DUALITY IN MONOIDAL CATEGORIES

SEBASTIAN HALBIG AND TONY ZORMAN

Abstract

We compare closed and rigid monoidal categories. Closedness is defined by the tensor product having a right adjoint: the internal-hom functor. Rigidity on the other hand generalises the concept of duals in the sense of finitedimensional vector spaces. A consequence of these axioms is that the internal-hom functor is implemented by tensoring with the respective duals. This raises the question: can one decide whether a closed monoidal category is rigid, simply by verifying that the internal-hom is tensor-representable? At the Research School on Bicategories, Categorification and Quantum Theory, Heunen suggested that this is not the case. In this note, we will prove his claim by constructing an explicit counterexample.

1. Introduction: Closed and Rigid Monoidal Categories

Monoidal categories are a ubiquitous tool in mathematics, physics, and computer science [BS11]. Often, they come equipped with additional structures, such as braidings or twists, see the previously cited article. In the following, we will compare two notions of duality for monoidal categories: closedness and rigidity.

We assume the reader's familiarity with standard concepts of category theory; in particular, adjunctions and monoidal categories as discussed for example in [ML98] and [EGNO15]. As rigidity and closedness are preserved, as well as reflected, by monoidal equivalences, see [Lin78], we restrict ourselves to the strict setting. As such, let \mathcal{C} be a strict monoidal category with $-\otimes-: \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ as its tensor product and $1 \in \mathcal{C}$ as its unit.

The category \mathcal{C} is called (right) closed if it admits a functor $[-,-]: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \longrightarrow \mathcal{C}$, the (right) internal-hom, such that for all objects $x \in \mathcal{C}$ there exists an adjunction

$$
\begin{equation*}
-\otimes x: \mathcal{C} \rightleftarrows \mathcal{C}:[x,-] \tag{1.1}
\end{equation*}
$$

On the other hand, \mathcal{C} is said to be (right) rigid if every object $x \in \mathcal{C}$ has a (right) dual x^{*} equipped with an evaluation and coevaluation morphism

$$
\operatorname{ev}_{x}: x^{*} \otimes x \longrightarrow 1 \quad \text { and } \quad \operatorname{coev}_{x}: 1 \longrightarrow x \otimes x^{*}
$$

subject to the snake identities

$$
\begin{equation*}
\operatorname{id}_{x}=\left(\mathrm{id}_{x} \otimes \mathrm{ev}_{x}\right)\left(\operatorname{coev}_{x} \otimes \mathrm{id}_{x}\right) \quad \text { and } \quad \mathrm{id}_{x^{*}}=\left(\mathrm{ev}_{x} \otimes \operatorname{id}_{x^{*}}\right)\left(\mathrm{id}_{x^{*}} \otimes \operatorname{coev}_{x}\right) . \tag{1.2}
\end{equation*}
$$

Rigid monoidal categories are closed, see for example Section 2.10 of [EGNO15].

[^0]Lemma 1.1. If \mathcal{C} is rigid, the internal-hom is implemented by the adjunction

$$
\begin{equation*}
-\otimes x: \mathcal{C} \rightleftarrows \mathcal{C}:-\otimes x^{*} \quad \text { for all } x \in \mathcal{C} \tag{1.3}
\end{equation*}
$$

The main concern of this note is to show that the converse of the above result does not hold. That is, we will prove that the internal-hom being given by tensoring with the dual of an object does not imply rigidity.

In order to elucidate the underlying problem, let us assume that we are given objects $x, y \in \mathcal{C}$ such that $-\otimes x: \mathcal{C} \rightleftarrows \mathcal{C}:-\otimes y$. The unit and counit of the adjunction provide us with natural candidates for the coevaluation and evaluation morphisms:

$$
\operatorname{coev}_{x}:=\eta_{1}: 1 \longrightarrow x \otimes y \quad \text { and } \quad \operatorname{ev}_{x}:=\varepsilon_{1}: y \otimes x \longrightarrow 1
$$

The triangle identities of this adjunction evaluated at the monoidal unit state that $\mathrm{id}_{x}=\varepsilon_{x} \circ\left(\eta_{1} \otimes x\right)$ and $\mathrm{id}_{y}=\left(\varepsilon_{1} \otimes x\right) \circ \eta_{y}$. However, since we a priori do not know whether $\varepsilon_{x} \cong \mathrm{id}_{x} \otimes \varepsilon_{1}$ and $\eta_{y} \cong \mathrm{id}_{y} \otimes \eta_{1}$, the snake identities do not necessarily follow.

2. A counterexample

First, we define a strict monoidal category $(\mathcal{D}, \oplus, 0)$ in terms of generators and relations. For details of this type of construction we refer the reader to [Kas98, Chapter XII]. The objects of \mathcal{D} are the natural numbers \mathbb{N}_{0} with addition as the tensor product and $\mathbb{O} \in \mathbb{N}_{0}$ as monoidal unit. ${ }^{1}$ Its arrows are tensor products and compositions of identities, and the generating morphisms

$$
\begin{equation*}
\eta_{m, n}: m \longrightarrow m \oplus n \oplus n, \quad \varepsilon_{m, n}: m \oplus n \oplus n \longrightarrow m, \quad n, m \in \mathbb{N}_{0}, n \geq 1 \tag{2.1}
\end{equation*}
$$

These are for all $i, j, k, l, n \in \mathbb{N}_{0}$ with $n, k \geq 1$ subject to the relations

$$
\begin{align*}
\eta_{i+j+2 k+l, n}\left(\mathrm{id}_{i} \oplus \eta_{j, k} \oplus \mathrm{id}_{l}\right) & =\left(\left(\mathrm{id}_{i} \oplus \eta_{j, k} \oplus \mathrm{id}_{l}\right) \oplus \mathrm{id}_{2 n}\right) \eta_{i+j+l, n}, \tag{2.2}\\
\eta_{i+j+l, n}\left(\mathrm{id}_{i} \oplus \varepsilon_{j, k} \oplus \mathrm{id}_{l}\right) & =\left(\left(\mathrm{id}_{i} \oplus \varepsilon_{j, k} \oplus \mathrm{id}_{l}\right) \oplus \mathrm{id}_{2 n}\right) \eta_{i+j+2 k+l, n}, \tag{2.3}\\
\varepsilon_{i+j+2 k+l, n}\left(\left(\mathrm{id}_{i} \oplus \eta_{j, k} \oplus \mathrm{id}_{l}\right) \oplus \mathrm{id}_{2 n}\right) & =\left(\mathrm{id}_{i} \oplus \eta_{j, k} \oplus \mathrm{id}_{l}\right) \varepsilon_{i+j+l, n}, \tag{2.4}\\
\varepsilon_{i+j+l, n}\left(\left(\mathrm{id}_{i} \oplus \varepsilon_{j, k} \oplus \mathrm{id}_{l}\right) \oplus \mathrm{id}_{2 n}\right) & =\left(\mathrm{id}_{i} \oplus \varepsilon_{j, k} \oplus \mathrm{id}_{l}\right) \varepsilon_{i+j+2 k+l, n} . \tag{2.5}
\end{align*}
$$

These relations are tailored to implement for any $n \in \mathbb{N}$ natural transformations

$$
\eta_{x, n}: x \longrightarrow x \oplus(n \oplus n), \quad \varepsilon_{x, n}: x \oplus(n \oplus n) \longrightarrow x, \quad \text { for all } x \in \mathcal{D}
$$

For example, let i, j, k, l, n be as above. Further, define $x:=i \oplus j \oplus l, y:=i \oplus j \oplus 2 k \oplus j$, and $f:=\operatorname{id}_{i} \oplus \eta_{j, k} \oplus \mathrm{id}_{j}: x \longrightarrow y$. In this setting, Equation (2.2) translates to the usual naturality condition, expressed by the commutativity of the following diagram:

By quotienting out the triangle identities, we obtain a category \mathcal{C} in which tensoring with any fixed object gives rise to a self-adjoint functor. Explained in more detail,

[^1]the monoidal category $(\mathcal{C}, \oplus, \mathbb{O})$ has the same objects and generating morphisms as \mathcal{D} and the same identities hold. In addition, for any $i, n \in \mathbb{N}_{0}$ with $n \geq 1$ we require
\[

$$
\begin{equation*}
\varepsilon_{i+n, n}\left(\eta_{i, n} \oplus \mathrm{id}_{n}\right)=\mathrm{id}_{i+n}, \quad \text { and } \quad\left(\varepsilon_{i, n} \oplus \mathrm{id}_{n}\right)\left(\eta_{i+n, n}\right)=\mathrm{id}_{i+n} \tag{2.6}
\end{equation*}
$$

\]

The next result succinctly summarises the observations made so far concerning the internal-hom of \mathcal{C}.
Lemma 2.1. The category \mathcal{C} is closed monoidal; its internal-hom functor is given by

$$
\begin{equation*}
-\otimes n: \mathcal{C} \rightleftarrows \mathcal{C}:-\otimes n, \quad \text { for all } n \in \mathcal{C} \tag{2.7}
\end{equation*}
$$

In order to analyse the morphisms in \mathcal{C} and show that it is not rigid monoidal, we will rely on two tools. The first is the length of an arrow $f \in \mathcal{C}(n, m)$. It is defined as the minimal number of generating morphisms needed to present f. The second tool will be given by invariants for morphisms in \mathcal{C} arising from functors into the category vect $_{\mathrm{k}}$ of finite-dimensional vector spaces over a field k . Note that for any such vector space V there exists an isomorphism $\phi: V \longrightarrow V^{*}$ to its dual V^{*}. The morphisms

$$
\overline{\operatorname{coev}_{V}}:=\left(\mathrm{id}_{V} \otimes \phi^{-1}\right) \operatorname{coev}_{V}: \mathrm{k} \longrightarrow V \otimes V, \quad \overline{\mathrm{ev}_{V}}:=\left(\phi \otimes \mathrm{id}_{V}\right) \mathrm{ev}_{V}: V \otimes V \longrightarrow \mathrm{k}
$$

satisfy the snake identities, turning V into its own dual. The next theorem is an application of [Kas98, Proposition XII.1.4].
Theorem 2.2. For any $V \in$ vect $_{\mathrm{k}}$ and isomorphism $\phi: V \longrightarrow V^{*}$ there exists a strong monoidal functor $F_{(V, \phi)}: \mathcal{C} \longrightarrow$ vect $_{\mathrm{k}}$ such that for all $n, m \in \mathbb{N}_{0}$ with $n \geq 1$

$$
F_{(V, \phi)}\left(\eta_{m, n}\right)=\operatorname{id}_{m} \otimes \overline{\operatorname{coev}_{V}{ }^{\otimes n}} \quad \text { and } \quad F_{(V, \phi)}\left(\varepsilon_{m, n}\right)=\operatorname{id}_{m} \otimes \overline{\overline{e v}_{V} V^{\otimes n}}
$$

To prove the statement, one has to show that relations in \mathcal{C} are mapped to relations in vect ${ }_{\mathrm{k}}$. This amounts to verifying that V is its own right dual, in the rigid sense.

Corollary 2.3. The category \mathcal{C} is skeletal. Furthermore, for any $g \in \mathcal{C}(m, n)$ the following arrows cannot be isomorphisms:

$$
\begin{equation*}
\left(\mathrm{id}_{j_{1}} \otimes \eta_{l, m} \otimes \operatorname{id}_{j_{2}}\right) g, \quad g\left(\mathrm{id}_{i_{1}} \otimes \varepsilon_{j, k}, \mathrm{id}_{i_{2}}\right) \tag{2.8}
\end{equation*}
$$

Proof. Let $V \in$ vect $_{\mathrm{k}}$ of dimension at least 2 and fix an isomorphism $\phi: V \longrightarrow V^{*}$. For any $n, m \in \mathcal{C}$ we have $F_{(V, \phi)}(n)=V^{\otimes n}=V^{\otimes m}=F_{(V, \phi)}(m)$ if and only if $n=m$. Thus, \mathcal{C} must be skeletal.

Now suppose that $g \in \mathcal{C}(m, n)$ and consider the morphism $f:=g\left(\mathrm{id}_{i_{1}} \otimes \varepsilon_{j, k}, \mathrm{id}_{i_{2}}\right)$. Applying $F_{(V, \phi)}$ to f, we get $F_{(V, \phi)}(f)=F_{(V, \phi)}(g) F_{(V, \phi)}\left(\operatorname{id}_{i_{1}} \otimes \varepsilon_{j, k}, \mathrm{id}_{i_{2}}\right)$. However, due to the difference in the dimensions of its source and target, $F_{(V, \phi)}\left(\mathrm{id}_{i_{1}} \otimes \varepsilon_{j, k}, \mathrm{id}_{i_{2}}\right)$ must have a non-trivial kernel and thus f cannot be an isomorphism.

A similar argument involving the cokernel proves that $\left(\mathrm{id}_{j_{1}} \otimes \eta_{l, m} \otimes \mathrm{id}_{j_{2}}\right) g$ is not invertible.

We can now state and prove our main theorem.
Theorem 2.4. The category \mathcal{C} is not rigid.
Proof. We assume that $1 \in \mathcal{C}$ admits a right dual. Due to the uniqueness of adjoints, there exist isomorphisms $\vartheta: 2 n \longrightarrow 2 n$ and $\theta: n \longrightarrow n$ such that the evaluation and coevaluation morphisms are given by

$$
\operatorname{coev}_{1}:=\vartheta \eta_{0,1}: 0 \longrightarrow 2, \quad \quad \mathrm{ev}_{1}:=\varepsilon_{0,1}\left(\theta \otimes \operatorname{id}_{n}\right): 2 \longrightarrow 0
$$

We now want to consider the following subset of homomorphisms of \mathcal{D} :
$S:=\left\{\left(\operatorname{id}_{1} \otimes \varepsilon_{0,1}\right) \phi\left(\eta_{0,1} \otimes \operatorname{id}_{1}\right) \in \mathcal{D}(1,1) \mid \phi \in \mathcal{D}(3,3)\right.$ such that $\pi(\phi)$ is invertible $\}$,
where $\pi: \mathcal{D} \longrightarrow \mathcal{C}$ is the 'projection' functor. By construction, the morphism $s=\left(\mathrm{id}_{1} \otimes \mathrm{ev}_{1}\right)\left(\operatorname{coev}_{1} \otimes \mathrm{id}_{1}\right)$ corresponding to one of the two snake-identities is an element of S. Furthermore, every element of S has length at least two. ${ }^{2}$ Thus, by proving that S is closed under the relations arising from Equation (2.6), it follows that $\pi(s) \neq \mathrm{id}_{1}$, which concludes the proof.

To that end, let us consider an element $x=\left(\mathrm{id}_{1} \otimes \varepsilon_{0,1}\right) \phi\left(\eta_{0,1} \otimes \mathrm{id}_{1}\right) \in S$. There are two types of 'moves' we have to study. First, suppose we expand an identity into one of the triangle-morphisms. This equates to either pre- or postcomposing ϕ with an arrow $\psi \in \mathcal{D}(3,3)$ which projects onto an isomorphism in \mathcal{C}, leading to another element in S. Second, a triangle-morphism might be contracted to an identity. A priori, there are three ways in which this might occur

$$
\begin{array}{ll}
x=\left(\operatorname{id}_{1} \otimes \varepsilon_{0,1}\right) \varepsilon_{1,1}\left(\eta_{0,1} \otimes \operatorname{id}_{1}\right), & \text { where } \phi=\phi^{\prime} \varepsilon_{1,1}, \text { or } \\
x=\left(\operatorname{id}_{1} \otimes \varepsilon_{0,1}\right) \eta_{1,1} \phi^{\prime \prime}\left(\eta_{0,1} \otimes \operatorname{id}_{1}\right), & \text { with } \phi=\eta_{1,1} \phi^{\prime \prime}, \text { or } \\
x=\left(\operatorname{id}_{1} \otimes \varepsilon_{0,1}\right) \phi_{2} t \phi_{1}\left(\eta_{0,1} \otimes \operatorname{id}_{1}\right) & \text { with } \phi=\phi_{2} t \phi_{1} \text { and } \pi(t)=\mathrm{id.} \tag{2.11}
\end{array}
$$

Due to Corollary 2.3, neither $\pi\left(\phi^{\prime}\right) \pi\left(\varepsilon_{1,1}\right)$ nor $\pi\left(\eta_{1,1}\right) \pi\left(\phi^{\prime \prime}\right)$ are isomorphisms, contradicting Cases (2.9) and (2.10). Now assume $x=\left(\mathrm{id}_{1} \otimes \varepsilon_{0,1}\right) \phi_{2} t \phi_{1}\left(\eta_{0,1} \otimes \mathrm{id}_{1}\right)$ and $\phi=\phi_{2} t \phi_{1}$. Using the functoriality of $\pi: \mathcal{D} \longrightarrow \mathcal{C}$, we get

$$
\pi(\phi)=\pi\left(\phi_{2} t \phi_{1}\right)=\pi\left(\phi_{2}\right) \pi(t) \pi\left(\phi_{1}\right)=\pi\left(\phi_{2}\right) \pi\left(\phi_{1}\right)=\pi\left(\phi_{2} \phi_{1}\right)
$$

Since $\pi\left(\phi_{2} \phi_{1}\right)$ is an isomorphism, $\left(\operatorname{id}_{1} \otimes \varepsilon_{0,1}\right) \phi_{2} \phi_{1}\left(\eta_{0,1} \otimes \mathrm{id}_{1}\right)$ is an element of S.

3. Tensor-Representability and Grothendieck-Verdier Categories

Although the internal-hom of a closed monoidal category \mathcal{C} being tensor-representable does not imply rigidity, \mathcal{C} often admits additional structure.

Definition 3.1 ([BD13, Section 1.1]). A Grothendieck-Verdier category is a pair (\mathcal{C}, d) of a monoidal category \mathcal{C} and an object $d \in \mathcal{C}$, such that there exists an antiequivalence $D: \mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{op}}$ and for all $x \in \mathcal{C}$ the functor $\mathcal{C}(-\otimes x, d)$ is representable by $D(x)$.

If $d=1$ is the monoidal unit, one speaks of an r-category.
Symmetric Grothendieck-Verdier categories are also called \star-autonomous categories, see [Bar95]. Any rigid monoidal category is an instance of an r-category. The converse does not hold, as shown by the counterexamples [BD13, Example 1.9] and [BD13, Example 3.3].

We conclude this note by showing that any monoidal category where tensoring with an object has tensor-reprensentable left and right adjoints is an r-category. To this end, we fix a monoidal category \mathcal{C} such that for any $x \in \mathcal{C}$ there exist objects $L(x)$ and $R(x)$ such that

$$
-\otimes L(x) \dashv-\otimes x \dashv-\otimes R(x)
$$

Theorem 3.2. If \mathcal{C} is as described above, it is an r-category.
Proof. By the parameter theorem, see for example [ML98, Theorem IV.7.3], the object maps $L, R: \mathrm{Ob}(\mathcal{C}) \longrightarrow \mathrm{Ob}(\mathcal{C})$ can be promoted to functors

$$
R: \mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{op}} \quad \text { and } \quad L: \mathcal{C}^{\mathrm{op}} \longrightarrow \mathcal{C}
$$

[^2]We verify that L and R are quasi-inverses of each other. By assumption, for all $y, z \in \mathcal{C}$ we have

$$
\mathcal{C}(y \otimes L R(x), z) \cong \mathcal{C}(y, z \otimes R(x)) \cong \mathcal{C}(y \otimes x, z) .
$$

Setting $y=1$, the Yoneda embedding gives rise to a natural isomorphism $L R \longrightarrow \operatorname{Id}_{\mathcal{C}}$. A similar argument gives $R L \cong \operatorname{Id}_{\mathcal{C} \text { op }}$.

In order to show that $\mathcal{C}(-\otimes x, 1)$ is representable by $R(x)$, we have to prove that for all $y \in \mathcal{C}$ there exists a natural isomorphism

$$
\mathcal{C}(y \otimes x, 1) \cong \mathcal{C}(y, R(x))
$$

By assumption, we have $\mathcal{C}(y \otimes x, z) \cong \mathcal{C}(y, z \otimes R x)$. The claim follows by setting $z=1$.

References

[Bar95] Michael Barr. Nonsymmetric *-autonomous categories. Theor. Comput. Sci., 139(1-2):115-130, 1995.
[BD13] Mitya Boyarchenko and Vladimir Drinfeld. A duality formalism in the spirit of Grothendieck and Verdier. Quantum Topol., 4(4):447-489, 2013.
[BS11] John Baez and Mike Stay. Physics, topology, logic and computation: a Rosetta Stone. In New structures for physics, volume 813 of Lecture Notes in Phys., pages 95-172. Springer, Heidelberg, 2011.
[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
[Kas98] Christian Kassel. Quantum groups. In Algebra and operator theory (Tashkent, 1997), pages 213-236. Kluwer Acad. Publ., Dordrecht, 1998.
[Lin78] Harald Lindner. Adjunctions in monoidal categories. Manuscr. Math., 26:113-139, 1978.
[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
S.H., Philipps-Universität Marburg, Arbeitsgruppe Algebraische Lie-Theorie, Hans-Meerwein-Strasse 6, 35043 Marburg

Email address: sebastian.halbig@uni-marburg.de
T.Z., Technische Universität Dresden, Institut für Geometrie, Zellescher Weg 12-14, 01062 Dresden

Email address: tony.zorman@tu-dresden.de

[^0]: Date: January 10, 2023.
 2020 Mathematics Subject Classification. 18D15(primary), 18M10(secondary).
 Key words and phrases. closed monoidal categories, rigid monoidal categories, autonomous categories, Grothendieck-Verdier categories.

 We would like to thank Robert Allen for fruitful discussions in the early stages of this project, as well as Chris Heunen and Jean-Simon Lemay for their comments on a draft of this note. T.Z. is supported by the DFG grant KR 5036/2-1.

[^1]: ${ }^{1}$ A strict monoidal category whose monoid of objects is (isomorphic to) the natural numbers is also called a $P R O$.

[^2]: ${ }^{2}$ Note that the relations of \mathcal{D} leave the number of generating morphisms in any presentation of a given arrow invariant.

