A R(Y) % X A A/R(Y)
(4.9) M - N
K Nx //
Y
A Nx

ox,y(ex ®idry)) = (Y ® ex)oxgavga,y

Furthermore, ey x = idy ® ex for all W e Z(C). A similar argument shows that
the unit of the adjunction is a natural transformation of module functors as well. [J

The forgetful functor from the (twisted) centre to its underlying category is con-
servative, i.e. it ‘reflects’ isomorphisms. This allows us to characterise equivalences
of module categories between Z(C) and right twisted centres.

Theorem 4.6. Any functor of left module categories F': Z(C) — Z(Cg) is naturally
isomorphic to

—®A: Z(C) —> Z(Cr),
with A = F(1) € Z(Cgr). As a consequence, F is an equivalence if and only if A is
invertible as an object of C.

Proof. The first claim is an immediate consequence of the unitality of the action.
Suppose that H ~ — ® A is an equivalence. By Theorem 2.8, A must be invertible.
If conversely A is invertible, the same theorem shows that — ® A is an equivalence
of categories. O

The notion of heaps allows us to define an algebraic structure on the isomorphism
classes of objects implementing module equivalences between the Drinfeld centre
Z(C) and its twisted ‘relative’ Z(Cr). In analogy with the Picard group, we call this
the Picard heap of a twisted centre.

Lemma 4.7. The Picard heap of the right twisted centre Z(Cg) is the set
(4.10) PicZ(Cr) == {[(®,04.-)] | (@y04,—) € Z(CRr) with « invertible in C}
together with the heap multiplication defined for [a],[B], [v] € PicZ(Cr) by
(4.11) (], [8],["]) = [a®B @]

Proof. The generalised associativity, see Equation (3.1), follows from the associativ-
ity of the tensor product of C and its compatibility with the ‘gluing’ of half-braidings.
To show that the Mal’cev identities hold, we fix objects a, § € Z(Cr), which are
invertible in C. Theorem 2.23 and Equation (4.9) imply that

idg@cvla

a®a’ ®p B and fRa @a —
are isomorphisms in Z(Cg) and therefore {[«], [a], [B]) = [8] ={[B],[a],[a]). O

=1,
coev, ~®idg
> TP,
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In general, the twisted centre Z(Cgr) does not inherit a monoidal structure from C.
The above lemma, however, hints towards a slight generalisation where the tensor
product is replaced by a trivalent functor, essentially categorifying heaps (without
the Mal’cev identities). The well-definedness of this concept was hinted at in [Sko()ﬂ
under the name of heapy categories.

4.2. Quasi-pivotality. A particularly interesting consequence of our previous find-
ings arises in case R = (—)" is the left bidualising functor. The centre of the regular
bimodule twisted on the right by (=) can be understood as a generalisation of
anti-Yetter-Drinfeld modules, see [[H{S19, Theorem 2.3]°.

As before, we fix a strict rigid category C and consider the twisted bimodules
C(f)w and (7)WC.

Notation 4.8. We denote by A(C) := Z(C_y~) and Q(C) = Z((_y~C) the centre
of the regular bimodule twisted by the biduality functor from the right and left,
respectively. The former will also be called the anti-Drinfeld centre of C.

We have already mentioned the connection between the twisted centre A(C) and
anti-Yetter—Drinfeld modules over Hopf algebras given in [HKS19]. The case where
C is the category of modules over a Hopf algebroid was recently investigated by
Kowalzig in [Kow20]. The counterpart Q(C) of the generalised anti-Yetter—Drinfeld
modules is less common in the literature but plays a crucial role in our investigation,
especially in Sections 5 and 6, where we focus on the monadic point of view.

The next definition is a specific case of an unnamed construction studied in [Shil6,
Section 4].

Definition 4.9. A quasi-pivotal structure on a rigid category C is a pair (3, pg)
comprising an invertible object 5 € C and a monoidal natural isomorphism

(4.12) pp:lde = BR(—)"®pA".
We refer to (C, (B, pg)) as a quasi-pivotal category.

If C is the category of finite-dimensional modules over a finite-dimensional Hopf
algebra, quasi-pivotal structures have a well-known interpretation—they translate to
pairs in involution. This can be deduced from a slight variation of [Hal21, Lemma 5.6].
The main observation being, that the invertible object 5 of a quasi-pivotal structure
(B8, pg) on C corresponds to a character and pg determines a group-like element.
The fact that pg is a natural transformation from the identity to a conjugate of the
bidual functor is captured by the character and group-like implementing the square
of the antipode. We study a monadic analogue of this statement in Section 6.4.

Remark 4.10. Every pivotal category is quasi-pivotal; the converse does not hold.
A counterexample are the finite-dimensional modules over the generalised Taft
algebras discussed in [HK19]. Any of these Hopf algebras admit pairs in involution
but in general neither the character nor the group-like can be trivial. The previous
discussion and Lemma [Hal21, Lemma 5.6] show that My is quasi-pivotal but not
pivotal—in contrast to its Drinfeld centre Z(M ), which admits a pivotal structure
by [Hal21, Lemma 5.5].

6More precisely, let H be a Hopf algebra with invertible antipode. Denote by C = Mg the
category of finite-dimensional right modules over H. The same arguments as given in [Kas98,
Chapter XII.5] show that A(C) is equivalent to the category #a) Dy of right-left anti-Yetter—
Drinfeld modules over H as defined in [HKRS04].
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Let (8, ps) be a quasi-pivotal structure on C and ¢: 8/ — § an isomorphism.
Clearly, the pair (8, (¢~ ®id®¢")pg) is another quasi-pivotal structure on C. This
defines an equivalence relation and we write

QPiv(C) == {[(B,ps)] | (B,pp) is a quasi-pivotal structure on C}

for the set of equivalence classes of quasi-pivotal structures on C.

Lemma 4.11. Let C be a strict rigid category. The Picard heap Pic A(C) and the
set of equivalence classes of quasi-pivotal structures QPiv(C) are in bijection.

Proof. Let (5, pg) be a quasi-pivotal structure on C. We define the half-braiding

B X\/\/
B B
—1
(4.13) Ps
X B
os.x = (P ®idg) (idggxw ® (evh) ') : BRX™Y - X Q8.

It satisfying the hexagon identity is due to pg being monoidal. This establishes a
map ¢: QPIv(C) — PicA(C), [(8. ps)] — [(B,05,)].

Conversely, let (o, 04,—) € A(C) with « invertible. From its half-braiding we
obtain a monoidal natural transformation

X

N

(4.14)

w v
(&3 X [eY

Pa = ("';,lx ®id,v)(idx ®Coevix): X ->a®X"®a".

Due to the snake identities, the map ¢: Pic A(C) — QPiv(C), [(&, 00,—)] — [(, pa)]
is the inverse of ¢. O

Remark 4.12. Since QPiv(C) and Pic A(C) are bijective, QPiv(C) can be endowed
with a heap structure. However, even if QPiv(C) is non-empty, there might not be
a canonical element establishing a group structure on it in the sense of Lemma 3.5.
This conforms to the fact that there are no canonical coefficients for Hopf cyclic
cohomology as mentioned in the introduction.

Having lifted all Hopf algebraic notions of Theorem 1, we can now restate it in
its categorical version. Its proof is an immediate consequence of Theorem 4.6 and
Lemma 4.11.

Theorem 4.13. Let C be a strict rigid category. The following are equivalent:
(i) The category C is quasi-pivotal.
(i) The Picard heap Pic A(C) is non-empty.
(iii) The categories Z(C) and A(C) are equivalent as Z(C)-modules.
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4.3. Pivotality of the Drinfeld centre. In Remark 4.10 it is noted that pairs
in involution give rise to pivotal structures on the Yetter—Drinfeld modules. This
relationship follows a categorical principle, which we will examine in this section.
Our approach is similar to Shimizu’s investigations in the setting of finite tensor
categories, see [Shil6]. A major difference being that we focus on the Picard heap
of the anti-Drinfeld centre instead of quasi-pivotal structures of the underlying
category.

Let us briefly sketch the main benefit of this approach. Our ensuing constructions
lead to a conceptual understanding of the connection between the elements of
Pic A(C) and pivotal structures on Z(C). This in turn allows us to determine when
two such induced structures coincide by studying actions of the Picard group of
the symmetric centre of C on Piv A(C). Ultimately, this leads to a heap morphism
between the Picard heap of the anti-Drinfeld centre of C and the pivotal structures
on Z(C).

Let A = (o, 04,—) € A(C) with « invertible in C and write Q = (w,0,,—) € Q(C)
for its left dual. The coevaluation of a will play an important role, which is why we
gather some of its properties in the next diagram.

w E1

(4.15) X X ww X a w /X

/
/
X mw 4 e w X X
Compatibility between coev!, Compatibility between (coev’, )71
and the half-braiding of o @ w. and the half-braiding of o ® w.

Appropriate half-braidings allow us to ‘entwine’ A with any object X € Z(C) in a
non-trivial manner, resulting in a morphism from X to its bidual:

X

\.

(4.16)

S

XV

PA,X = (idxw ® (cocvfx)fl) (a';(,lC¥ ®idw) (ida ® 0'“,7)() (cocvﬁX ®idx) s X > XV

The following result is also discussed in [Shil6, Section 4.4]. For the convenience
of the reader we will recall its proof.



24

Lemma 4.14. Any object A = (a,04,—) € A(C), with o invertible in C, defines a
pivotal structure on Z(C) via

X 225 x for all X € Z(C).

Proof. As before, we fix an object A = (@, 04,—) € A(C) such that « is invertible
in C, and write Q = (w,0,,—) € Q(C) for its left dual. Furthermore, we assume
X € Z(C) to be any object in the Drinfeld centre of C. We note that for any Y € C
a variant of the Yang—Baxter identity holds:

(4.17)

The above identity combined with those displayed in Diagram (4.15) proves that
pax: X — X% is a morphism in the Drinfeld centre of C:

(4.18)
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Since the forgetful functor U(#): Z(C) — C is conservative and p4 x is a composite
of isomorphisms in C, it is an isomorphism in the centre Z(C).
The naturality of the half-braidings implies that p4 is natural as well.

w w w

xw

For any f € Z(C)(W, X) we have pa, xf = f"pa,w.

Lastly, the natural isomorphism pa: Idz¢y — (—)" being monoidal is established
by the hexagon identities, as is made evident by the next diagram.

v

(e w /
&/ ’
o Ly
Our previous result tells us that at least some of the pivotal structures of Z(C)
are induced by ‘invertible’ objects in A(C). However, it is challenging to determine
a priori whether these structures coincide. The following lemma is a first step in

this direction. It shows that the induced pivotal structures only depend on the
isomorphism classes of ‘invertible’ objects in A(C).

O

Lemma 4.15. Let Ay, Ay € A(C) be two representatives of the equivalence class
[A1] = [A2] € PicA(C). Then pa, = pa,-

Proof. We fix two objects A1 = (a1,2,04,,,—) € A(C) such that a; and ay are
invertible in C and ¢: A; — A is an isomorphism of objects in the anti-Drinfeld
centre. For any X € Z(C) we have:
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This shows that the induced pivotal structures p4, and pa, are the same. O

For a Hopf algebra, certain group-likes, called pivots, correspond to pivotal
structures on its category of finite-dimensional modules, see for example [Hal21,
Lemma 5.6]. This relation is, however, not one-to-one. Rather, one can multiply
any pivot with a group-like in the centre of the Hopf algebra and obtain the same
pivotal structure. We will now explore its categorical analogue, starting with the
notion of ‘central element’.

Definition 4.16. We call an object X € Z(C) symmetric if we have
(4.19) oxXy = Oy.x for all Y € Z(C).

Following the terminology of [Miigl3], we call the full (symmetric) monoidal
subcategory SZ(C) of Z(C) whose objects are symmetric the symmetric centre of

Z(0).
Lemma 4.17. Suppose C to be rigid, then SZ(C) is rigid as well.
Proof. Suppose X € Z(C) to be symmetric and let Y € Z(C). We compute

[(VY

OxV yOy, xv = ldxv®y.

This implies 0}373, = 0y xv- Since the left dual of any X € SZ(C) < Z(C) can be
equipped with the structure of a right dual and SZ(C) is a full subcategory of Z(C),
it must be rigid. O

Let us now consider the Picard group PicSZ(C) of the symmetric centre of Z(C).
It acts on PicA(C) via tensoring from the left, as shown in Diagram (4.3). We



27

consider two elements A, C € Pic A(C) equivalent if they are contained in the same
orbit. That is

(4.20) [A] ~ [C] < there exists a [B] € PicSZ(C) such that [B® A] = [C].

To show that two elements of Pic A(C) induce the same pivotal structure on
Z(C) if and only if they are contained in the same orbit under the Pic SZ(C)-action,
we need two technical observations. First, an alternate description of symmetric
invertible objects. Second, a more detailed investigation into the inverse of an
induced pivotal structure.

Lemma 4.18. An invertible object (8,05, ) € Z(C), is symmetric if and only if it
satisfies for all X € Z(C)

(4.21) .

X X

(idx ® (cocvlﬁ)fl) (0;(713 ® idﬂv) (idg ® Uﬁvyx) (cocvi3 ®idx) =idx.

Proof. Let B = (8,05,—) € Z(C) be invertible and X € Z(C). The left-hand side of
Equation (4.21) can be rephrased as:

X X

=
=
<
™
isy
<

(4.22)

=

X

We define the morphism f = idx ® coevlﬁz X - X ® [ ®[ and observe that
Equation (4.21) is identical to

T (op.x0x,5) 7 ®idge) f = idx.
This is equivalent to og xox g ®idg = idxgp ® idgv. As the functor — ® B is
conservative, the claim follows. [l
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Lemma 4.19. Let A = (a,04,—) € A(C) such that « is invertible in C and write

N = (w,04,—) € Q(C) for its dual. For any X € Z(C), the inverse of pa x 1is

(4.23)

xW

pQ,x = (idx ® (cocvfu)fl) (a';,lw ® idaw) (idw ® UaW,X) (cocvfd ®idxw) XY 5 X.

Proof. Let X € Z(C). The snake identities and a variant of Equation (4.15) imply:

(4.24)

Thus, writing Q = (o', 0qv,—) € Z(C), we have pa xpo x = idx.

a o a
w
«
|4
xW
X\/\/
\22
qa J
— = A%
B N @ «
\22
( )

xW

v

X

X

O

Lemma 4.20. Two elements [A],[C] € PicA(C) induce the same pivotal structure

on Z(C) if and only if there exists a [B] € PicSZ(C) such that [B® A] = [C].
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Proof. Let [A],[C] € PicA(C). Suppose there exists a [B] € PicSZ(C) such that
[B® A] = [C]. For any X € Z(C), we compute:

ﬁv/
(4.25) rox]- / - % ]
> Wb

If conversely pa = pc, we claim that C ® A" is symmetric. By Lemma 4.18 we have
to show that for every X € Z(C) the ‘entwinement’ pcga of C ® A with X is the
identity and indeed we observe

Pogarx = PavxPox = PaxPox = idx.
For the first equality we used the hexagon identities as in Equation (4.25) to separate
pPcgAav,x into two parts. The second one follows from the description of the inverse
of pa x given in Lemma 4.19. Finally, since ide ® evly: C® A" ® A — C is an
isomorphism in A(C), we have [(C ® 4") ® A] = [C]. O

The isomorphisms classes of ‘invertible’ objects of A(C) are not just a set but
form the Picard heap Pic A(C). Our next lemma shows that its heap multiplication
projects onto the orbits under the Pic SZ(C)-action.

Lemma 4.21. The canonical projection w: Pic A(C) — PicA(C)/PicSZ(C) induces
a heap structure on the set of equivalence classes Pic A(C)/PicSZ(C).

Proof. The claim follows from a general observation. Let X € Z(C) and A € A(C).
The half-braiding ox 4: X ® A > A® X is an isomorphism in A(C):

-

(capx, y)(UXA®1dY = (idy ® ox,4)0x®A,y forall Y € C.

Likewise, ox 4v: X ® A" — A* ® X is an isomorphism in Q(C). As a consequence,
for all [A],[A’],[A"] € PicA(C) and [B],[B’],[B"] € PicSZ(C) we have

7 (([A],[A],[A"])) =7 ([AQ A" ®@A"]) =7 ([B®B"Q@B"® A® A" ® A"])
=7([BRA® (B QA) @B"®A"]) =7 ({([BQA][B QA],[B"®A"])).
0

Recall that due to Example 3.6, the pivotal structures PivZ(C) on Z(C) admit a
heap multiplication. This allows us to distil our previous observations into a single
result.
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Theorem 4.22. The morphism of heaps
(4.27) k: PicA(C) - PivZ(C), [A] — pa

induces a unique injective morphism v: PicA(C)/PicSZ(C) — PivZ(C) such that
the following diagram commutes in the category of heaps:

PicA(C) ————— PivZ(C)

(4.28) .

PicA(C)/PicSZ(C)

Proof. Lemmas 4.14 and 4.15 show that x is well-defined. Given three elements
[A],[B], [C] € PicA(C), we compute

k({[A] B, [CD) = pagpac = papp pc = papp pc = {pa, pg' pc).
Here we applied the hexagon identities as in Equation (4.25) for the second step
and Lemma 4.19 for the third one. We see, x is a morphism of heaps. Lemma 4.20
states that for any two elements [A],[B] € PicA(C) we have k([A]) = ([B]) if
and only if 7([A]) = 7n([B]). It follows from Lemma 4.21 that the unique injective
map ¢: PicA(C)/PicSZ(C) — PivZ(C), which lets Diagram (4.28) commute, is a
morphism of heaps. O

Remark 4.23. In some cases, such as Z(C) being a modular tensor category, the
Picard group of the symmetric centre is trivial, see for example [Miigl3]. In this
setting, the induced pivotal structures depend only on the Picard heap Pic A(C)
and not on a quotient thereof.

It was proven by Shimizu in [Shil6, Theorem 4.1] that under certain circumstances
all pivotal structures on the centre of C are induced by the quasi-pivotal structures
of C. In our terminology, his result can be formulated as:

Theorem 4.24. The map ¢: PicA(C)/PicSZ(C) — PivZ(C) is bijective if C is a
finite tensor category.

However, in the introduction of [Shil6] the author states that it is not to be
expected that this does holds true in general. In the remainder of this section, we will
construct an explicit counterexample. The key observation needed to find a fitting
category C is the following: Suppose there is an object X € C which can be endowed
with two different half-braidings ox _ and xx,—. Assume furthermore that there is
a pivotal structure ¢: Idzcy — (=) on Z(C) such that ((x » ) # ((x,xx._)- If the
unit of C is the only invertible object, there is no (quasi-)pivotal structure inducing
¢ and therefore ¢: Pic A(C)/PicSZ(C) — PivZ(C) cannot be surjective.

We will now define such a category C in terms of generators and relations. The
details of this type of construction are explained in [Kas98, Chapter XII]. As a first
step, consider a ‘free’ monoidal category C°°. Its objects are monomials in the
variable X. Their tensor product is given by X" ® X™ = X"™™, The morphisms
of Cfr*® are formal compositions and tensor products of ‘atomic’ building blocks,
subject to suitable associativity and unitality relations. These ‘atoms’ are identities
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on objects plus the set M of generating morphisms depicted below.

X X X
X x /—\
(4.29) \_/ X X
X X X
px: X > X (7)(,)(:XQ~>X2 evx: X2 51 coevy:1l— X2

By [Kas98, Lemma XII.1.2], every morphism f: X™ — X™ in C'r*¢ is either the

identity or can be written as
f e (idel ® fl ® idxil) e (idsz @ f2 ®idXi2)(idXJ‘1 ® f1 ®idxil),

where i1, j1,...,%;,5; € Nand fi1,..., fi € M. Such a presentation is not unique but
the number [ € N of generating morphisms needed to write f in such a manner is.
We call it the degree of f and write deg(f) = 1.

To pass to the category C, we take a quotient of C® by the relations depicted
below. This will turn C into a pivotal, strict rigid category and allow us to extend o
to a braiding. To increase readability, we omit labeling the strings with X.

- Mgl
= OORAO

N ‘
(4.32) _
Due to [Kas98, Proposition XII.1.4], we observe that there is a unique functor

P: Cfree — C which maps objects to themselves and generating morphisms to their
respective equivalence classes.

Definition 4.25. Consider a morphism f € Home(X™, X™). A presentation of
f is a morphism ¢g € Homgtee (X™,Y™) such that f = P(g). If the degree of g is
minimal amongst the presentations of f, we call it a minimal presentation.
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Before we classify half-braidings of objects in C by studying their minimal
presentations, we first need to gather some information about the structure of C.

Theorem 4.26. The category C is strict rigid and the bidualising functor is the
identity. Furthermore, idx,px: X — X can be extended to pivotal structures and
ox,X: X? - X2 to a braiding.

Proof. The evaluation and coevaluation morphisms plus their snake identities make
X € C, and by extension every object of C, its own left, respectively right, dual.
Using the Relations (4.31) together with the snake identities, we compute
Px = Px = PX» Oxx =0XX = OXX,
evy = coevy = ‘evy and coevy = evy = coevy .

Thus, C is a strict rigid category whose bidualising functor is equal to the identity.
Our candidate for a pivotal structure on C, different from the trivial one, is

p: Ide — Ide defined by pxn =px Q- Qpx: X" > X" n € N.
This family of isomorphisms is compatible with the monoidal structure of C by
construction and we only have to investigate its naturality. It suffices to verify this
property on the generators. Relations (4.32) imply that px2 commutes with ox x.
For the evaluation of X € C we use the dual of Equation (4.31) to compute

evx pxz = evx(px ® px) = evx(py ® px) = evx(idx ® pX) = prevx .

Applying the left dualising functor, we get coevyx p1 = px2coevx and therefore
p: Ide — Id¢ defines a pivotal structure.
Lastly, we establish that ox x implements a braiding o: ® — ®°P on C. We set

OxX,xm = (idX®O'X,Xm*1)(O'X,X ®ide—1)7 meN
and extend this to arbitrary objects:
Oxn xm = (O-Xn—l‘m ® ldX)(lan—l ® O'X’Xm), n,me N.

As this family of isomorphisms is constructed according to the hexagon axioms,
see Equations (2.19) and (2.20), we only have to prove its naturality. Again, it
suffices to consider the generating morphisms. By Equation (4.32), o is natural
with respect to px, ox x and coevyx. The self-duality of ox x and coevy = evx
imply the desired commutation between ¢ and evy. Thus o is a braiding on C. [

We think of a generic morphism of C to be represented by a string diagram of
the form:

1 2 3 4 5 6 7 8
o/
oo
1 2 3 4 5 6

Example of a morphism in C.

This suggest that we distinguish between connectors, which link an input to an
output vertex, closed loops and half-circles of evaluation- and coevaluation-type.
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Connectors induce a permutation on a subset of N. For example, the permutation
arising from Diagram (4.33) can be identified with (1 2)(3 4).

Conversely, suppose s = t;, ...t;, € Sym(n) to be a permutation written as a
product of elementary transpositions and set fs == fi, "'ftil : X" — X", where

fti = idxi—1 ®UX,X ®idxn—(1’,+1): X"—>X", for 1<i<n-—1.

Since the braiding o is symmetric fs does not depend on the presentation of s.
However, should the presentation of s be minimal, then so is the corresponding
presentation of f.

The morphism f: X® — X2 corresponding to the premutation (132).

To derive a normal form of the automorphisms of C and turn our previously
explained thoughts into precise mathematical statements, we need to study the
‘topological features’ of the morphisms in C.

Remark 4.27. We recall the category T of tangles, a close relative to the string
diagrams arising from C, based on [Kas98, Chapter XII.2]. Its objects are finite
sequences in {4+, —} and its morphisms are isotopy classes of oriented tangles. A
detailed discussion of tangles is given in [Kas98, Definition X.5.1]. For us, it suffices
to think of an oriented tangle L of type (n,m) as a finite disjoint union of embeddings
of either the unit circle S! or the interval [0, 1] into R? x [0, 1] such that

(4.34) 0L = LN (R* x {0,1}) = ([n] x {(0,0)}) U (1] x {(0,1)}),

where [n] = {1,...,n} and [I] = {1,...,1}. The orientation on each of the connected
components of L is induced by the counter-clockwise orientation of S! and the
(ascending) orientation of [0,1]. The tensor product of tangles is given by pasting
them next to each other. Their composition is implemented, by appropriate gluing
and rescaling.

To distinguish isotopy classes of tangles, one can study their images under the
projection R? x [0,1] — R x [0,1]. This leads to a combinatorial description of T,
see for example [Kas98, Theorem XII.2.2].

Theorem 4.28. The strict monoidal category T is generated by the morphisms:

N [aW N N

evi:+®@——1, coevy:l = —Q+, ev: — @+ — 1, coev_:1l—>+Q® —,

<. <.

Tha i @+ =@+, [T L @+ -+ O+




These are subject to the following relations:

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

+ o+ g+ - -
+ + + -

+ o+ gt gt

</ N

+\+ + I+ /+

R

y

+
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The connection between tangles and the category C is attained through applying
[Kas98, Proposition XII.1.4].

Lemma 4.29. There exists a strict monoidal functor S: T — C which is uniquely

determined by S(+) = X = S(—) and

S(evi) = eVy,

S(coevy) = coevy,

S(riL) =ox.x.

To investigate the ‘topological features’ of C, we want to lift its morphisms to
7. Hereto we want to ‘trivialise’ the generator px x: X — X. Set C/{(px) to be
the category obtained from C by identifying px with idx. The ‘projection’ functor
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Pr: C — C/{px) allows us to define an equivalence relation on the morphisms of C:
(4.40) f~g — Pr(f) = Pr(g).

For example the following two endomorphisms (), €): 1 — 1 of the monoidal
unit of C would be equivalent with respect to this relation:

O O

A closed loop €©
decorated with p.

A closed loop O.

Theorem 4.30. Every automorphism f € C(X", X™) can be uniquely written as

(4.42) f=1Fsls
where fs: X™ — X™ is the automorphism induced by a permutation s € Sym(n) and
(4.43) fo=p% @ - ®@p%, with ¢1, . .., € Zs.

Furthermore, if a minimal presentation s = t;, ...t;, is fized, the resulting presenta-
tion of f is minimal as well.

Proof. For any automorphism f € Aute(X™) there exists another automorphism
g € Aute(X™) such that Pr(f) = Pr(g) and g has a presentation in which no copies
of p occur. By proceeding analogous to [[Kas98, Lemma X.3.3], we construct a tangle
Ly out of g such that S(Ly) = g and it is isotopic to a tangle Ly, whose images of
its connected components under the projection R? x [0,1] — R x [0, 1] are either
closed loops, half-circles of evaluation- or coevaluation-type or straight lines. Write
LYY for a tangle which projects to n parallel straight lines

{(k,t) | te[0,1] and k € {1,...,n}}.

Since g was invertible by assumption, we can lift its inverse g7': X™ — X" to a
tangle L, with [Lg][L,-1] = [LiV] = [L,-1][L,]. This equation readily implies
that L; could not have contained any loops or half-circles. In other words g = f,
where f, is the morphism obtained from the permutation s € Sym(n), induced by
the projection of L} onto R x [0,1]. Due to the naturality of ox x, the equivalence
between f and g implies f = f,fs, with f, being a tensor product of identities and
copies of px. Consequentially, a minimal representation of s induces a minimal
representation of f. O

The first step in showing that ¢: PicA(C)/PicSZ(C) — PivZ(C) cannot be
surjective is to prove that the Picard heap Pic A(C) contains at most two elements.

Corollary 4.31. The only (quasi-)pivotal structures on C are id: Ide — Id¢ and
p: Idc - Idc.

Proof. The only invertible object of C is its monoidal unit, which implies that any
quasi-pivotal structure on C is already pivotal. The claim follows since these are
determined by their value on X and, by Theorem 4.30, Aut¢(X) = {idx,px}. O



36
Let us now focus on the various ways in which we can equip an object Y € C with

a half-braiding. Our classification of automorphisms in C allows us to easily verify
that on X € C there are four different half-braidings. These are determined by

wlim e R K

0,0 2 2
OX,X‘X — X“,

$ X% x?

o,e e, 0 2 2 o0 2 2
Ix x UX,X‘X - X, O'X)X.X — X=.

The fact that these braidings are distinguished by the appearances of p on the
respective strings, motivates our next definition.

Definition 4.32. Let f = f,fs: X" — X" be an automorphism in C. Its charac-
teristic sequence is ¢ == (¢1,...,¢n) € (Z2)" with

(4.45) fo=r% ® - ®@p%-

Indeed, it is the interplay between instances of p and the underlying permutation
that determine whether an automorphism xy,x: ¥ ® X — X ®Y can be lifted to a
half-braiding.

Lemma 4.33. Any automorphism xyx: Y ® X — X ®Y eatends to a half-
braiding on'Y if and only if there exists an f € Aute(Y) with characteristic sequence
(f1,...,0n) and underlying permutation s € Sym(n) such that for all1 <i<n

(4.46) s%(i) =i, s(¢i) = i
and xy x = oy x(f ® p) for an integer j € Zs.
Proof. Assume xy, x:Y ® X - X ®Y to induce a half-braiding on ¥ = X"™. Due
to Theorem 4.30, we can write xy,x = oy,x(f ® pJX), where f: Y — Y is an
automorphism of Y and j € Zy. Let ¢ = (¢1,...,¢,) be the characteristic sequence
of f and s € Sym(n) its underlying permutation. Write fs: ¥ — Y for the morphism
induced by s and set
51 s (o

fo=p8 ® - ®p%, Fory = px @ @pk .
We write W := X"~! and, using that f = fsf, plus the naturality of xy _ and
Equation (4.31), compute:

(4.47) -

|evx ® idwl |evX ® idwl

X Ty x lw

This is equivalent to s being an involution and ¢ being invariant under s.
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Conversely, let xyx = oy x(f®p%): Y ® X - X ®Y, where f is an auto-
morphism satisfying the assumptions of the lemma. We extend it to a family of
automorphisms yy _: Y®— — —®Y according to the hexagon axioms and verify its
naturality on the generators of C. For px and ox x this is immediate consequence of
their respective naturality conditions. To prove the commutation relations between
Xy,—, coevy and evy, we argue as in Equation (4.47) O

The previous lemma severely restricts the number of possibilities in which an
automorphism of C can lift to the centre Z(C).

Corollary 4.34. Consider an object X" € C equipped with two half-braidings

Xxn,x = oxn x(fsfs ® i), Oxn.x = oxnx(fefy @ p).
If g = grgx € Aute(X™) lifts to a morphism g: (X", xxn ) — (X", 0xn _) of
objects in the centre Z(C) of C, then

(4.48) Pidsr(iy = Yr(iyAr(i), for all 1 <i<n.

Proof. For the automorphism g = f,. fx € Aute(X™) to lift to the centre it must
satisfy

oxn x (fsf9 ® P) = xxn x (9 ®idx) = (idx ® 9)0x» x = oxn x(9fefs ® pl).

This implies fsfsg = gfify and therefore gy Asr(i) = Ar(i)¥reiy for all 1 <i < n.
Since Z3 is abelian and ¢y = ¢; as well as 1,(;) = 1;, the claim follows. O

In view of Lemma 4.33, we state a slightly refined version of Definition 4.32.

Definition 4.35. Consider an object Y = (X", xx» x) € Z(C) whose half-braiding

is defined by x x» x = oxn» x (f®p’%) for an integer j € Zy. We call the characteristic
sequence ¢ of f the signature of Y.

We now construct a pivotal structure on the centre of C which differs from the
lifts of id and p from C to Z(C).

Theorem 4.36. The Drinfeld centre Z(C) of C admits a pivotal structure ¢ with

(4.49) C(xoge) = PX CXo%t) = PX;
(4.49b) (xore ) = idx, (o ) = idx.
Proof. For any object Y € Z(C) we define
ly = pfg ®--- ®p§“’, where ¢ = (¢1,...,¢y) is the signature of Y.

Since the signature ¢ of a tensor product Y ® W of objects Y, W € Z(C) is given
by concatenating the signatures ¢ of Y and ¥ of W, this defines a family of
isomorphisms (: Idz(¢y — Idz(¢), which is compatible with the monoidal structure.
It therefore only remains to prove the naturality of (. This can be verified by
considering all possible lifts of identities and generators of C to its Drinfeld centre.
Foridx,px: X — X and ox x: X? — X2, this follows by Corollary 4.34. To study
the coevaluation of X, we fix a half-braiding xx2 _: X*®— — —® X? on X2 Due
to Lemma 4.33, it is determined by

Xxzx = oxe x(ok x(k ® %) ®pk),  wherei,j kL€ Zs.
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Now suppose, coevy : 1 — X? lifts to a morphism in Z(C), where X? is equipped
with this half-braiding. Relation (4.31) together with the self-duality of ox x imply
ox,x coevy = coevy and evy ox x = evy, which allows us to compute:

X

X

Therefore j = k and ((x2y,, )= id% or CX2xy2 ) = p%, from which the desired
naturality condition follows. A similar argument for the evaluation of X concludes
the proof. [

By Corollary 4.31, the Picard heap of A(C) can have at most two elements.
However, the above theorem constructs a third pivotal structure on Z(C). This
implies our desired result:

Theorem 4.37. The pivotal structure ¢ of Z(C) is not induced by the Picard heap
of A(C). In particular, the map v: PicA(C)/PicSZ(C) — PivZ(C) is not surjective.

Let us conclude this section by stating that we deem the question interesting under
which conditions on a rigid category C, the map ¢: PicA(C)/PicSZ(C) — PivZ(C)
is surjective interesting.



PART 2:

THE ANTI-DOUBLE OF A HOPF MONAD AND
PAIRS IN INVOLUTION



5. BIMONADS AND COMODULE MONADS AS COORDINATE SYSTEMS FOR (TWISTED)
CENTRES

Bimonads and Hopf monads are a vast generalisation of bialgebras and Hopf
algebras, respectively. They naturally arise in the study of (rigid) monoidal categories
and topological quantum field theories, see amongst others [KL0O1, Moe02, BV07,
BLV11, TV17]. While there are several, sometimes non-equivalent, constructions
for Hopf monads, see [Boa95, MW 11], we follow the approach of [BV07].

A monadic interpretation of module categories was given by Aguiar and Chase
under the name ‘comodule monad’, see [AC12]. In this section, we recall some
aspects of their theory needed to obtain a monadic version of the results in Section 4.

5.1. Monads and their representation theory. A monad is an object of alge-
braic nature which serves as a ‘coordinate system’ of its category of modules. That
is, many properties of the latter can be expressed by the former. In this short
exposition, we follow [Riel7, Chapter 5] but keep our notation in line with the
article [BVO7].

Definition 5.1. A monad on a category C is an endofunctor T': C — C together
with two natural transformations

w:T? > T, n:Ide - T,
called the multiplication and unit of T, respectively. They need to satisfy appropriate
associativity and unitality axioms, i.e. for all X € C

(5.1) px (T(px)) = px (prx)),
(5.2) px (nr(x)) =1drx) = px(T(nx))-

A morphism of monads f: T — S is a natural transformation such that
(53)  fuk) = nDS(fx) frix), fxni) =0g), forevery X eC.

Remark 5.2. The endofunctors of a category C form a monoidal category End(C)
with composition as its tensor product. From this point of view, monads can be
interpreted as monoids (or algebras) in End(C). In the language of string diagrams,
we represent the multiplication and unit of a monad (7', u,n): C — C as

T T
(5.4) \]T/ iT

I,L:TZ*)T’ n:Idc — T.

Their associativity and unitality then equate to the diagrams

T \T T T )T T T T T
L TG
T T T T T

ppr = pT (W), pnr = idr = pT(n).

Definition 5.3. A module over a monad (T, p,n): C — C is an object M € C
together with a morphism 9;: T(M) — M, called the action of T on M, such that

(56) 19M‘LLM = 19MT(’£9M) and 19M771V[ = ldM
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A morphism of modules over T is a morphism f: M — N that commutes with the
respective actions, i.e.

(5.7) INT(f) = fOm-
Modules and their morphisms over a monad T on C form the category CT of
T-modules’. The free and forgetful functor of T are

Fr:C—CT, Fpr(M)=(TM), 17y and Up:CT —>C, Up(M,9y) =M.
They constitute the Eilenberg-Moore adjunction Fr: C = CT :Ur of T whose unit
n: Ide¢ — UrFr and counit e: FpUp — Ider are defined by
(5.8a) nv =" 1de (V) — UpFr(V) = T(V),
(5.8b)

€00 = Onr: FrUp(M,9pr) — Ider (M, 1), for every (M,9y;) € CT.

Remark 5.4. To fit the free and forgetful functor of a monad (T, u,n): C — C into
our graphical framework, we need a small modification: we label connected regions
of the diagrams with categories. The unit and counit of the adjunction then read as

for every V € C,

Id¢ Ur Fr Ur Fr
c c ¢
(5.9) - -
cT cr ot
Fr Ur Fr Ur I,
n:Ide - UrFr, e: FrUpr — IdCT.

Since the occurring categories are often apparent from the context, we do not explic-
itly display them in our diagrams. With these conventions, the string diagrammatic
versions of the defining Equations (2.1) and (2.2) of the above adjunction are

Ur Fr Fr

(5.10)

FT FT

Ur(e)nuy = idug, erp Fr(n) = idpp.

Likewise, we obtain a diagrammatic representation of the modules over T. By
definition we have that T' = Up Fr as functors. Define the natural transformation
¥ :=Ur(e): TUr = UrFrUr — Ur. Following [Wil08], it will be represented by

Ur T Ur T
o ':/
: '
(5.11) =T
ct C '
[J!T [JIT
9: TUp — Ur.

"In the literature, modules over T are also referred to as T-algebras and CT is called the
FEilenberg—Moore category of T'. The intention behind our conventions is to have a closer similarity
to (Hopf) algebraic notions.
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The compatibility of the action with the multiplication of T" and its unitality are
expressed by

T T JT T
(5.12) y = '\J Jo=|
19,LLUT = ’L9T(’l9) ’l9’l7UT = idUT.

As witnessed above, monads lead almost naturally to adjunctions between their
‘base categories’ and their categories of modules. The situation we face, however, is
the opposite. Given an adjunction F': C = D :U between two categories C and D,
we want to find a monad on C whose category of modules is equivalent to D.

Lemma 5.5. Let F': C = D :U be an adjunction between two categories C and D
with unit n: Ide — UF and counit e: FU — Idp. The endofunctor UF: C — C is
a monad with multiplication and unit given by

FU FU

(5.13) v ﬂ

F U F U

U
p: UFUF —E, yF, | n: lde -2 UF.

Let T be the monad of the adjunction F': C & D :U. In the spirit of our
previous remark, we might ask how much the functors F' and U ‘differ’ from the free
and forgetful functors Fr: C — CT and Up: CT — C of T, respectively. Roughly
summarised we are interested in the following:

!’
‘compare

U Fr

F Ur
C

Definition 5.6. Let T := UF be the monad of the adjunction F: C =D :U. We
refer to ¥: D — CT as a comparison functor if

(5.14) SF = Fr and Ury = U.

Theorem 5.7. Every monad T of an adjunction F: C = D :U admits a unique
comparison functor X: D — CT. On objects it is given by

(5.15) Y(X) = (U(X),U(ex)), for all X € D.

We call an adjunction monadic if its comparison functor is an equivalence.
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5.2. Bimonads and monoidal categories. Due to a lack of a (canonical) braiding
on the endofunctors End(C) over C, the naive notion of bialgebras does not generalise
to the monadic setting and needs to be adjusted. One possible way of overcoming this
problem was introduced and studied by Moerdijk under the name ‘Hopf monads’® in
[Moe02]; the idea being that the coherence morphisms of an oplax monoidal functor
(T,A,e): C — D, see Definition 2.2, serve as its ‘comultiplication’ and ‘counit’.
Following the conventions of [BV07] we refer to such structures as bimonads.

Definition 5.8. A bimonad on a monoidal category C is an oplax monoidal end-
ofunctor (B, A,¢): C — C together with oplax monoidal natural transformations
p: B2 — B and 5 : Id¢ — B implementing a monad structure on B.

A morphism of bimonads is a natural transformation f: B — H between bimon-
ads which is oplax monoidal as well as a morphism of monads.

Convention. As discussed in Section 2.1, we refer to the coherence morphisms
A: B(—®—-) - B(—-)® B(-) and e: B(1) -1

of a bimonad (B, u,n,A,e): C — C as its comultiplication and counit. Their
defining relations, see Equations (2.4) and (2.5), will be called the coassociativity
and counitality axiom of the comultiplication.

Remark 5.9. Despite this terminology not being standard, it can be justified by
representation theoretic considerations. Under Tannaka—Krein reconstruction, see
[EGNO15, Chapter 5], the comultiplication and counit of a bialgebra correspond to
a tensor product and unit on its category of modules. Similarly, given a bimonad
(B, 1,1, €): C — C and two modules (M, 9y;), (N,9y) € CB we set

Moreover, we define 1: B(1) — 1. The coassociativity and counitality of the
comultiplication of B imply that the above construction implements a monoidal
structure on CB, parallel to that on the modules over a bialgebra.

Going further, we can incorporate rigidity into this picture. In view of [BV07,
Theorem 3.8], we state:

Definition 5.10. A bimonad H: C — C on a rigid category C is called a Hopf
monad if its category of modules C is rigid.

Remark 5.11. The rigidity of the modules C* of a Hopf monad H: C — C is
reflected by the existence of two natural transformations

(5.17) s HH(X)) - H',  s%:H('H(X)) - "H, for all X € C,

called the left and right antipode of H. In Example 2.4 of [BV12] it is explained
how these generalise the antipode of a Hopf algebra.

The intricate interplay between monads and adjunctions transcends to monoidal
categories and bimonads. Suppose F': C 2 D :U to be an oplax monoidal adjunction
between C and D. The monad of the adjunction UF': C — C is a bimonad whose
comultiplication is defined for every X,Y € C as the composition

(F) AW
(5.18) UF(X®Y) (85%) UFX)QF(Y)) —2IY, UR(X)@UF(Y).

8As remarked in [Moe02], the concept of Hopf monads is strictly dual to that of monoidal
comonads, which are studied for example in [Boa95].
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Its counit is

(5.19) UF(1) v, U1) <21,

The next result is a slightly simplified version of [TV17, Lemma 7.10].

Lemma 5.12. Let F': C = D :U be a pair of adjoint functors between two monoidal
categories. The adjunction F - U is monoidal if and only if U is a strong monoidal
functor. That is, the coherence morphisms of U are invertible.

Suppose B: C — C to be the bimonad arising from the monoidal adjunction
F:C = D :U. Since the forgetful functor Ug: CB — C is strict monoidal, the
adjunction Fg 4 Up is monoidal by the above lemma. This raises the question
whether the comparison functor, mediating between the two adjunctions, is com-
patible with this additional structure. Due to [BV07, Theorem 2.6], we have the
following result.

Lemma 5.13. Let F: C = D :U be a monoidal adjunction and write B: C — C
for its induced bimonad. The comparison functor ¥: D — CB is strong monoidal
and Ug¥ = U as well as XF = Fp as strong, respectively, oplaz monoidal functors.

The question to which extend the monoidal structure on C? is unique was
answered by Moerdijk in [Moe02, Theorem 7.1].

Theorem 5.14. Let (B, u,n) be a monad on a monoidal category C. There exists a
one-to-one correspondence between bimonad structures on B and monoidal structures
on CB such that the forgetful functor Up is strict monoidal.

5.3. The graphical calculus for bimonads. Willerton introduced a graphical
calculus for bimonads in [Wil08]. Since it will aid us in making our arguments more
transparent, we recall it here. The key idea is to incorporate the Cartesian product
of categories into the string diagrammatic representation of functors and natural
transformations.

As before, we consider strings and vertices between them. These are labeled
with functors and natural transformations, respectively. The strings and vertices
are embedded into bounded rectangles which we will call sheets. Each (connected)
region of a sheet is decorated with a category. The same mechanics as for string
diagrams apply—horizontal and vertical gluing represents composition of functors
and natural transformations. On top of the operations, we add stacking sheets
behind each other to depict the Cartesian product of categories. Our convention is
to read diagrams from front to back, left to right and top to bottom.

Two of the most vital building blocks in this new graphical language are the
tensor product and unit of a monoidal category (C,®,1):

(5.20)

The tensor product ®: C x C — C. The unit as a functor 1: 1 — C.
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On the left, we see two sheets equating to two copies of C joined by a line: the
tensor product of C. On the right, we have the unit of C considered as a functor
1L¢ , where 1 is the category with one object and one morphism. Our convention
is to represent the category 1 by the empty sheet and the unit of C by a dashed line.

The first example we want to discuss is that of a bimonad (B, u,n,A,e): C — C.
Diagram (5.4) describes its unit and multiplication. The comultiplication and counit
of B are represented by

c B
/ j
(5.21) c A % .
B c
B
AIB(*@*)*)B(*)@B(*), E:B(l)%l.

In string diagrams, coassociativity and counitality equate to

(5.22)

(5.23)

(d®e)A_ 1 =idg, (e®id)A;,_ = idp.

The multiplication and unit of B are comultiplicative and counital. The graphical
version of these axioms is

B B ﬁ
(5.24) - - 1
B B B
B
B B
Ao _p-g- = (p— @ pu-)Ap—),B—)B(A--), Ao _n-@- =1-@®n-,
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B B JB B
(5.25) )j = J J |-
ep1 = eB(e), eny = idg.

The second—equally important—example is that of an oplax monoidal adjunction
F:C= D :U. It is characterised by its unit ¥ Y) and counit e(¥Y) being oplax
monoidal natural transformations:

(5.26) 9 0
L
F U
A;U(l)yp(,)U(A(_I‘?)_)n(_FéA_U) = n(_FAU) ®"7(_FAU)’ E(U>5(F)7I§F_{U) = idy,
u F Uu F
(5.27) = @ = /
6(_1!~“®—<_U) _ (6(_F—1U) ®6(_HU))AL?,%U(,)F(A(_U‘)_% 6(1F—<U) _ a(F)F(eW)).

5.4. Comodule monads. Monads with a ‘coaction’ over a bimonad were defined
and studied by Aguiar and Chase in [ACI12]. This concept is needed to obtain
an adequate monadic interpretation of twisted centres. We briefly summarise the
aspects of the aforementioned article that are needed for our investigation”’. To keep
our notation concise, we fix two monoidal categories C and D and over each a right
module category M and N.

Definition 5.15. Suppose (F,A,¢): C — D to be an oplax monoidal functor. A
(right) comodule functor over F is a pair (G,d) consisting of a functor G: M — N
together with a natural transformation

(5.28) dmx: G(M<«X)—G(M)<« F(X), for all X € C and M € M,

called the coaction of G, which is coassociative and counital. That is, for all X, Y € C
and M € M we have

(5.29) (idem) @ Ax,y)dm xey = (Om,x <idpryy))onmax,y,
(5.30) (idg(ary < €)dr,1 = ida -

A comodule functor is called strong if its coaction is an isomorphism.

IWe slightly deviate from [AC12] in that we study right comodule monads as opposed to their
left versions.
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A recurring example of strong comodule functors in our investigation is given by
forgetful functors. By construction U%): Z(C) — C is strict monoidal. Over it, the
forgetful functor U : Z(1C) — C from a left twisted centre to its base category is
strict comodule.

In order to emphasise that (G,d): M — N is a comodule functor over an oplax
monoidal functor (F,A,e): C — D, we colour it blue in our string diagrams. For
example, its coaction is represented by

G

%

(5.31)

G
0:G(=®—-) > G()®F(-).

The compatibility of the coaction with the comultiplication and counit of F' given in
Equations (5.29) and (5.30) would result in diagrams similar to (5.22) and (5.23).

Definition 5.16. Let G, K: M — N be comodule functors over B, F': C — D. A
comodule natural transformation from G to K is a pair of natural transformations
¢: G — K and ¢: B — F such that

(5.32) (6ar < Ux)0y = 04 xnrax,  forall X €Cand M e M.
We call (¢, %) a morphism of comodule functors if B = F and ¢ = idp.

Suppose the pair ¢: G — K and ¢: B — F to constitute a comodule natural
transformation. We can view ¢: G — K as a morphism of comodule functors over
F if we equip G with a new coaction. It is given for all X € C and M € M by

@)

G(M « X) 2%, G(M) « B(X G(M) < F(X).

It follows that by altering the involved coactions suitably, comodule natural trans-
formations and morphisms of comodule functors can be identified with each other.

The graphical representation of the condition for ¢: G — K to be a morphism of
comodule functors is displayed in our next diagram.

) idgmyax
_—

G G

_/ /

(5.33)

UV G = (¢- aidp(_y)s'?)

Remark 5.17. Let (B, u,n,A,e): C — C be a bimonad and M a module category
over C. The unit n: Ide — B implements a coaction on Idy: M — M via

(5.34) idpr<anx: Idpy(M <« X) - Idpm (M) <« B(X), forall X e C,M e M.
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Using the multiplication p: B? — B, we can equip the composition GK of two
comodule functors G, K: M — M with a comodule structure:

(5.35) §(CK) = (id« p)s TG GK(—a —) - GK(—=) <« B(—).

Due to the associativity and unitality of the multiplication of B, the category
Com(B, M) of comodule endofunctors on M over B is monoidal. Studying its
monoids will be a main focus of the rest of this section.

Definition 5.18. Consider a bimonad B: C — C and a module category M over
C. A comodule monad over B on M is a comodule endofunctor (K,d): M — M
together with morphisms of comodule functors p: K? — K and n: Idyy — K such
that (K, p,n) is a monad.

A morphism of comodule monads is a natural transformation of comodule functors
f: K — L that is also a morphism of monads.

The conditions for the multiplication and unit of a comodule monad K: M — M
over a bimonad B: C — C to be morphisms of comodule functors amount to

K K ﬁ
(5.36) .9 B
3 B B
K
K K K
oo —p) = (w9 PNk (—y m() K (6= ,—), 6_,—n) =l oy,

Remark 5.19. Let B: C — C be a bimonad and (K,d): M — M a comodule
monad over it. The coaction of K allows us to define an action <: M¥ x B — MK,
For any two modules (M,9)/) € M% and (X,9x) € CP, it is given by

(537) (M,'l?M)ﬂ (X,ﬁx) = (M<1 X,(’t9]v[<ll9x)(5M,X).

The axioms of the coaction of B on K translate precisely to the compatibility of
the action of C® on M¥ with the tensor product and unit of CZ.

We have already seen that monads and adjunctions are in close correspondence
and that additional structures on the monads have their counterparts expressed in
terms of the units and counits of adjunctions. In the case of comodule monads this is
slightly more complicated as we have two adjunctions to consider: one corresponding
to the bimonad and one to the comodule monad.

Definition 5.20. Consider two adjunctions F: C 2 D :U and G: M =2 N :V
such that F' 4 U is monoidal and G,V are comodule functors over F,U. We call
the pair (G 4V, F 4 U) a comodule adjunction if the following two identities hold:

e 'H‘ib
GV G

\2 G GHV (GHV FAHU
5(G(>,),F(,>V(5(,1),)7l(,<, ) = n_ ) 77(, >s

(5.38)
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ez

(5.39)

G = (L5 G DN G,

The philosophy that monads and adjunctions are two sides of the same coin
extends to the comodule setting. Suppose that we have a monoidal adjunction
F:C 2 D :U and over it a comodule adjunction G: M 2 N :V. As stated in
[AC12, Proposition 4.3.1], the bimonad B := UF admits a coaction on the monad
K :=VG@G. For any M € M and X € C it is given by

V(él(\f)x) 588»1),1?(){)
(5.40)  VG(M < X) —2250, V(G(M) « F(X)) <2259, g(M) « B(X).

The next result slightly extends Proposition 4.1.2 of [AC12]. We prove it analogous
to [TV17, Lemma 7.10].

Theorem 5.21. Suppose F': C = D :U to be a monoidal adjunction and let
G: M 2 N :V be an adjunction between module categories over C and D, re-
spectively. Lifts of G 4V to a comodule adjunction are in bijection with lifts of
V:N — M to a strong comodule functor.

Proof. Let G 4V be a comodule adjunction and write §() for the coaction of V.
We define its inverse via

(5.41)

Vv

5 V(D) «U(-) > V(=< ).

Using that G and H are part of a comodule adjunction, we compute:

w

v v

14 v \%

A similar strategy can be used to show that 51(3/3)/ ) 5;,7(}‘5) = idy(nyeu(y) for all

Y € Dand N € V. Thus, 6(V) is a natural isomorphism and therefore V is a strong
comodule functor.
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Now, let (V,6(")): N' = M be a strong comodule functor. We set

G

(5.42)

G

5D G(—a =) > G(=)a F(-).

Due to [TV17, Lemma 7.10], the comultiplication and counit of F': C — D are for
all X,Y e C given by
(FHU)

(F) ._ (FAU) -(U) (FHU)
(5.43) Axy = 6F(X)®F(Y)F(AF(X),F(Y))F(WX ®ny ),
(5.44) e = FA e~y

Note that, graphically, A looks just like Diagram (5.42), with black strings taking
the place of blue ones. We prove that §(%): G(— < —) — G(—) « F(—) is a coaction
on G: M — M diagrammatically:

G G G

|
|

and
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It follows that the unit of the adjunction G 4 H satisfies:

el G

An analogous computation for the counit shows that G 4 V is a comodule adjunction.

To see that these constructions are inverse to of each other, first suppose that
we have a comodule adjunction (G, (%)) — (V,5()). By utilizing 6~ (V) as given
in Diagram (5.41), we obtain another coaction A(%) on G, see Diagram (5.42). A
direct computation shows that §(¢) = \(&):

G G

J

G G

The converse direction is clear since inverses of natural isomorphisms are unique. [

The above theorem yields a description of the coaction of a comodule monad in
terms of its Eilenberg—-Moore adjunction. It is an analogue of Theorem 5.14.

Corollary 5.22. Let B: C — C be a bimonad and M a right module over C. Further
suppose K: M — M to be a monad. Coactions of B on K are in bijection with
right actions of C® on M¥ such that Uk is a strict comodule functor over Ug.

Proof. Suppose CP acts from the right on M such that Uk is a strict comodule
functor. Due to Theorem 5.21, K = Uk Fi is a comodule monad via the coaction

(5.45) 610 = 6 (5 = U (577)).

Conversely, if K is a comodule monad, M% becomes a suitable right module
over CB with the action as given in Remark 5.19.

Since the coaction on K and the action of C® on M* determine the coactions of
Fi uniquely, the above constructions are inverse to each other by Theorem 5.21. [

The next result clarifies the structure of comparison functors associated to
comodule adjunctions. We prove it analogous to [BV07, Theorem 2.6].

Lemma 5.23. Consider a comodule adjunction G: M 2 N :V over a monoidal
adjunction F': C =D :U and denote the associated comodule monad and bimonad
by K =VG: M > M and B = UF:C — C, respectively. The comparison
functor ) : N — MX is a strong comodule functor over ©(B): D — CB and
UgZE) = V, as well as YE)G = Fx as comodule functors.
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Proof. For any N € N we have (5)(N) = (V(N), V(ey)) and a direct computation
shows that the coaction of V lifts to a coaction of X(5). That is, we have

Uk (5]%,?;)) — Yy, for all N € A" and Y € D.
Using that Ug : M¥ — M is a faithful and conservative functor, we observe that
Y &) becomes a strong comodule functor in this manner. Furthermore, as Uk is
strict comodule, the coactions of UxX5) and V coincide. Lastly, we compute for
any X € C and M € M

poICioNe! U@ \igel K UxF F
SN = ST < o) = o = o = i)

-

O

5.5. Cross products and distributive laws. Suppose C to be the modules of a
Hopf monad H: V — V. The Hopf monadic description of the Drinfeld centre Z(C)
of C due to Bruguieres and Virelizier, given in [BV12], is achieved as a two-step
process. First, by finding a suitable monad on C and then ‘extending’ it to a monad
on V. We will review this ‘extension’ process based on Sections 3 and 4 of [BV12].

Definition 5.24. Let H: V — V and T: V¥ — V¥ be two monads. The cross
product T'x H of T by H is the monad UgT Fg: V — V whose multiplication and
unit are given by

FgTUy Fgu T Ul

(5.46) T

Fg TUn Fg TUl

T FHU T
Unt (g DU T(efp ), | Un(n) im0,

The cross product B x H: C — C of two bimonads H: V — V and B: V¥ — VH
is a bimonad again, with comultiplication and counit

‘ Fy T Uy

) )

(5.47)

FefT /Un

Fyg T Un

(Ug) T (Fg)
Ar g (U By ()DURTATI) | Wi Uy (T Uy T Fi0).

The comultiplicativity and counitality of the multiplication and unit of B x H can
be deduced from Diagrams (5.24), (5.25), (5.26) and (5.27). Similar considerations
imply the following:

Lemma 5.25. Let H: V — V and B: VH — VI be bimonads which respectively
coact on the comodule monads K: M — M and C: M5 — MX . The cross product
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CxK: M— M isa comodule monad over B x H via the coaction

‘ Fx CUk

7

(5.48)
FrufB /U
Fr C Uk
U © (i)
8 (—),8rgy (0 UK Cpl ) pyy () )URCOZED).

Assume we have a monad B: V¥ — VH ‘on top’ of another monad H: V — V.
The question under which conditions the modules VE*H of B x H are isomorphic to
(VHE)B is closely related to Beck’s theory of distributive laws, developed in [Bec69].

Definition 5.26. Consider two monads (H, ), ) (T, ™) M)y - V. A
distributive law of T over H is a natural transformation

(5.49) Q: HT — TH,

subject to the following relations:

T T H H H
o
(5.50) ]
H T H T
H T
WD TE@)Qr = QHED, 7" = QH™),
T H H T T
o
_ - s
(5.51) I 2
H T H T
H T
(™M) H(Q) = Qui™, (™) = Q.

A distributive law Q: HT — TH between H,T: V — V allows us to define a new
monad T oq H: V — V. Its underlying functor is TH: V — V and its multiplication
and unit are given by:

HT HT

(5.52)

T p———0
N O

H T

T T
o= pl T INT Q) | 0= n
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Street developed the theory of monads and distributive laws intrinsic to ‘well-behaved’
2-categories in [Str72]. If we apply his findings to the 2-category ®-Cat of monoidal
categories, oplax monoidal functors and oplax monoidal natural transformations,
we obtain a description of bimonads and oplax monoidal distributive laws, see also
[McC02]. That is, oplax monoidal natural transformations A: HB — BH between
bimonads H, B: V — V that are moreover distributive laws in the sense of Defini-
tion 5.26. Accordingly, suppose A: HB — BH to be an oplax monoidal distributive
law. The comultiplication and counit of the underlying functor BH: V — V turn
B oy H into a bimonad.
Comodule monads, on the other hand, can be intrinsically described in the
2-category («-Cat,®-Cat) which has
(i) as objects pairs (M,V) comprising a right module category M over a
monoidal category V,
(ii) as I-morphisms pairs (G, F') of a comodule functor G over an oplax monoidal
functor F' and
(iii) as 2-morphisms pairs (¢, ) which constitute a comodule natural transfor-
mation.

The subsequent definition and results arise immediately from [Str72].

Definition 5.27. Let K,C: M — M be two comodule monads over the bimonads
H,B:V — V, respectively. A comodule distributive law is a pair of distributive
laws Q: KC — CK and A: HB — BH such that (A, Q) is a comodule natural
transformation.

Definition 5.28. Let 7': C — C be a monad and U: D — C a functor. We call a
monad T: D — D a lift of T if UT = TU and for all X € D
T T T T
(5.53) U) = puly,  and UG =n§).
As the next result shows, distributive laws are closely related to lifts of monads.

Theorem 5.29. Consider two comodule monads K,C: M — M over the bimonads
H,B:V — V. There exists a bijective correspondence between:

(i) comodule distributive laws (KC L, CK,HB BH) and

(ii) lifts of B to a bimonad B: VH — VH together with lifts of C' to a comodule
monad C: MX — MX over B such that BUy = UHB as oplax monoidal
functors and CUx = UxC' as comodule functors.

Let (KC L, CK,HB % BH) be a comodule distributive law. The coactions of
K and C turn C oq K into a comodule monad over B oy H.

Lemma 5.30. Suppose Q: KC — CK and A: HB — BH to form a comodule
distributive law, then

(i) (VH)BIE is isomorphic as a monoidal category to VB°AH and

), (/\/lK)CSz is isomorphic as a module category over VE°AH to MoK
Remark 5.31. Suppose B, H: V — V to be Hopf monads. In [BV12] it is shown

that if A: HB — BH is a monoidal distributive law, Boy H:V — V and the lift
B VH L YH are Hopf monads, as well.
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5.6. Coend calculus. For our subsequent monadic description of the anti-Drinfeld
centre, we need to functorially associate to every object a ‘free object’, which
caries enough information to equip it with a ‘universal’ braiding. A feasible way
of achieving this is given by considering appropriate coends. Based on [Lor21], we
give an overview of a simplified version of their theory, tailored to our needs.

Definition 5.32. Consider three categories A, B,C. An extranatural transformation
(: P — @ from a functor P: B°? x A x B — C to a functor Q: A — C is a collection
of natural transformations

Cp_: P(B,— B) - Q(~), forall BeB,
which satisfy for all f € B(B,B’) and A € A the cowedge condition
(5.54) (B,aP(f,ida,idp) = (pr,aP(idp,id4, f).

Remark 5.33. Our definition of an extranatural transformation (: P —o @ differs
in two ways from the one given in the literature. First, we have chosen a different
order for the source categories of the trivalent functor P: B°P x A x B — C then what
is usually the norm. Second, in its full generality, the ‘target functor’ Q of (: P —o @
could be trivalent as well. That is, it could be of the form @Q: D°? x A x D — C,
where D is a category which is possibly distinct from A, B and C.

Definition 5.34. Consider an extranatural transformation (: P — @ from a
functor P: B°? x A x B — C to a functor Q: A — C. We call the pair (Q,()
universal if for every other extranatural transformation £: P — R from P to a
functor R: A — C there exists a unique natural transformation v: Q — R such that
for all A€ A and f € B(B, B’) the following diagram commutes:

£B/,A

(5.55) Q(A) <—<B,’A P(B',A,B')

CB,AT TP(idB/,idA,f)

P(B, A, B) P(B', A, B)

<7
P(fida,idp)
In this case, we call Q(A) the coend of P(—, A, —): B°? x B — C for any A € A.

Remark 5.35. It follows from their definition that universal extranatural transfor-
mations are unique up to unique natural isomorphisms.

6. A MONADIC PERSPECTIVE ON TWISTED CENTRES

The anti-Yetter—Drinfeld modules of a finite-dimensional Hopf algebra are a
module category over the Yetter—Drinfeld modules. Subsequently, they are im-
plemented by a comodule algebra over the Drinfeld double, see [HKRS04]. As
explained in Section 4, we find ourselves in a similar situation. Our replacement
of the anti-Yetter—Drinfeld modules, the anti-Drinfeld centre, is a module category
over the Drinfeld centre.

We replace finite-dimensional vector spaces by a rigid, possibly pivotal, category
V and the underlying Hopf algebra with a Hopf monad H: V — V. In this section we
study a Hopf monad D(H): ¥V — V and over it a comodule monad Q(H): V — V,
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which realise the centre and its twisted cousin as their respective modules. Bruguieres
and Virelizier gave a transparent description of D(H) in [BV12] by extending results
of Day and Street, see [DS07]. The key concept in its construction is the so-called
centraliser of the identity functor of V. It is used to define a Hopf monad D (VH)
on VI with Z(V™) as its Eilenberg-Moore category. From this, one obtains—as an
application of Beck’s theory of distributive laws—the Drinfeld double D(H): V — V.
We apply the same techniques to define the anti-double Q(H) of H, whose modules
are isomorphic to the ‘dual’ of the anti-Drinfeld centre Q(V*). This approach is
best summarised by the following diagram:

zZ(vH) action Q(V*)

N

U@ p@

F<Z> U(Q)
n®) n(2)

S (D(H)) \ / S (QUH))

Up (m) /\ Fom)
/ Fpy  Ugm) \

VD(H) action VQ(H)

FIGURE 2. A cobweb of adjunctions, monads and various versions

of the Drinfeld and anti-Drinfeld centre.
The translation of module functors between Z(V) and Q(V**) into morphisms of
comodule monads between Q(H) and D(H) yields our desired monadic version of
Theorem 1, which we prove in Theorem 6.26. We end our endeavour into the theory
of comodule monads with Corollary 6.27. In it, we explain how pivotal structures
on V arise from module morphisms between the so-called central Hopf monad ©
and the anti-central comodule monad Q.

6.1. Centralisable functors and the central bimonad. The construction of the
double of a Hopf monad H: V — V given in [BV12] relies heavily on an ‘accessible’
left dual of the forgetful functor U(%): Z(VH) — VH | It is obtained as an application
of the coend calculus covered in Section 5.6.

Definition 6.1. Suppose C to be a rigid category and T': C — C to be an endofunctor.
We call T centralisable if there exists a universal extranatural transformation

rx:TY)RXQY — Zp(Y), for X,Y eC.
A centralisable functor T: C — C admits a universal coaction
(6.1) xx,y = (idpry) ® Cy,x)(coev%(y) ®idy ), for X,Y eC,

which is natural in both variables. We call the pair (Zr, x) a centraliser of T



57

Graphically, we represent the universal coaction as

S
(62) TY) YZr(X)

xx,v: XQY - T(Y)R® Zr(X).

It being natural equates to

xw,y (f ®g) = (T(9) ® Zr (f))xv,x
for all morphisms f: V — W and g: X - Y.

The extended factorisation property of universal coactions provides us with a
potent tool for constructing bi- and comodule monads. Its proof is given for example
in [BV12, Lemma 5.4].

Lemma 6.2. Let (Z7,x) be the centraliser of a functor T: C — C and suppose that
L,R: D — C are two functors. For any n € N and any natural transformation

dx vy, LX)®Y1® - ®Y, > T(X1)® - T(X,) ® R(Y),
where X € D and Y1,...,Y, € C, there exists a unique natural transformation
vy: Z3L(X) —» R(X), for VeD,

which satisfies

T(Y1)-- 1T(Yn) ' R(X) T(Y1) -+ 1T(Yn) 'R(X)

OX.,v1,...yn = (1d® VX)(id®XZn—1L(X> v ) ([d® Xz L(x),ve ®id) (XL(x),v; ®id).
j Y

Suppose (T, AT £(T): ¢ — C to be an oplax monoidal functor with centraliser
(Z7,x). For all X € C, the counit of T' combined with the universal coaction of Zr
gives rise to a natural transformation
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We derive another natural transformation p(#7): Z2 — Zz from the comultipli-
cation of T'. Due to Lemma 6.2 it is uniquely defined by

YW X Y w

z
H;T)

zr(x) o) lrw) Tz0(x)

(Agx)/v ®id)xx,yew = (id®H(XZT))(id ® xzp(x).w)xx,y ®id).

Lemma 6.3. The centraliser (Zr,x) of an oplax monoidal endofunctor T: C — C
is a monad with multiplication and unit as given in Equations (6.6) and (6.5).

The above lemma is proven as the first part of [BV12, Theorem 5.6]. In it, the
authors further consider T: C — C to be equipped with a Hopf monad structure
and show that in this case Zr is a Hopf monad as well. The extended factorisation
property given in Lemma 6.2 allows us to reconstruct a comultiplication on Zp from
a twofold application of the universal coaction and the multiplication of T":

w X®Y w

_ (Z7)
- AX,’I‘;'

Zr(Y) W) (ZT(X) wZT(Y)

(1l ®id) (xx, w ®id) ([ ® xv,w) = ([d® ALT) (xx@v.w).

Likewise, the unit of T" induces a counit on Zp via

X=1®X

(6.8) -

T(X)=T(X)®1

WE(T) = (idT(x) ® E(ZT)> X1,X -

A direct computation now verifies that the centraliser Z7 is a bimonad as well. For
the construction of left and right antipodes, see [BV12, Theorem 5.6].

Remark 6.4. We think of Z(yC) as the centre of an oplax bimodule category as
stated in Remark 4.1, see also [BV07, Section 5.5]. Objects in Z(yxC) are pairs
(X,0x,—), where X € C and

oxy: X®Y - HY)® X, forall Y e C
is a natural transformation satisfying for all X, Y, W € C
(6.9) (A;—{{&, ® idx)O'X,Y®W = (idH(y) X O'X,W)((T)Qy X idw)

(6.10) (e ®idx)ox, = idx.
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Analogous to the centres studied before, the morphisms in Z(zC) are those mor-
phisms of C which commute with the respective half-braidings. As shown in [BV12,
Proposition 5.9], the structure morphisms of a Hopf monad H: C — C can be used to
define a rigid structure on Z(gC). For example, the tensor product of two modules
(X,ox,-), Y,oy—) € Z(gC) is X ®Y € C together with the half-braiding

X Y /W
(6.11) o
HW) Ix Y

OXQY,W = (#(Vf) ®idxgy)(ox,mw) ®idy)(idx ® ov,w)).

Since centralisers of Hopf monads are Hopf monads themselves, it stands to reason
that their modules implement the twisted centres discussed in the previous remark
as a rigid category. This is proven in [BV12, Theorem 5.12 and Corollary 5.14].

Theorem 6.5. Suppose H: C — C to be a centralisable Hopf monad. The modules
C%u of its centraliser (Zg,x) are isomorphic as a rigid category to Z(5C).

Applying the above theorem to the identity functor Id: C — C, we obtain a
Hopf monadic description of the Drinfeld centre Z(C) of a rigid category C. The
terminology of our next definition is due to Shimizu, see [Shil7].

Definition 6.6. Let Id: C — C be centralisable with centraliser (7, x). We call
D(C) == (2,19, 9D AP (2. C - C the central Hopf monad of C and denote
the category of its modules by C®.

An important step in proving Theorem 6.5 is determining an inverse to the com-
parison functor %(47): Z(;C) — C#7. This construction will also play a substantial
role in our monadic description of the anti-Drinfeld centre, hence why we recall it
in its full generality. Let T': C — C be a centralisable oplax monoidal endofunctor
with (Zr,x) as its centraliser. To every module (M,¥,;) over Zr we associate
a half-braiding op;—: M ® — — T(—) ® M. For any X € C it is given by the
composition

M X
(6.12)
s
7(x) Im

om,x = (idrx) ®Im)xm,x: M X - T(X)Q® M.
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This yields a functor E(#7): 47 — Z(;C) which is the identity on morphisms and
on objects is given by

(6.13) EY1) (M, 0a) = (M, 0pr.), for all (M,9,;) € C?T.

Conversely, we assign to every object (M, oar,—) € Z(7rC) a module over Zr whose
action ¥ is uniquely defined by

M X
M X
% i
(6.14) G\
T(x) 'm

om,x = (idx ®Ia)(xnr,x)-

As it turns out, this yields the comparison functor (47): Z(1C) — C%T.

Remark 6.7. Suppose T: C — C to be a centralisable oplax monoidal endofunctor
with (Z7, x) as its centraliser. Denote the free functor of the Eilenberg—Moore
adjunction of Z7 by Fy,.: C — C#7T. The composition

(6.15) ¢ Lz, ezr BP0, 700
defines a left adjoint of the forgetful functor U™ : Z(+C) — C.

We recall [BV12, Theorem 5.12], which proves the adjunction FI 4 U™ to be
monadic.

Theorem 6.8. Assume (Zr,x) to be a centraliser of the oplax monoidal endofunctor
T:C — C. The functor E47) . C%T — Z(7C) is an isomorphism of categories whose
inverse is the comparison functor ©(47): Z(1C) — C#T.

6.2. Centralisers and comodule monads. We will now apply the methods of
Bruguieres and Virelizier to twisted centres for the purpose of obtaining a comodule
monad that implements the anti-Drinfeld centre. Hereto, we need a generalised
version of the concept of modules over a monad. Our approach is based on [MW11].

Definition 6.9. Suppose B: C — C to be a bimonad and F': D — C an oplax
monoidal functor. An oplax monoidal right action of B on F is an oplax natural
transformation a: F'B — F, such that for all X € D

(6.16) axXQB(x) = AXMF(X) and axF(nx) = idpx).

Similarly, we could define oplax monoidal left actions. A prime example of the
latter is given by the forgetful functor Ug: C® — C of a bimonad B: C — C together
with the action displayed in Diagram (5.11).

To keep our notation concise, in the following we fix an oplax monoidal functor
L:C — C with an oplax right action a: LB — L by a bimonad B: C — C and
assume that L and B are centralisable. Their centralisers will be denoted by (@, £)
and (Z, x), respectively.

We think of Z(5C) as a more general version of the Drinfeld centre which is
supposed to act on Z(;,C) from the right. To emphasise this, and in line with the
colouring scheme of Section 4, we use black for objects in C or its generalised Drinfeld
centre and blue for objects in Z(1C).
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Consider two objects (M, on,—) € Z(1.C) and (X,0x,—) € Z(5C). The action of B
on L, combined with the half-braidings of M and X, yields a natural transformation

M X /Y
S

(6.17)
L(Y)'Mm X

cMexy  M®XQY > LY)®M® X.

Lemma 6.10. The centre Z(gC) acts on Z(1C) from the right by tensoring the
underlying objects and gluing together the half-braidings as in Equation (6.17). With
respect to this action, the forgetful functor UM : Z(1C) — C is a strict comodule
functor over UB): Z(5C) — C.

Proof. We proceed as in [BV12, Proposition 5.9] and fix objects (M, on,—) € Z(1,C)
and (X,ox ) € Z(gC). The compatibility of the half-braiding of M ® X with the
unit of C is a short computation:

M X
M X
(e ® idyex)ovex,1 = idugx-
Similarly, we verify the hexagon axiom:
M®X /Y ®@W M X YW
(L)
Ay
/L(Y) \L(W) M Ix
M X Y w
M X YW
(B)
L AY~W /
/ \ £
= ) = Eﬁ
AB(Y)VB(W)
LY L(W M X
&) W) L(Y) Lowy X
(Agfév Qidugx)omex,yow = (ldrL(v) @ ouex,w)(omex,y @idw).
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The compatibility of the action ao: LB — L with the multiplication and unit of
B asserts that Z(1C) is a right module of the generalised Drinfeld centre.
By construction, we have for all (M,on—) € Z(1C) and (X,0x,—) € Z(5C)

UBD(M,opm-)< (X,0x,-)=MX =UP (M, o) @UP(X,0x ).
Thus, U is a strict comodule functor over U(F). O

We extend our colouring scheme to universal coactions and write

X Y X Y
615) >—< >—<
L(Y) Q(X) B(Y) Z(X)

Ex,y: X®Y — L(Y) ® Q(X), xxv: X®Y - B(Y)® Z(X).

The identification of C# and C? with the generalised Drinfeld centre and its
twisted cousin suggest that () is a comodule monad over Z. In analogy with
Equation (6.7), we define a candidate for the coaction of @ by

w X®Y w

- B
Z(Y) L(w) C(X) wZ(Y)

(ew ®id) (¢x,B(w) ®id) ([d @ xy,w) = (Id® 53?;) (xoy,.w)-

(6.19)

Theorem 6.11. Let a: LB — L be an oplax monoidal right action of a bimonad
B: C — C on an oplax monoidal functor L: C — C. Suppose furthermore that the
centralisers (Q,€) of L and (Z,x) of B exist. The coaction of Equation (6.19) turns
Q into a comodule monad over Z such that C is isomorphic as a right module
category over CZ to Z(1.C).
Proof. By Remark 6.7 and Theorem 6.8 we have monadic adjunctions
FB.c=2z(pC):UP and  F.c=27(.0):UD
which, due to [BV12, Remark 5.13], give rise to the bimonad Z and monad Q,
respectively. Lemma 6.10 shows that U is a strict comodule functor over U(5)
and therefore, by Theorem 5.21, we obtain that ) is a comodule monad over B.
Following Corollary 5.22, the coaction A: Q(— ® —) — Q(—) ® Z(—) implementing
the action of C% on C¥ is for all X,Y € C given by

(6.20) Axy = 19Q(X)®Z(Y)Q(Ug?) ® ngfz))'
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By using the relation between universal coactions and half-braidings, explained
in Equation (6.12), and applying the hexagon identity we compute:

X®Y w
AX,y =
L(W) Q(X) 1Z(Y)

X®Y w
|n§(Q)®n§/Z)|

(6.21) _ _

! TQX)®Z(Y).W
L(W) QX) 1Z(Y)

LW) RX) 12(yY) TL(W) QX) T2(Y)

The uniqueness property of universal coactions implies A = §(@).

It remains to show that C? and Z(;,C) are isomorphic as modules over CZ. Note
that by Lemmas 5.12 and 5.13 as well as Theorem 5.21 and Lemma 5.23, the
comparison functor $(4): Z(5C) — C# is strong monoidal and X(?): Z(;C) — C?
is a strong comodule functor over it. Furthermore, due to Theorem 6.8, both $(%)
and Y(?) admit inverses

EX) . % - 7(50) and E@. P - 7(.0).
Using that E(%) is monoidal as well, we identify the right action of Z(3C) on Z(1.C)
with a right action «: Z(.C) x C% — Z(1.C) of CZ by setting
Ax B Ya(—
2(,C) x €% 1ED 70, 0) x (50) 229, 7(,0).
For any M € Z(;,C) and X € Z(1,C) we have

(Q)
Z(Q)(M <«X)= Z(Q)(MQE(Z)(X)) LN Z(Q)(M)QE(Z)E(Z)(X) — Z(Q)(M)QX
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and therefore $(?): Z(;,C) — C¥ is an isomorphism of module categories. O

Let us apply our findings to the identity and biduality functor of a rigid category C.
Suppose (Q, €) and (Z, x) to be the centralisers of (—)” and Id¢: C — C, respectively.
There is a trivial right action of the identity of C on its biduality functor,

idy : (Ide(X))” — X, for all X € C.

It turns @ into a comodule monad over Z and its modules C? are isomorphic to
Q(C) as a CZ-module category. Due to Remark 4.3, we can identity Q(C) with A(C),
justifying our next definition.

Definition 6.12. Assume (—)",Idc: C — C to admit centralisers (Q, &) and (Z, x).
We call Q(C) := (Q, '@, n(@),§@) the anti-central comodule monad of C.

6.3. The Drinfeld and anti-Drinfeld double of a Hopf monad. We are now
able to untangle the relationship between the various adjunctions and categories
displayed in Figure 2. To that end, we fix a Hopf monad H: V — V on a rigid
category V together with an oplax monoidal functor L: V7 — VH  a bimonad
B: VP — VH and an oplax monoidal right action a: LB — B. Furthermore, we
assume that the cross products B x H and L x H have centralisers (Zy,v) and
(QH> T)'

We start by extending the action of B on L to an action of the respective cross
products.

Lemma 6.13. The action a: LB — B induces an oplax monoidal action

Fg B U yFa L Un

(6.22)

Fy L Un

ag: (LxH)(BXxH)—LxH.

Proof. From the pictorial description of the multiplication and unit of B x H, given
in Definition 5.24, it becomes apparent that ay is a right action of B x H on L x H.
Additionally, as a composite of oplax monoidal natural transformations, it is oplax
monoidal itself. O

The following variant of [BV12, Theorem 7.4] lies at the heart of our ensuing
investigation.

Theorem 6.14. Both B, L: VE — VI admit centralisers (Z,x) and (Q,&) such
that Z is a lift of Zy as a bimonad and Q is a lift of Qu as a comodule monad.

Proof. By [BV12, Theorem 7.4(a)], we know that there are centralisers (@, &) and
(Z,x) of L and B that satisfy for all (X,dx),(Y,dy) e VH

UrQ(X,9x) = Qu(X), Un(§xvx),vwy)) = UnL¥y)®idg, x))7x,v,
UnZ(X,9x) = Zu(X), Un(X(x0x),(vioy)) = UaBWy)®idz, x))vx,y-
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The second and third part of the above mentioned theorem state that @ is a lift of
the monad Qg and Z is a lift of the bimonad Zy. It remains for us to show that
the coactions of @ and Qg are compatible with the forgetful functor Uy : VH — V.
We fix objects (X,9x), (Y,dy) € VI and W € V and compute:

U (X®Y) w

U (X@Y) w

— (Q)
UH(ég(‘?;,) - UH((SX,Y)
LxH(W) |QH(X) |ZH(Y)
LxHW) Qg (X) 'Zyx(Y)
U (X®Y) w Upg (X®Y) w

@

Ug i)

LxH(W)lQH(X) |ZH(Y) LxH(W)IQH(X) Zg(Y)

Upg (X) Ug (Y) w

Un(apg (w))

LxH(W)'Qpg(X)

f - ]
Zy(Y) LXH(W)'Qpg(X) Z(Y) LxXH(W)'Qpg(X) Zp(Y)

. . Q
(drxmw) ® UH(‘SE)%’),@X)1(yy19y)))TUH(X®Y),W = (idrwm(x)® (sg(,{}))‘rUH(X@Y),W-

The uniqueness property of universal coactions as given in Lemma 6.2 then implies
that UH(6g§)ﬂx) (Yﬁy)) = 55?{,1). Since Ugr: VH — V is a strict comodule functor,
the claim follows. O

The previous theorem together with Lemma 5.25 imply that we obtain a comodule
monad D(L,H) :== Q x H over D(B,H) := Z x H. The correspondence between
lifts and monads given in Theorem 5.29 yields a unique comodule distributive law
(HQu 5 QuH,HZy 2> ZyH) such that
(623) D(L7H)=QH OQH and D(B,H)=ZHOAH.

Definition 6.15. We call D(B, H) and D(L, H) the double and twisted double of
the pairs (B, H) and (L, H).

The relationship between doubles and generalised Drinfeld centres is explained in
[BV12, Proposition 7.5 and Theorem 7.6]. Our next result uses the same techniques
to prove how twisted doubles parameterise twisted centres.
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Theorem 6.16. The twisted double D(L, H) is a comodule monad over D(B, H)
and VPEH) s isomorphic as a module category over VPBH) o Z( V).

Proof. Since @Q is a lift of Qg as a comodule monad, the twisted double D(L, H) is
a comodule monad over D(B, H). By Lemma 5.30, this implies the existence of an

isomorphism of VP(B-H)_module categories K : pP(LH) _, (VH)Q. Due to the

proof of Theorem 6.11 the comparison functor £(@): Z(; V#) — (Ve )Q implements
an isomorphism of module categories and the statement follows by considering

(6.24) poL) KB (ym)Q B9, 7 pH),
(I

Definition 6.17. Suppose B = Idex and L = (—)": V¥ — VH. We refer to
D(H) = D(B,H) and Q(H) := D(L, H) as the Drinfeld and anti-Drinfeld double
of H.

Our previous definition can be understood as an extension of the notion of the
anti-Drinfeld double given by [HKRS04] to the monadic framework.

6.4. Pairs in involution for Hopf monads. For the final step in our investigation,
let us consider a Hopf monad H: )V — V which admits a double and anti-double.
Tracing the various identifications of the centre and anti-centre of a monoidal
category given in Figure 2, we observe that module functors from Z(V) to Q(VH)
equate bidirectionally to module functors between VPH) and V) In the spirit
of viewing D(H) and Q(H) as ‘coordinate systems’ of their respective modules, we
want to translate such functors into comodule monad morphisms. Our main focus
here is on pivotal structures of YVPH),

We begin by developing the notion of pairs in involution for a Hopf monad.
Classically, pairs in involution consist of a group-like and character of a Hopf
algebra, which implement the square of its antipode by their adjoint actions.

Definition 6.18. Let H: V — V be a Hopf monad. A character of H is a module
B:=(1,9g) € VH | whose underlying object is the monoidal unit of V.

A group-like element of H is a natural transformation ¢g: Idy — H satisfying for
all X, Y eV

(6.25) AN gxey =gx ®gy  and Mg =idy.
We write Char(H) for the characters of H and Gr(H) for its group-likes.

Note that the characters Char(H) of a Hopf-monad H: V — V form a monoid
and, by Lemma [BV07, Lemma 3.21], the set Gr(H) of group-like elements bears a
group structure.

Furthermore, the group-likes of a Hopf monad H act on it by conjugation. We
recall this construction based on [BV07, Section 1.4]. Given a natural transformation
g: Id¢ — H, we define the left and right reqular action of g on H to be the natural
transformations defined for every X € V by

e

(6.26) Lyx = H(X) 2%, g2(x) 2 H(X),
(H)
(6.27) Ryx == H(X) 229, g2(x) 2, g(x).
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Before we state our next definition, we set for all X, Y, W €V

H H . H . H H
(6.28) Ag(,l)/,W = (Ag“), ® ldH(W))Ag(®)Y,W = (idpx) ® Agﬁv)v)Ag(A)/@W'

Definition 6.19. Every group-like g € Gr(H) and character 3 € Char(H) of a Hopf
monad H:V — V give rise to natural transformations

(6.29) Adyx =LgxRy x: HX)— H(X), for all X € V,
(6.30)  Adg,x = (95 ®idy(x) @ Vs)AVY - H(X) » H(X), forall XeV.
called the adjoint actions of g and 8 on H, respectively.

To define pairs in involution, we need the ‘square of the antipode’ This notion
was developed in [BV07, Section 7.3].

Definition 6.20. Suppose ¢: Idy — (—)" to be a pivotal structure on ¥V and
let H:V — V be a Hopf monad. The square of the antipode of H is a natural
transformation S%: H — H, which is defined for every X € V by

(6.31) S% = (bEl(X)SéLI(X)VH(SlXV)H(qbX)'
Analogous to the Hopf algebraic case, we state the following:

Definition 6.21. A pair in involution for a Hopf monad H: )V — V consists of a
group-like g € Gr(H) and character 8 € Char(H) such that for all X € V
(6.32) Ad, x = Adp xS%.

To prove that pairs in involution correspond to certain pivotal structures on the

Drinfeld centre of V¥, we need two technical results. The first is a special case of
[BV07, Lemma 1.3].

Lemma 6.22. Let H be a monad with associated forgetful functor Ug: VH — V.
Then there exists a canonical bijection
(6.33) (—): Nat(H,H) — Nat(HUy,Ug),  f f%
§ _
where f(MﬁM) =9%ufm-
The next lemma is a variant of [BV07, Lemma 7.5].

Lemma 6.23. Let ¢: Idy — (=) be a pivotal structure on'V and H: V — V a
Hopf monad. For any group-like g € Gr(H) and character § € Char(H) the following
are equivalent:

(i) The arrows g and 8 form a pair in involution.

(i) The natural arrow ¢g* € Nat(Uy, Ug) lifts to Nat(Idyu, 3® ()" ® ).

Proof. Consider a module (M,d,) € VE. By [BV07, Theorem 3.8(a)] and the
definition of S2, the action on M is given by

Onr = I sy (v H(shy ) = dndarSi H (37
and therefore we have
Iperrep = (05 ® Iar~ @ 9p)ATY | = (05 ® oS3 H(03)) @ 05 ) AY) .

By definition ¢g* lifts to a natural transformation from Idyr to f® (—)" ® B, if
and only if for any H-module (M,¥,,), we have

(6.34) (69 ) My = Vponres H(($9°) ).
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Let us now successively simplify both sides of the equation. Using the naturality
of g: Idy — H, the fact that ¥, is an action and the definition of ¢* as given in
Lemma 6.22, we can rewrite the left hand side of the equation as

(69 ) mVnr = drmIngmIn = dvInH (9nr)gm (any

= ¢M’19M,U§\2{)QH(M)-

Similarly, we simplify the right-hand side to

Dpgnres H(69)a1) = (95 ® orrdar S3H (63 @905 ALY, H (698 )
= (95 ® Sardn SR H (03 H (89°)) ® 05 )AL
= (0 ® par IS H(Onign) ® ﬂﬁV)Agflz\)m
= (95 ® oar9In H(Insgar)S3 @ 95) AL |
= a9 H(Vargan) (05 @ id gy (any @ 051 ALy 1S3
= dnrply) H(gar) Adg s S3.

Using the fact that ¢ is an isomorphism, Equation (6.34) can thus be restated as

)gH(M) = ﬂMME\?)H(gM) Adg v S3y

— InrLgar = Oar Ry ar Adg ar Shy

Inrphy

Since (—)Tj is a bijection by Lemma 6.22, the above equation is equivalent to
Ly v = Ry Adg v S3,. We conclude the proof by multiplying both sides with
Ry pp. O

The previous lemma leads to an identification of pairs in involution of H with
certain quasi-pivotal structures on V.

Theorem 6.24. Suppose H: V — V to be a Hopf monad and ¢: Idy, — (=) a
pivotal structure on V. Then H admits a pair in involution if and only if there exists
a quasi-pivotal structure on V¥ that is given for any X € VH and € Char(H) by

(6.35) pox: X > BRX" QB

Proof. We proceed analogous to [BV07, Proposition 7.6]. Suppose g € Gr(H) and
B € Char(H) to constitute a pair in involution for H. By the previous lemma, ¢g*
lifts to a natural isomorphism

ppx: X - BRX" X, for all X e V¥,
Since ¢ is monoidal by definition and ¢! is monoidal by virtue of ¢ being a group-like,
see [BV07, Lemma 3.20], we obtain a pivotal structure pg: Idys — 8 ® (—)" ® A"

On the other hand, consider a quasi-pivotal structure (8, pg), where g € Char(H)

is a character. Since the forgetful functor Uy is strong monoidal and thus

Un(B® ()" ®p) =Un((-)") = Un(-))",
there exists a monoidal natural transformation

D00 U (ps,x): Un(X) = Un(X), for all X e V¥,

Again, we apply [BV07, Lemma 3.20] and obtain a unique group-like g € Gr(H) such
that ¢f = ¢E;(X)UH(PQ,X)- As ¢g* = Un(pp) lifts to the quasi-pivotal structure
(B,pp) on VH Lemma 6.23 implies that g and 3 form a pair in involution. (]
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Let us now study a variant of [BV07, Lemma 2.9].

Theorem 6.25. Assume K,C: M — M to be two comodule monads over a
bimonad B: C — C. There is a bijective correspondence between morphisms of
comodule monads f: K — C and strict module functors F: M® — MX such that
UkF =Uc.

~

Proof. As shown for example in [BV07, Lemma 1.7], we know that any functor

F: M®¢ - M¥ with UxF = Ug is ‘induced’ by a unique morphism of monads

fi K — C. That is, F is the identity on morphisms and on objects it is defined by
F(M,9y) = (M, 90 far), for all (M,9r) € MC.

It remains to show that f is a morphism of comodules if and only if F is a strict
module functor in the sense of Definition 2.15. Let (M,9,r) € M and (X,9x) € CE.
We compute

F((M,0xr) < (X,9x)) = (M < X, (9ar < 9x)33; o Farex),
F(M,9x) < (X,9x) = (M < X, (0 < 9x)(far < idpx))057 x)-
According to [BV07, Lemma 1.4], these modules coincide if and only if

Sy Farex = (far < idp(x))05s

which is exactly the condition for f to be a comodule morphism. O
The above result readily implies the desired monadic version of Theorem 1.

Theorem 6.26. Let H: V — V be a Hopf monad that admits a double D(H) and
anti-double Q(H). The following statements are equivalent:

(i) The monoidal unit 1 €V lifts to a module over Q(H).
(ii) The Drinfeld double and anti-Drinfeld double of H are isomorphic as co-
module monads.
(iii) There is an isomorphism of monads g: Q(H) — D(H).
Additionally, if V is pivotal, one of the above statements holds if and only if H
admits a pair in involution.

Proof. (i) = (ii): suppose w € Q(VH) with Ugy(w) = 1. As shown in Equa-
tion (4.6), it induces a functor of module categories
~@u: YPWH) , pQH),

Since Ug(yy(w) = 1 € V, we can apply Theorem 6.25 and obtain that Q(H) and
D(H) are isomorphic as comodule monads.

It immediately follows that (i¢) implies (4ii); we proceed with (i) = (i):
consider an isomorphism of monads g: Q(H) — D(H). It gives rise to a functor
G: YPWH) _ YR that, on objects, is defined by

G(M,9p) = (M, 9p9um), for all (M, 9;) € CZ.

We compose G with the inverse of the comparison functor E(QH)): pRH) _, Q(¢),
defined in Equation (6.13), and see that there exists an object

1@ .— E(Q(H))G(l) e Q(C)

whose underlying object is the unit of V.
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Now let V be pivotal. By Lemma 4.11, lifts of 1 € V to the dual of the anti-
center Q(VH) are in correspondence with quasi-pivotal structures (3, pg), where
B € Char(H). By Theorem 6.24 such a quasi-pivotal structure exists if and only if
H admits a pair in involution. [

As a corollary, we can determine whether a category is pivotal in terms of monad
isomorphisms between the central and anti-central monad

Corollary 6.27. Assume C to admit a central and anti-central monad. Then C is
pivotal if and only if D(C) and Q(C) are isomorphic.

Proof. We consider the identity Id¢: C — C as a Hopf monad. Its Drinfeld and
anti-Drinfeld double are D(Id¢) = ©(C) x Id¢ and Q(Id¢) = Q(C) x Id¢e. From here
it follows that D(Id¢) = ®(C) and similarly Q(Id¢) = Q(C). The proof is concluded
by Theorem 6.26. ([l
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