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Structured Abstract  

Background: Neuroimaging studies point to neurostructural abnormalities in youth with anxiety disorders. Yet, 

findings are based on small-scale studies, often with small effect sizes, and have limited generalizability and 

clinical relevance. These issues have prompted a paradigm shift in the field towards highly powered (i.e., big 

data) individual-level inferences, which are data-driven, transdiagnostic, and neurobiologically informed. 

Methods: Here, we built and validated neurostructural machine learning (ML) models for individual-level 

inferences based on the largest-ever multi-site neuroimaging sample of youth with anxiety disorders (age: 10-25 

years, N=3,343 individuals from 32 global sites), as compiled by three ENIGMA Anxiety Working Groups: Panic 

Disorder (PD), Generalized Anxiety Disorder (GAD), and Social Anxiety Disorder (SAD). ML classifiers were trained 

on MRI-derived regional measures of cortical thickness, surface area, and subcortical volumes to classify patients 

and healthy controls (HC) for each anxiety disorder separately and across disorders (transdiagnostic 

classification). Results: Modest, yet robust, classification performance was achieved for PD vs. HC (AUC=0.62), 

but other disorder-specific and transdiagnostic classifications were not significantly different from chance. 

However, above chance-level transdiagnostic classifications were obtained in exploratory subgroup analyses of 

male patients vs. male HC, unmedicated patients vs. HC, and patients with low anxiety severity vs. HC (AUC 0.59-

0.63). The above chance-level classifications were based on plausible and specific neuroanatomical features in 

fronto-striato-limbic and temporo-parietal regions. Conclusions: This study provides a realistic estimate of 

classification performance in a large, ecologically valid, multi-site sample of youth with anxiety disorders, and 

may as such serve as a benchmark. 
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Introduction  

Anxiety disorders are the most prevalent mental disorders among youth, with a life-time prevalence estimate of 

up to 30% (1,2). Most anxiety disorders develop during the critical transition from adolescence to young 

adulthood (10-25 years), affecting millions of youth worldwide and causing enormous emotional, societal, and 

economic burden (3,4). Critically, the COVID-19 pandemic has further exacerbated this alarming trend, with some 

experts now even talking about a “lost generation” of youth (5). Despite these concerns, the underlying 

neurobiology of anxiety disorders in youth remains elusive, making it difficult to pinpoint robust biomarkers, and 

formulate or test neurobiologically informed treatment/prevention strategies (4,6). Psychopathology is less 

differentiated in youth than in adults, and thus even less compatible with traditional diagnostic classification 

systems, with ongoing neuro-bio-psychosocial maturation further complicating the situation (7-9). 

Neuroimaging studies point to anomalies in fronto-striato-limbic brain circuits and additional sensory 

territories in youth with anxiety disorders (6,7,10), which collectively affect the perception, processing and 

modulation of emotionally salient information (Figure_1). While promising, neurostructural findings are often 

difficult to replicate and small in effect size, with marginal clinical relevance (4,6,11-14). These issues may reflect 

limitations of our currently dominant analytic approach, which favors disorder-specific analyses rather than 

transdiagnostic ones, often within underpowered samples and with the use of traditional mass univariate 

analyses that preclude massively multivariate and individual-level analytics (11-15). These issues have prompted 

a paradigm shift in the field that aims to transcend classic case-control comparisons, and instead focuses on 

highly powered (i.e., big data) individual-level inferences that are data-driven, transdiagnostic, and 

neurobiologically informed (11,15).  

The application of machine learning (ML) may be particularly useful for this endeavor (11,15,16). ML is 

well-suited to dealing with high-dimensional data in a data-driven manner, extracting complex multivariate 

patterns that best predict individual-level clinical outcomes (11,15,16). Prior brain-based classification studies of 

anxiety disorders show that neuroimaging data can distinguish patients from controls with varying success (17-

24). While encouraging, most of these studies are limited by their use of small single-site samples, so it is unclear 

whether results generalize to data from other sites with different demographic (i.e., age/sex distribution), clinical 

(i.e., medication, symptom severity, comorbidity) or technical (i.e., scanner, acquisition protocols, and diagnostic 

assessment) characteristics. To overcome this, large multi-site collaborations have begun to pool neuroimaging 

and clinical datasets for coordinated analyses, wherein all data are preprocessed and analyzed according to 



5 
 

harmonized and standardized protocols. The Enhancing Neuro-Imaging Genetics through Meta-Analysis 

(ENIGMA) consortium is such an initiative with a massive global reach (25,26), and hence used for the current 

study. The large-scale multi-site ENIGMA datasets offer ecologically valid and clinically representative 

information, which ML algorithms can exploit to identify multivariate patterns generalizable to the majority of 

patients, in a realistic fashion (27-29). While increasing sample size typically benefits ML performance and 

generalizability, the use of retrospectively pooled multi-site data may also complicate performance, due to the 

substantial heterogeneity (i.e., sample characteristics and methodology) that is inherently introduced (27-30). 

On the other hand, a multi-site design may give more realistic estimates of performance, and can be used to 

explicitly test the robustness of predictive models which is a necessary prerequisite for implementation into 

routine care. 

Here, we built and validated structural magnetic-resonance imaging (MRI)-based ML models based on 

the largest-ever multi-site sample of neuroimaging data from young anxiety patients and healthy controls (HC) 

worldwide (N=3,343 from 32 sites). The sample was aggregated from three subgroups of the ENIGMA-Anxiety 

Working Group: Panic Disorder (PD), Generalized Anxiety Disorder (GAD) and Social Anxiety Disorder (SAD) (10). 

We focused on individuals between 10-25 years old, thereby capturing the adolescence period and young 

adulthood (31). ML classifiers were trained on brain MRI-derived cortical and subcortical gray matter features 

(regional cortical thickness/surface area, and subcortical volumes) to classify patients vs. HC for each anxiety 

disorder separately (disorder-specific), and across anxiety disorders (further referred to as transdiagnostic 

classification). Our hypothesis was that the classifiers would correctly classify patients vs. HC above chance-level. 

Exploratory analyses additionally examined the influence of sex, medication usage and symptom severity on 

classification performance. 
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Figure 1. Putative neurocircuitry of anxiety disorders. Anomalies in these regions tend to collectively impede how emotionally salient information is perceived, processed, and modulated. This includes 

brain areas involved in sensory processing (occipital cortex, fusiform gyrus, thalamus; green), emotion generation and processing (striatum, amygdala, insula, dorsal  anterior cingulate cortex; red) and 

emotion modulation (medial prefrontal cortex, hippocampus, dorsolateral prefrontal cortex, subgenual/rostral anterior cingulate cortex; blue). Adapted and reprinted with permission from Wiley 

Periodicals, Inc.: Human Brain Mapping (Bas-Hoogendam et al., 2022). Amy, Amygdala; Cau, Nucleus Caudatus; Hip, Hippocampus; NAcc, Nucleus Accumbens; Pa, Pallidum; Pu, Putamen; Tha, Thalamus; 

CAcc, Caudal Anterior Cingulate Cortex; FF, Fusiform; INS, Insula; LOC, Lateral Occipital; MOF, Medial Orbitofrontal; RAcc, Rostral Anterior Cingulate Cortex; RMF, Rostral Middle Frontal; SF, Superior 

Frontal. 
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Table 1. Demographic and clinical characteristics for included patients and controls of the three ENIGMA Anxiety Workings groups.  

  ENIGMA-Anxiety Working Group  

  
PD   GAD SAD Transdiagnostic  

(12 sites) (16 sites) (13 sites) (32 sites) 

 Characteristic 
Patients Controls Patients Controls Patients Controls Patients Controls 

(N=112) (N=813) (N=465) (N=1084) (N=259) (N=610) (N=823)e (N=1969)e 

Age, Years 21.68 ± 2.78 21.73 ± 3.01 18.39  ± 4.28 16.06 ± 4.35 21.36 ± 2.45 22.17 ± 2.30 19.79 ± 3.90 18.79 ± 4.75 

Sex (N, % female) 87 (77.68) 538 (66.17) 317 (68.17) 589 (54.34) 181 (69.88) 422 (69.18) 575 (69.87) 1196 (60.74) 

                

STAI-Ta 50.07 ± 12.25 - 45.25 ± 11.14 - 52.12 ± 11.08 - 48.10 ± 11.72 - 

                

Medication, (N, %)b 37 (35.58) - 91 (20.13) - 35 (13.57) - 160 (19.98) - 

 - Antidepressants 31 (30.39) - 59 (13.05)  - 30 (12.35) - 118 (14.96) - 

 - Benzodiazepines 6 (8.22) - 30 (6.80) - 0 (0) - 36 (4.59) - 

 - Antipsychotics 9 (10.98) - 25 (5.67) - 4 (1.80) - 37 (5.02) - 

                

Comorbid Anxiety (N, %)c               

- PD - - 38 (9.43) - 8 (3.09) - 36 (5.55) - 

- GAD 38 (34.86) - - - 12 (4.63) - 46 (12.78) - 

- SAD 32 (28.57) - 223 (49.34) - - - 223 (43.98) - 

- Mixedd  20 (18.35) - 23 (5.71) - 1 (0.39) - 41 (5.41) - 

 

PD = Panic Disorder, GAD = Generalized Anxiety Disorder, SAD = Social Anxiety Disorder; STAI_T = The State-Trait Anxiety Inventory – Trait Index scores 

a Available data on STAI-T: PD = 88/GAD = 306/SAD = 182 

b Available data on psychotropic medication use at the time of scan: PD = 104/GAD = 452/SAD = 258 

c Available data on comorbid anxiety disorders: PD = 109/GAD = 403/SAD = 259. Assigned primary anxiety disorder diagnoses correspond to respective working groups. 

d Patients diagnosed with all three anxiety disorders. 

e Participants present in more than one working group were excluded from transdiagnostic classifications to avoid the use of duplicated data entries. 
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Methods and Materials  

 
Study Sample 

Participants were included from three ENIGMA-Anxiety Working Groups: Panic Disorder (PD/12 sites): 112 

patients/813 controls; Generalized Anxiety Disorder (GAD/16 sites): 465 patients/1,084 controls; and Social 

Anxiety Disorder (SAD/13 sites): 259 patients/610 controls. All participants included in the analysis were between 

10-25 years of age. HC were free of past and present psychopathology and psychotropic medication use at the 

time of scan. Comorbid anxiety disorders (PD/GAD/SAD) were present in some patients, and their assigned 

primary (DSM-IV/5 anxiety disorder) diagnosis corresponds to their respective working group. Participants’ 

demographic and clinical characteristics are summarized in Table_1. For an overview per site, see Table_S1. This 

study was conducted in accordance with the Declaration of Helsinki; participating sites obtained approval from 

their local institutional review boards or ethics committees. All participants or caretakers provided written 

informed consent. 

 
Image Acquisition and Processing 

Structural T1-weighted 3D brain magnetic resonance imaging (MRI) scans were acquired, and processed either 

locally at each site (PD and SAD data) or centrally (GAD data) using standardized protocols for harmonized 

analysis and quality control. Images were acquired at different field strengths (1.5T/3.0T); sample-specific 

acquisition parameters are listed elsewhere (10). Regional mean cortical thickness (CT), cortical surface area (SA) 

and subcortical volumes (SCV), were extracted from the brain images using FreeSurfer (version 5.3/6.0) (32). 

Parcellations/segmentations were visually inspected and statistically evaluated for outliers. For each subject, SA 

and CT were calculated for 68 cortical Desikan-Killiany atlas-based regions (34 per hemisphere) (33). In addition, 

gray matter SCVs were extracted for seven structures per hemisphere (nucleus accumbens, putamen, pallidum, 

caudate, thalamus, amygdala, hippocampus), along with lateral ventricle volume. This yielded a total of 152 

FreeSurfer features per subject for classification.  

 
Multivariate Classification  

1. Primary Analyses  

As shown in Figure_2, classification tasks were performed with linear support vector machines (SVM), one of the 

most commonly and successfully used algorithms in the field (15,34,35). We performed disorder-specific case-
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control classification for each working group separately (PD vs. HC, GAD vs. HC, SAD vs. HC). We also performed 

a transdiagnostic classification for patients with any anxiety disorder (PD/GAD/SAD) vs. HC using pooled samples 

across the three working groups. 561 participants (545 HC, 5 GAD and 11 SAD patients) whose data were present 

in more than one working group were included only once in transdiagnostic classifications to avoid the use of 

duplicated data. Participants with >75% missing FreeSurfer features were excluded (14 HC and 3 PD).  

Classification performance was evaluated using stratified 5-times-repeated-5-fold cross-validation (CV), 

in which the proportion of patients and controls from each site was (approximately) maintained for each fold. 

Additionally, we evaluated to what extent the aforementioned classifiers were able to generalize to unseen sites 

using leave-one-site-out (LOSO) CV. In each LOSO-CV fold, one site is left out for model testing and remaining 

sites are used for training, and this is repeated so that each site is used as a test set once. LOSO-CV represents a 

realistic clinical scenario where a model has to generalize to entirely new samples (36). Classification 

performance was measured using the area-under-the-receiver-operating-characteristic-curve (AUC), balanced 

accuracy, sensitivity, and specificity, which were calculated for each CV iteration on the testing set and averaged 

across CV iterations.  

Features were standardized using the training set in a site-wise manner by calculating the mean and 

standard deviation of each feature on the HC from each site separately, and applied to standardize test and 

training data for both patients and HC of the same site to obtain harmonized and comparably interpretable 

features. This was done to account for site-effects (i.e., differences in data acquisition protocols and inclusion 

criteria) that could affect classification performance (27,37). There are alternative methods to handle site-effects, 

such as ComBat and normative modeling (37), however, the assumptions for these techniques are violated here, 

rendering them unsuitable for this study (this is further addressed in the discussion). Only participants from sites 

that had data for both HC and patients, and at least ten HC were included for each classification task to ensure 

sufficient data for standardization. Missing features were mean-imputed using the full training set. Site-wise 

undersampling was applied on the training set to account for class imbalance for each site separately so that an 

equal number of samples was used from both classes. The undersampling procedure was repeated ten times for 

each training set within the CV procedure, resulting in ten SVM models trained using different (balanced) training 

sets and evaluated on the same test set (no undersampling). Classifications across the resulting SVM models 

were combined using an ensemble approach by taking the median across the decision values obtained for the 

predictions of the test set. We applied the SVM classification with the regularization parameter (C) set to 1, 
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following general recommendations from the field (38). More details on the classification procedure are provided 

in the Supplementary_Methods. Label permutation testing with 1000 iterations (39) was used to test whether 

classification performance (AUC) was significantly above chance-level (α=0.05), with our hypothesis being above 

chance-level classification of patients vs. HC. To assess which brain regions contributed most to the classification 

model, we applied sign-based consistency mapping as per Gomez-Verdejo et al., 2019 (Supplementary_Methods 

for details) (40). We only report sign-based feature importance for classifications that passed label permutation 

testing.  

2. Exploratory Subgroup Analyses  

To explore the effects of demographic and clinical heterogeneity on classification performance, we performed 

subgroup analyses on sex, current psychotropic medication use, and anxiety severity (State-Trait Anxiety 

Inventory–Trait Index: STAI-T (41); median-split on patients’ scores (median=48) produced high/low severity 

groups). Subgroup analyses were restricted to the transdiagnostic sample (any anxiety disorder vs. HC across 

working groups), as limited data would remain when investigating these subgroups in each disorder group 

separately. The classification procedure itself (i.e., site-wise scaling, imputation, undersampling and ensemble 

learning) was as described above. Classifications included: female patients vs. female HC, male patients vs. male 

HC, medicated patients vs. HC, unmedicated patients vs. HC, unmedicated patients vs. medicated patients, low 

severity patients (STAI-T≤48) vs. HC, high severity patients (STAI-T>48) vs. HC and low severity patients vs. high 

severity patients. 
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Figure 2. Simplified visual representation of the ML pipeline. 1) ML algorithm is trained on a set of labeled, preprocessed MRI structural measures, resulting in a model M that 

classifies patients and controls based on a discriminative subset of the features (feature vector). 2) The classification is achieved using an (optimal) separating hyperplane in 

the (high-dimensional) feature space. Application of the model to an individual scan yields an output value y that is proportional to the distance of the subject’s feature vector 

to that plane: blue (HC) and red (Patients) dots. The y-values of all subjects form two distributions. 3) A threshold halfway between the distributions separates the two groups; 

the overlapping parts below and above the threshold represent the false negatives and false positives, respectively. Adapted and reprinted with permission from Frontiers 

Media SA: Frontiers Psychiatry (Schnack & Kahn, 2016).
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Results  

1. Primary Analyses 

Case-control classification performances are summarized in Figure_3A, and a complete overview of results (AUC, 

balanced accuracy, sensitivity, specificity, permutation p-values) is provided in Table_S2. The best classification 

performance was obtained for PD vs. HC (112 PD/813 HC/12 sites) with an average AUC=0.62 (p=.027). None of 

the other disorder-specific classification performances were significantly different from chance: GAD 

classification (465 GAD/1,084 HC/16 sites/average AUC=0.55, p=.605), SAD classification (259 SAD/610 HC/13 

sites/average AUC=0.57, p=.32), and transdiagnostic classification (823 any anxiety disorder/1,969 HC/32 

sites/average AUC=0.56, p=.093). Classification performances obtained using LOSO-CV were similar to those 

obtained with repeated 5-Fold CV, in which only PD classification performed significantly above chance-level 

(average AUC=0.63, p=.003), while the SAD, GAD, and transdiagnostic classifications failed to surpass chance-

level (Table_S3). 

 
 
2. Exploratory Subgroup Analyses  

2.1 Sex 

We assessed transdiagnostic case-control classification (across ENIGMA-Anxiety subgroups) separately for males 

and females. Performances obtained are summarized in Figure_3B/Table_S2. Whereas above chance-level 

performance was achieved for male patients with any anxiety disorder vs. male HC classification (167 

patients/678 HC/15 sites) (average AUC=0.63, p=.007), female patients with any anxiety disorder vs. female HC 

classification (524 patients/1,133 HC/24 sites) failed to surpass chance-level (average AUC=0.57, p=.218).  

 
2.2 Psychotropic Medication 

Results for transdiagnostic classifications based on current psychotropic medication use are summarized in 

Figure_3C/Table_S2. Unmedicated patients vs. HC classification (641 patients/1,969 HC/32 sites) led to above 

chance-level performance (average AUC=0.59, p=.013), whereas medicated patients vs. HC classification (160 

patients/1,307 HC/17 sites) failed to surpass chance-level (average AUC=0.59, p=.22). Likewise, classification of 

medicated patients vs unmedicated patients (251 medicated patients/160 unmedicated patients/17 sites) failed 

to surpass chance-level (average AUC=0.51, p=.38). 
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2.3 Severity 

Results for transdiagnostic classifications based on severity (STAI-T: low severity≤48, high severity>48) are 

summarized in Figure_3D/Table_S2. Low severity patient vs. HC classification (299 patients/1,422 HC/21 sites) 

performance was above chance-level (average AUC=0.59, p=.016), while high severity patients vs. HC 

classification (272 patients/1,449 HC/22 sites) failed to surpass chance-level (average AUC=0.57, p=.305). 

Likewise, classification of low vs. high severity patients (299 low severity patients/270 high severity patients/21 

sites) also failed to surpass chance-level (average AUC=0.52, p=.235). 

 

3. Feature Importance 

3.1 PD Classifier  

We investigated which brain regions contributed most to above chance-level classifications via sign-based 

consistency mapping. Four brain features emerged as most relevant for PD vs. HC classification 

(Figure_4/Table_S4). Consistent positive signs of weights were found for CT in the left middle temporal gyrus 

and right rostral anterior cingulate cortex, which would imply a tendency of the SVM for pushing the classification 

towards the PD class given increased CT in these regions. Consistent negative signs of weights were found for 

CSA of the left superior frontal gyrus and SCV of the left pallidum, which would imply the opposite tendency of 

the SVM to assign participants to HC class given increased SVC/CSA in these regions. Note that the derived sign 

consistency p-values do not correspond to a univariate group comparison, but represent the most important 

features of the multivariate pattern used by the SVM classifier, and should therefore be interpreted with caution 

(details in Supplementary_Methods).  
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Figure 3. Classification performances for each working group separately and for transdiagnostic classification(s) across working groups. Boxplots summarize scores obtained 

across the repeated stratified K-Fold cross-validation folds; yellow diamonds indicate mean scores, circles indicate outliers, asterisks depict significance as assessed by label 

permutation tests and the dashed line represents chance-level performance. PD = Panic Disorder, GAD = General Anxiety Disorder, SAD = Social Anxiety Disorder, HC = Healthy 

Control. 
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Figure 4. The -log(p) value maps characterizing significant brain regions contributing the most to panic disorder 

patients versus healthy controls classification as determined by sign-based consistency mapping (40). Hot 

colors indicate consistently assigned positive weights by the SVM that drive classification towards the patients 

class, and cold colors indicate negative weights that drive classification towards controls. The figure was made 

with the ENIGMA Toolbox package (https://enigma-toolbox.readthedocs.io/en/latest/). Full region names may 

be found in Supplementary Table S2. LH = Left Hemisphere, RH = Right Hemisphere. 

 

  

https://enigma-toolbox.readthedocs.io/en/latest/
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3.2 Sex, Medication, Severity Classifiers  

The male patients vs. male HC transdiagnostic classification comprised seven significant features: positive signs 

of weights that pushed the classification towards the patient class were located in CT of right lateral occipital 

cortex and right superior frontal gyrus, and consistent negative signs of weights that pushed classification 

towards HC were found in both CT and CSA of the right superior temporal gyrus, and CSA in the pars orbitalis, 

parahippocampal gyrus and cuneus cortex in the right hemisphere (Figure_5/Table_S5).  

Unmedicated patient vs. HC transdiagnostic classification comprised 21 significant features 

(Figure_6/Table_S6). These included consistent positive signs of weights for the right caudate SCV, CT in the right 

cuneus, left lingual and left superior temporal gyrus, and CSA in the left middle temporal gyrus, left entorhinal, 

right superior parietal and right posterior‐cingulate cortex (classification towards the patient class given 

increased CT/CSA). Negative signs of weights were found for the SCV of the left caudate and amygdala, CT in the 

left inferior parietal cortex and right middle temporal gyrus, and CSA in right inferior temporal, supramarginal 

and left fusiform gyrus, bilateral temporal poles, right banks superior temporal sulcus, right paracentral lobule 

and left medial orbital frontal and inferior parietal cortex (classification towards HC class given increased 

CT/CSA/SCV). 

Low severity patients vs. HC transdiagnostic classification comprised six significant features 

(Figure_7/Table_S7). Positive signs of weights were found for CT in the right inferior parietal cortex and CSA in 

the right rostral anterior cingulate and left entorhinal cortex (classification towards patient class given increased 

CT/CSA). Consistent negative signs of weights were found for CT and CSA in the right inferior temporal gyrus, and 

CSA in the right pars triangularis (classification towards HC class given increased CT/CSA). 
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Figure 5. The -log(p) value maps characterizing significant brain regions contributing the most to male patients 

versus male healthy controls classification across working groups as determined by sign-based consistency 

mapping (40). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

The figure was made with the ENIGMA Toolbox package (https://enigma-toolbox.readthedocs.io/en/latest/). Full 

region names may be found in Supplementary Table S3. LH = Left Hemisphere, RH = Right Hemisphere. 

  

https://enigma-toolbox.readthedocs.io/en/latest/
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Figure 6. The -log(p) value maps characterizing significant brain regions contributing the most to unmedicated 

patients versus healthy controls classification across working groups as determined by sign-based consistency 

mapping (40). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

The figure was made with the ENIGMA Toolbox package (https://enigma-toolbox.readthedocs.io/en/latest/). Full 

region names may be found in Supplementary Table S4. LH = Left Hemisphere, RH = Right Hemisphere.  

  

https://enigma-toolbox.readthedocs.io/en/latest/
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Figure 7. The -log(p) value maps characterizing significant brain regions contributing the most to low severity 

patients versus healthy controls classification across working groups as determined by sign-based consistency 

mapping (40). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

The figure was made with the ENIGMA Toolbox package (https://enigma-toolbox.readthedocs.io/en/latest/). Full 

region names may be found in Supplementary Table S5. LH = Left Hemisphere, RH = Right Hemisphere. 

 

 
  

https://enigma-toolbox.readthedocs.io/en/latest/
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Discussion 

In this study we benchmarked classification of youth with anxiety disorders based on brain morphology, using 

structural MRI data from the large-scale multi-site ENIGMA-Anxiety Working Group, comprising a heterogeneous 

sample of 3,343 participants from 32 international sites. Modest, yet robust, classification performance was 

achieved for PD vs. HC (AUC=0.62), but classification performances of SAD, GAD, or any anxiety disorder 

(transdiagnostic) vs. HC failed to surpass chance-level significance. However, above chance-level transdiagnostic 

classification performances were obtained for particular subgroup analyses, namely, male patients vs. male HC, 

unmedicated patients vs. HC and low severity patients vs. HC, with AUCs ranging between 0.59-0.63. Of note, 

these above chance-level disorder-specific and transdiagnostic subgroup classifications were based on plausible 

and specific neuroanatomical features in fronto-striato-limbic and temporo-parietal regions. This study provides 

a realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site 

sample of young anxiety patients based on neurostructural data. While short of the clinically relevant AUC 

threshold of 0.80 (42), our results are on par with recent brain-based ML classifications of psychopathologies 

conducted in ENIGMA and other multi-site consortia. 

 
PD Classifier  

We identified several brain regions important for PD classification: CT of the left middle temporal gyrus and right 

rostral anterior cingulate cortex, along with the CSA of left superior frontal gyrus and SCV of the left pallidum. 

The middle temporal gyrus embedded in the temporal lobe is part of the limbic system, and involved in emotional 

responding, and thought to play an important role in PD pathophysiology (43,44). Perturbed temporal lobe GMV, 

specifically in the middle temporal gyrus and transverse temporal gyrus are reported in PD patients (44-46). The 

anterior cingulate cortex is another key region for PD, as it is implicated in the modulation of both normal and 

pathological anxiety, with VBM meta-analyses linking its disintegrity to PD diagnosis (45,47). Several studies also 

report alterations in task-based activation associated with treatment response towards cognitive-behavioral 

therapy (23,24). The superior frontal gyrus is involved in cognitive control and emotion regulatory processes and 

several studies link abnormal GMV in this region to PD pathophysiology (43,45,48). Finally, the pallidum is part 

of the lenticular nucleus residing in the basal ganglia, and is a convergence point for limbic reward signals and 

involved in diverse cognitive, affective and motor processes (49). Voxel-based morphometry (VBM) meta-

analyses link gray matter volume (GMV) anomalies within the lenticular nucleus to clinical anxiety in general (47), 
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as well as PD specifically (45). Altogether, the aggregation of findings suggests that brain regions deemed 

important for PD classification are biologically plausible.  

 
Sex, Medication, Severity Classifier  

We investigated transdiagnostic classifications for subgroups with particular demographic or clinical 

characteristics, with the goal of reducing heterogeneity across sites and to potentially boost performance. 

Transdiagnostic case-control classifications were significantly above chance level for the specified subgroups (up 

to 0.63 AUC, p’s<.05) but not for the entire sample (AUC=0.56, p=.093). As depicted in Figures 4-7, the 

multivariate neurostructural pattern behind these transdiagnostic subgroup classifications comprised of fronto-

parieto-limbic territories, previously linked to anxiety and its demographic (i.e., sex) and clinical (i.e., 

severity/medication use) and characteristics (6,7,35,50-53). 

Whereas transdiagnostic classification of male anxiety patients vs. male HC could be reliably achieved 

(AUC=0.63, p=.007), this was not the case for females. Such male-specific effects interestingly also emerged in a 

recent ENIGMA-Anxiety GAD case-control group comparison (50), while increased variability in female brain 

structure due to menarche, menstrual cycle and hormonal contraceptives is also suggested (54). We also found 

that unmedicated patients could be distinguished from HC (AUC=0.59, p=.013), which was not the case for 

classification of medicated patients vs. HC or medicated vs. unmedicated patients. One may speculate that 

heterogeneity in medication type, dosage, or duration among medicated patients could differentially influence 

brain structure and render classification more complicated. Alternatively, psychotropic medication usage may 

normalize some neurostructural alterations in anxiety patients (4,6), a phenomenon also seen in other 

psychopathologies (55,56), and hence complicate classification from HC and their unmedicated anxious peers. 

Longitudinal studies that incorporate more detailed medication information may provide better insight into the 

short- and long-term effects of medication on brain structure in each specific disorder and across anxiety 

disorders.  

Similarly, whereas low severity patients (as indexed by a below median STAI-trait score) could be 

distinguished from HC above chance-level (AUC=0.59, p=.016), this could not be achieved for classification of 

high severity patients vs. HC or high severity vs. low severity patients. While this result might be counterintuitive, 

it might also be attributed to the normalizing effects of medication in high severity patients, as severity and 

medication status were found to be positively correlated (Phi=0.21, p<.001). Alternatively, there might be more 



8 
 

divergent brain abnormalities in high severity PD/SAD/GAD patients (e.g., larger or smaller CT/CSA/SCV 

depending on the disorder), or larger variance in demographic and/or clinical characteristics (across disorders 

and sites) compared to low severity patients. Nonetheless, the significance (or lack of it, following permutation 

testing) for certain classifications could also reflect false positives or false negatives, and additional research is 

clearly needed to further explore, validate, and refine these subgroup findings. Ideally, we would have tested 

these subgroup classifications also for each anxiety disorder separately, but this was simply not feasible given 

the small number of patients who would have remained after filtering.  

 
Classifier Performance and Site-Effects 

Our results are on par with other ENIGMA studies (obsessive-compulsive disorder (OCD), bipolar disorder (BP), 

major depression disorder (MDD)) that used FreeSurfer data for case-control classification in a multi-site setting, 

with AUCs ranging between 0.62-0.72 (27-29). Similar to our results, none of the obtained performances reached 

the clinical threshold of AUC>0.80 (42). These findings suggest that although there could be significant case-

control differences in CT/CSA/SCV on the group-level, parcellated structural MRI data may at the moment not 

fully allow for clinically relevant case-control distinctions at the individual-level. Notably, the classification 

performances obtained here (up to 0.63 AUC) translate to effect sizes (Cohen’s d=0.47; medium effect size, see 

(30) for AUC to effect size conversion) typically larger than those obtained in previous ENIGMA univariate case-

control analyses of FreeSurfer data among psychiatric populations, such as OCD (max Cohen’s d=−0.33 for CSA), 

BP (max Cohen’s d=-0.29 for SVC), schizophrenia (SZC) (max Cohen’s d=-0.46 for SVC), MDD (max Cohen’s d=-0.2 

for SCV, but up to −0.57 for CSA in adolescents vs matched controls), and attention deficit hyperactivity disorder 

(max Cohen’s d=-0.19 for SVC) (26,57-61). However, one should be cautious to directly compare the above effect 

sizes, as our AUC-converted effect size was based on a multivariate method estimated through CV (out-of-

sample) while the case-control effect sizes are in sample and univariate in nature. Future studies could apply 

more fine-grained neurostructural features (i.e., voxel-wise/vertex-wise maps), measures of brain connectivity 

and network function or multimodal data in combination with more sophisticated classification methods (i.e., 

Deep Neural Networks) (15,27). A combination of these options is postulated to improve classification 

performances compared to shallow ML algorithms applied to low-resolution data (15). 

To our knowledge, this is to date the largest, multi-site brain-based classification analysis of anxiety 

disorders among youth. Previous structural and functional MRI-based classification studies on anxiety disorders 
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have claimed to distinguish patients from HC, with AUCs reaching over 0.80 (17-24). However, these studies 

relied on small samples (N<100) susceptible to unstable performance estimations during cross-validation (62,63), 

in which inflated performances are likely to be overrepresented through publication bias or insufficient testing 

(64-66). In addition, studies typically used data from a single research site, and performance typically drops when 

models are tested on unseen data from other sites. The large-scale multi-site ENIGMA database employed here 

provides ecologically valid and clinically representative information, which may be used by ML algorithms to 

identify multivariate patterns generalizable to patients across different sites (27-29). Having a large sample size 

and thus more data for model training and testing is typically beneficial for ML, and leads to more reliable 

performance estimates (36,67,68). However, pooling existing data in a multi-site context like ENIGMA may also 

reveal that methods have poorer true performance in reality, due to the realistic heterogeneity (in sample 

characteristics, hardware and methodology) that is actually represented (27,28,30). These global between-site 

differences, referred to as “site-effects”, can hamper the ability of the classifier to find common brain 

abnormalities between patients and HC across different sites. Site-effects can also leave confounds in the data 

that obscure interpretations, impair the generalizability and reproducibility of classification models, and lead to 

biased performance (27,37).  

We addressed site-effects by standardizing neuroimaging data from each site according to their HC 

reference group. Without site-wise scaling, the SVM was able to accurately predict which site a given participant 

belongs to, but not when site-wise scaling was applied (Table_S8). Performances obtained for classifications 

using LOSO-CV were comparable to K-Fold CV, further indicating that our standardization approach effectively 

harmonized data across sites. We also accounted for site-effects in our permutation testing framework by 

restricting the exchangeability of class-labels to each site, so that remaining site-effects would be incorporated 

in the obtained null-distribution (see Supplementary_Discussion) (69). There are other methods available to 

handle site-effects, such as ComBat and normative modeling, but the assumptions for these techniques (i.e., 

N>25 subjects per site, balanced samples and overlapping distribution of covariates across sites) are violated 

here, rendering them unsuitable for this study (37,70). Future classification studies on data from the ENIGMA-

Anxiety Working Group using larger samples could investigate the feasibility of other site-harmonization 

techniques.  
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Strengths & Limitations 

The key advantages of this study include the large worldwide sample (N=3,343 from 32 sites), access to 

individual-level data, and the conservative nature of the analyses wherein possible site-effects/data 

leakage/overfitting were stringently confronted. The international heterogeneity and multi-site nature allowed 

us to test ML classifications on a wide range of participants, more closely resembling the real-world clinical 

situation. Notwithstanding these strengths, there are several limitations to consider.  

We used a global and retrospectively pooled data sample, where no harmonization of scanning 

acquisition or sample inclusion was performed. These sources of heterogeneity may have limiting effects on 

classification performance, but also provide an opportunity for a more realistic evaluation across samples that 

better represent the wide range of characteristics seen in the real-world population. This would be considered a 

strength, as it is necessary to evaluate whether results are reliable across a variety of hardware and protocols.  

Since we specifically focused on youth (10-25 years), we had to exclude participants from each sample 

outside this age range and ended up with a relatively large number of sites with small sample sizes. This limited 

our options for site-effect harmonization, and led to insufficient sample sizes per site to investigate subgroup 

classifications for each anxiety disorder separately. Also, whereas developmentally-driven heterogeneity may 

have been at play, the sample size (especially patients) made it practically impossible to formally test this, as we 

lacked sufficient data for training/testing folds per meaningful age grouping. However, supplementary analyses 

were run to assess the link between age and classification performance within the transdiagnostic sample among 

different age groups (10-14 early adolescence; 15-17 middle adolescence; 18-25 late adolescence and young 

adults, (31,71,72). As seen in Figure_S1, there was no statistically significant association between the obtained 

performances and age groups (r=-0.50, p=.667), suggesting that the model performed equally well across the age 

spectrum investigated. Finally, we only had access to regional brain measures (FreeSurfer features), not 

raw/voxel-wise data or other brain-imaging modalities (i.e., function/connectivity). Incorporation of these 

additional data forms, and use of more sophisticated ML algorithms (i.e., deep learning) better apt in handling 

massively multi-modal data, might further improve classification performances reported here (15). 

 

Conclusion 

This study provides a realistic estimate of ML classification performance, which can be achieved in a large, 

ecologically valid, multi-site sample of youth with anxiety disorders based on neurostructural data. While short 
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of the clinically relevant AUC threshold of 0.80, our results are on par with recent brain-based ML classifications 

of psychopathologies conducted in ENIGMA and other multi-site consortia. This classification study sets a 

baseline for the ENIGMA-Anxiety Working Group and is an important step towards the development of models 

that could ultimately inform early detection, prevention, and care among clinically anxious youth. The added 

value compared to conventional diagnostic tools (e.g., structured interviews and questionnaires) needs to be 

further evaluated. 
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