Search for new Physics in Boosted hh→bbтт Decays at ATLAS

David Kirchmeier

Supervised by Arno Straessner, Wolfgang Mader DPG-Frühjahrstagung, Würzburg 22 March 2018

- Boosted topologies important for certain BSM searches
- Becoming more sensitive to higher masses and unexplored kinematic regions
- Requires challenging experimental techniques

Overview

- Boosted topologies important for certain BSM searches
- Becoming more sensitive to higher masses and unexplored kinematic regions
- Requires challenging experimental techniques

Di-Tau Reconstruction

- High-p_T anti-k_T jet seeds
 (*R* = 1.0, *p*_T > 300 GeV)
- Anti- k_T subjets (R = 0.2)
- At least 2 subjets with at least one associated track
- Calorimeter cell based identification variable calculation

Simulated di-tau ΔR

Di-Tau Identification

- Signal: G \rightarrow hh \rightarrow 4 τ , M_G = 1.5 TeV... 2.5 TeV
- Background: QCD from 2015 data
- BDT based ID with variables from calorimeter cells/clusters, tracks and vertices

Di-Tau Signal

QCD Background

DPG-Frühjahrstagung

Di-Tau Identification

Working Point	BDT Score	ID Efficiency
very loose	0.60	≈ 95 %
loose	0.65	≈ 90 %
medium	0.72	≈ 70 %
tight	0.77	≈ 30 %

DPG-Frühjahrstagung

Reconstruction and ID Uncertainties

- MC based uncertainty estimation
- Comparing efficiency differences between nominal sample and 4 variation samples
 - $G \rightarrow hh \rightarrow 4\tau$ sample, M_G = 1...5 TeV
 - Alternative detector geometries
 - Alternative physics model
- Kinematic regions binned in ΔR(τ,τ), p_T(leading τ), p_T(subl. τ)

Energy Scale Uncertainties

- MC based uncertainty estimation
- Compare ditau p_T in nominal sample against 4 variations
- Compare ditau p_T shapes between nominal and variations
 - Nominal: $p_T \mapsto sf \cdot p_T$
 - Uncertainties derived from sf with best nominal-variation agreement

Region	Δρ _τ /ρ _τ
ΔR < 0.2	2.0 %
0.2 < ∆R < 1.0	0.7 % - 1.4 %
ΔR > 1.0	3.1 %

Boosted bbtt Analysis

Blinding in this and following slides: S/(S+B) < 4%

Boosted bbtt Analysis

- Large-R jet trigger:
 p_T > 360, 420 GeV
- **Di-tau:** $p_T > 300 \text{ GeV}$, medium ID, $2 \le n_{subjets} \le 3$
- Large-R jet: p_T > 300 GeV,
 1- or 2-b-tagged
- Leading $p_T > 450 \text{ GeV}$
- MET > 20 GeV
- $\Delta \varphi$ (di-tau, MET) < 1

Boosted bbtt Analysis

- Data driven multi-jet background estimation
- $N_B = N_D * N_A/N_C$
- $N_{A,B,C,D} = N_{data} N_{MC}$
- Evaluation binned in di-tau p_T and η

Large-R-Jet Kinematics

1-tag, $\Delta \phi > 1$

2-tag, $\Delta \phi < 1$

DPG-Frühjahrstagung

Di-Taus Kinematics

1-tag, $\Delta \phi > 1$

2-tag, $\Delta \phi < 1$

DPG-Frühjahrstagung

Summary and Outlook

- Efficient di-tau reconstruction and identification with high background rejection
- First implementation in boosted bbττ analysis
- Preparations for 2017/18 data takings
- Further optimisation in selection and background estimation
- Statistical analysis

Backup

Di-Tau Identification

Reco + JetID Uncertainties

				ATLAS work	in progress				ATLAS work	in progress
deltaR-00-02	0.0447718	0.0495049	0.0971153	0.0980454	0.142072	0.0603625	0.0362939	0.0252858	0.00590982	0.000635085
deltaR-02-10_sublPt-00-20_leadPt-00-200	0.0440461	0.0598464	0.0799499	0.148531	0.307018	0.0392879	0.0326376	0.0274197	0.0140168	0.00358093
deltaR-02-10_sublPt-00-20_leadPt-200-xx	0.0366539	0.0308862	0.0330026	0.0429868	0.0585735	0.359587	0.322315	0.275141	0.132269	0.0353253
deltaR-02-10_sublPt-20-50_leadPt-00-200	0.0578752	0.0562219	0.0670779	0.080029	0.143703	0.0737516	0.0635595	0.0560569	0.0341508	0.0119262
deltaR-02-10_sublPt-20-50_leadPt-200-xx	0.00757488	0.0086739	0.0099398	0.0135999	0.0185988	0.684946	0.641733	0.591251	0.396476	0.146915
deltaR-02-10_sublPt-50-xx_leadPt-00-200	0.056393	0.0557237	0.0556697	0.0603137	0.0579805	0.410837	0.392018	0.370636	0.286023	0.141082
deltaR-02-10_sublPt-50-xx_leadPt-200-xx	0.000638537	0.00089241	0.00106505	0.00385522	0.0105192	0.797484	0.76407	0.724561	0.55704	0.243369
deltaR-10-xx	0.0740146	0.0789185	0.0646248	0.209797	0.27965	0.00949883	0.0080283	0.00684922	0.0036962	0.000940609
	reco	veryloose	loose	medium	tight	reco	veryloose	loose	medium	tight

Relative Uncertainties

Nominal Reco / ID Efficiencies

Energy Scale Uncertainties

deltaR-00-02	0.0207	0.0010	0.0200	ATLAS worl 0.0010	k in progress 0.0050
deltaR-02-10_sublPt-00-20_leadPt-00-200	0.0121	0.0100	0.0050	0.0020	0.0040
deltaR-02-10_sublPt-00-20_leadPt-200-xx	0.0060	0.0030	0.0030	0.0030	0.0030
deltaR-02-10_sublPt-20-50_leadPt-00-200	0.0142	0.0100	0.0100	0.0010	0.0005
deltaR-02-10_sublPt-20-50_leadPt-200-xx	0.0066	0.0040	0.0030	0.0030	0.0030
deltaR-02-10_sublPt-50-xx_leadPt-00-200	0.0100	0.0100	0.0002	0.0002	0.0002
deltaR-02-10_sublPt-50-xx_leadPt-200-xx	0.0101	0.0100	0.0010	0.0010	0.0002
deltaR-10-xx	0.0316	0.0200	0.0100	0.0100	0.0200
	TOTAL	QGSP_BIC	ALT_GEO	IBL_30	PP0_50

Di-Tau Identification

DPG-Frühjahrstagung

DPG-Frühjahrstagung

Di-Tau Energy Resolution

- Nominal G -> hh -> 4τ sample
- Relative difference between reconstructed and simulated p_T

1-tag, $\Delta \varphi$ inclusive

Jets in Signal Region

• 2-tag, $\Delta \varphi < 1$, jet kinematics:

DPG-Frühjahrstagung

Jets in Validation Region

• 1-tag, $\Delta \varphi > 1$, jet kinematics:

DPG-Frühjahrstagung

Di-Taus in Signal Region

• 2-tag, $\Delta \phi < 1$, DiTauJet kinematics:

DPG-Frühjahrstagung

Di-Taus in Validation Region

• 1-tag, $\Delta \phi > 1$, DiTauJet kinematics:

DPG-Frühjahrstagung

Di-Taus in Signal Region

• 2-tag, $\Delta \phi < 1$, substructure kinematics:

DPG-Frühjahrstagung

Di-Taus in Validation Region

• 1-tag, $\Delta \varphi > 1$, substructure kinematics:

strong mis-modelling in mass has to be investigated

DPG-Frühjahrstagung