Searches for Minimal Supersymmetric Standard Model Higgs bosons H/A and for a Z' boson in the ττ final state at 13TeV with the ATLAS Detector

Dirk Duschinger

03/30/17

BMBF-Forschungsschwerpunkt ATLAS-EXPERIMENT

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

Introduction

- Search for heavy neutral resonances decaying into a pair of taus
- Interpretation in various models of:
 - MSSM A/H: latest public results with 13.2ifb at √s=13TeV
- ATLAS-CONF-2016-085
 - Z' bosons: latest
 public results with
 3.2ifb at √s=13TeV

CERN-EP-2016-164

Analysis strategy $h^++\nu \leftarrow \tau^+ \leftarrow A/H/Z' \rightarrow \tau \rightarrow h^-+\nu$ $e^-/\mu^-+\nu\nu$

- Select two back-to-back tau decays of opposite charge
- Channels are complementary

	Muons	Electrons
τ _{had} τ _{had}	0	0
τ _μ τ _{had}	1	0
τ _e τ _{had}	0	1

• Reconstructing total transverse mass:

 $m_{\rm T}^{\rm tot}(\tau_1, \tau_2, E_{\rm T}^{\rm miss}) = \sqrt{m_{\rm T}^2(\tau_1, \tau_2) + m_{\rm T}^2(\tau_1, E_{\rm T}^{\rm miss}) + m_{\rm T}^2(\tau_2, E_{\rm T}^{\rm miss})}$

Event Selection

$\tau_{had} \tau_{had}$ channel:

- 2 taus, no leptons
- Single tau trigger (tau80, tau125)
- Leading tau:
 - matches trigger
 - Jet BDT medium
- Subleading tau:
 - p_T>55GeV (65GeV in btag category)
 - Jet BDT loose
- $\Delta \phi(\tau_1, \tau_2) > 2.7$
- Opposite charge

$\tau_{lep}\tau_{had}$ channel:

- 1 tau, 1 lepton
- Single lepton triggers and MET trigger
- Lepton p_⊤>30GeV
- Tau p_⊤>25GeV
- E-had channel: 80<m(e,τ_{had})<110GeV
- Suppression of W+jets

 $m_T(\ell, E_T^{\text{miss}}) < 40 \text{ GeV}, \text{ where}$ $m_T(\ell, E_T^{\text{miss}}) \equiv \sqrt{2p_T(\ell)E_T^{\text{miss}}(1 - \cos\Delta\phi(\ell, E_T^{\text{miss}}))}$

- $\Delta \phi(\tau_{lep}, \tau_{had}) > 2.4$
- Opposite charge

Categories

- B-tag
 - At least one preselected b-tagged jet
 - Most sensitivity at high mass and b-associated production
- B-veto
 - No preselected b-tagged jet
 - Dominant at low mass
- High MET category
- Inclusive b-tag category
 - This region is only used for Z' interpretation and has no further selection
 - Very similar to the b-veto category, but without b-tagging uncertainties

Background estimation

- Multi-jet background directly estimated from data
- Other jet → τ fakes estimated from Simulation with data driven correction
- All true backgrounds estimated from simulation

Systematic uncertainties

Source of uncertainty	F_{-} (%)	F_{+} (%)
$t\bar{t}$ background parton shower model	-21	+39
$\tau_{\rm had-vis}$ energy scale, detector modelling	-10	+12
$r_{\rm MJ}$ estimation b-veto region $(\tau_{\mu}\tau_{\rm had})$	- 5	+ 6
$r_{\rm MJ}$ estimation b-veto region $(\tau_e \tau_{\rm had})$	-2.3	+ 3.0
bbH signal cross-section uncertainty	- 3.8	+ 1.6
Multi-jet background $(\tau_{had}\tau_{had})$	-2.2	+ 2.6
Jet-to- $\tau_{\text{had-vis}}$ fake rate <i>b</i> -veto region $(\tau_{\text{lep}}\tau_{\text{had}})$	- 1.3	+ 2.9
$\tau_{\rm had-vis}$ energy scale, in-situ calibration	- 1.4	+ 1.1
$r_{\rm MJ}$ estimation high- $E_{\rm T}^{\rm miss}$ region $(\tau_{\mu}\tau_{\rm had})$	- 1.4	+ 1.0
au trigger (2016)	- 0.5	+ 1.3
Statistics (data and simulation)	-48	+25

MSSM A/H Signal region

Dirk Duschinger – dirk.duschinger@cern.ch

MSSM A/H Limits

MSSM A/H Limits

Z' signal region

- Inclusive in number of b-tagged jets
- Measurement considered 2015 data only

Dirk Duschinger – dirk.duschinger@cern.ch

Z' limits

- Observed lower limit on the Z' mass is 1.90 TeV
- SFM model with different couplings between the first two and the third generation
- Limits

Dirk Duschinger – dirk.duschinger@cern.ch

The European Physical Journa

 Example 1
 Example 2

 Recognized by European Physical Society

volume 76 · number 11 · november · 2016

Particles and Fields

The 95% CL upper limit on the cross section times branching fraction for a Z' → ττ in **a** the Sequential Standard Model and 95% CL exclusion on **b** the Strong Flavour Model parameter space, overlaid with indirect limits at 95% CL from fits to electroweak precision measurements, lepton flavour violation, CKM unitarity and Z-pole measurements.
 From the ATLAS Collaboration: Search for Minimal Supersymmetric Standard Model Higgs bosons H/A and for a Z' boson in the ττ final state produced in pp collisions at √s = 13 TeV with the ATLAS Detector.

Summary

- ATLAS search for heavy neutral resonances with di-tau final states was quite productive since start of the run2 data taking
- Unfortunately no new physics observed so far
- But limits have been set on various models on MSSM A/H and Z' bosons
- New results with 36ifb are on they way
 - So stay tuned

BACKUP

Additional MSSM A/H limits

Dirk Duschinger – dirk.duschinger@cern.ch

CERN-EP-2016-164

Z' model acceptance studies

