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Abstract

We introduce a nonlinear, one-dimensional bending-twisting model for an inextensible
bi-rod that is composed of a nematic liquid crystal elastomer. The model combines an
elastic energy that is quadratic in curvature and torsion with a Frank-Oseen energy for
the liquid crystal elastomer. Moreover, the model features a nematic-elastic coupling that
relates the crystalline orientation with a spontaneous bending-twisting term. We show that
the model can be derived as a Γ-limit from three-dimensional nonlinear elasticity. Moreover,
we introduce a numerical scheme to compute critical points of the bending-twisting model
via a discrete gradient flow. We present various numerical simulations that illustrate the
rich mechanical behavior predicted by the model. The numerical experiments reveal good
stability and approximation properties of the method.
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1 Introduction

Nematic liquid crystal elastomers (LCE) are nonlinearly elastic materials that feature an ad-
ditional orientational internal degree of freedom. They are composed of a polymer network
with incorporated liquid crystals—rod-like molecules that tend to align in a nematic phase.
Nematic LCE feature a nematic-elastic coupling between the orientation of the liquid cyrstals
and the elastic properties of the polymer network. More specificially, the material tends to
stretch in the direction parallel to the liquid crystal orientation and shrinks in orthogonal di-
rections. Furthermore, it is possible to tweak the orientation of the liquid crystals by fields
and to (de)activate the nematic-elastic coupling by external stimuli (e.g., temperature). For
this reasons, nematic LCE exhibit interesting mechanical properties (e.g., thermo-mechanical
coupling [BCZ11, WT07] or soft elasticity [KF91, KF95]), and are used to design active mate-
rials, see [WB15, WBS+16, vMJZ18]. In this context, slender structure such as thin films and
rods are of interest. In recent years nonlinear models for thin films and rods made of nematic
LCE have also been intensively studied from a mathematical perspective. In particular, the
derivation of lower-dimensional models from thee-dimensional models has been discussed, e.g.,
see [CDD02b, CDD02a, PLB18, PKWB18, CPB15, AD17b, AD17a, ALL17, ADK17, BNS20],
and reliable numerical schemes have been developed, e.g., see [BP21, BGNY21, BBMN18,
BBN17, San10, SNB16, LTMR92, BWR+08] for numerical methods for slender structures,
[NWZ17a, NRV20, NWZ17b, BNW20, Wal20] for LCE and director fields, and [BGN+22] for
models that combination thin-film mechanics and director fields.

Our paper is devoted to the modeling and simulation of nonlinear bi-rods that are composed
of nematic LCE and a usual nonlinear elastic material. Starting from a three-dimensional
nonlinear model that invokes a standard energy functional from nonlinear elasticity, a Frank-
Oseen energy for the LCE material, and a nematic-elastic coupling term, we derive via Γ-
convergence a model for an inextensible rod that is capable to describe large bending and
twisting deformations, and a coupling mechanism that relates the local orientation of the LCE
with a spontaneous curvature/torsion-term. In contrast to other works, e.g., [GMAM22], in
our model the director field is not prescribed but an additional degree of freedom of the model;
moreover, the derivation is ansatz-free in the sense of Γ-convergence. It is based on the one hand
on the recently introduced approach in [BGN+22] where the derivation of nematic LCE plates
is studied, and on the other hand, on [Neu12, BNS20] where the simultaneous homogenization
and dimension reduction of prestrained rods is analyzed as an extension of the seminal work
[MM03].

Our effective one-dimensional description of LCE rods allows for efficient numerical simulations
of complex problem settings. We follow [BR20] and use standard C0 and C1 conforming finite
element spaces that are subordinated to a partitioning of the straight reference configuration to
approximate director fields and the bending deformation, respectively. Geometric constraints
such as the conditions for the material frame are imposed at nodes of the partitioning via
suitable linearizations and penalty terms. Similarly, the discretization of the unit-length con-
straint for the director field describing the LCE orientation is imposed at the nodes. We then
use a semi-implicit gradient descent method to decrease the one-dimensional energy functional
from a given initial state to obtain stationary configurations via sequences of linear problems
with simple system matrices. Our experiments show how a periodic bending behaviour can be
controlled in a quasi-static setting via a time-dependent external field. Our simulations also
illustrate how internal material parameters, that can be changed via external stimuli, affect
the bending behavior in the case of compressive, twist-inducing boundary conditions. The nu-
merical experiments reveal good stability and approximation properties of the iterative method
and the devised discretization scheme. They lead to meaningful results within minutes for an
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elementary implementation on standard desktop computers.

The paper is structured as follows. In Section 2 we first introduce the one-dimensional bending-
twisting model. We then introduce a three-dimensional nonlinear elasticity model and show
that it Γ-converges to the one-dimensional model, see Section 2.2. The effective coefficients of
the one-dimensional depend on the original material, the geometry of the cross-section and the
domain occupied by the LCE. In Section 2.3 we present their definition and derive simplified
formulas that hold in special settings. In Section 3 we introduce a discretization of the one-
dimensional model minimization problem via a discrete gradient flow, and we explore the model
via numerical simulations. All proofs are presented in Section 4.

2 A bi-rod model for nematic LCEs and its derivation

In this section we introduce a one-dimensional bending-twisting model that describes an in-
extensible rod that is composed of a nematic LCE and a nonlinearly elastic material, and we
explain its derivation from three-dimensional nonlinear elasticity via Γ-convergence, see Sec-
tion 2.2 below.

2.1 The one-dimensional model

We denote by ω := (0, L) the reference domain of the rod. We describe a configuration of the
rod by a triplet (y,R, n) satisfying

y ∈ H2(ω;R3), R ∈ H1(ω;R3×3), n ∈ H1(ω;R3)

such that for a.e. x1 ∈ ω, ∂1y(x1) = R(x1)e1, R(x1) ∈ SO(3), |n(x1)| = 1.
(1)

Here, y describes the deformation of the rod and R the deformation of an associated orthonormal
frame. The field n describes the orientation of the liquid crystals in global coordinates. We
denote by

A := {(y,R, n) : (y,R, n) satisfies (1) }

the set of all rod configurations and call a pair (y,R) satisfying (1) a framed curve. We consider
the energy functional E : A → R defined by

E(y,R, n) :=

ˆ
ω
Q̄
(
R>∂1R+ r̄Kpre(

1
3I − n̂⊗ n̂)

)
+ r̄2Eres

(
1
3I − n̂⊗ n̂)

)
dx1

+ κ2

ˆ
ω
|∂1n|2 dx′, where n̂ := R>n,

(2)

where

• Q̄ : R3×3
skew → R is a positive definite quadratic form that describes the bending–twisting

energy; here and below, R3×3
skew denotes the space of skew-symmetric matrices in R3×3.

• Kpre : R3×3
dev → R3×3

skew is a linear map that describes the contribution of the nematic-elastic
coupling that leads to spontaneous bending and twisting of the rod; here and below, R3×3

dev

denotes the space of symmetric matrices in R3×3 with vanishing trace.

• Eres : R3×3
dev → R is a positive, semi-definite quadratic form that describes a residual energy

that cannot be accomodated by bending or twisting of the rod.

• r̄ ∈ R is a model parameter related to the strength of the nematic-elastic coupling.
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• κ > 0 is a model parameter that is related to the scaling of the physical diameter of the
rod, the shear moduls of the elastomer and the Frank elastic constant of the nematic LCE.

As we shall explain next, this model can be derived as a zero-thickness Γ-limit from a three-
dimensional rod composed of an elastic material and an LCE-material. In this context, the
precise definition of Q̄ and Kpre depends on the considered material, the geometry of the cross-
section of the rod and the geometry of the subdomain that is occupied by the nematic LCE
material, see Definition 2.6.

2.2 The three-dimensional model and Γ-convergence

The starting point of the derivation is the following three-dimensional situation: We consider an
elastic composite material that occupies the three-dimensional, rod-like domain Ωh := ω × hS,
where 0 < h � 1 denotes a (non-dimensionalized) thickness of the rod, S ⊂ R2 the rescaled
cross-section, and ω := (0, L) the mide-line of the rod. We assume that

S ⊂ R2 is a simply connected, Lipschitz domain,

satisfying

ˆ
S
x2 dx̄ =

ˆ
S
x3 dx̄ =

ˆ
S
x2x3 dx̄ = 0.

(3)

Here and below, we use the notation x = (x1, x̄) ∈ R3 and x̄ = (x1, x2) ∈ R2. We note that
the symmetry condition in (3) is not a restriction, since it can always be achieved by rotating
and translating S. We assume that the rod is composed of a conventional elastic material and
a nematic LCE. The latter occupies the subbody Ω0,h := ω × (hS0) where S0 ⊂ S denotes a
subdomain of the cross-section. We assume that

S0 ⊂ S is a simply connected, Lipschitz domain such that |S0| > 0 and |S \ S0| > 0. (4)

To study the limit h→ 0, it is convenient to work with the rescaled domain Ω := ω × S (resp.
the rescaled subdomain Ω0 := ω × S0). We therefore describe the deformation of the rod by a
mapping yh : H1(Ω;R3), and the orientation of the LCE by a director field nh ∈ H1(Ω0; S2).
Here and below, S2 denotes unit-sphere in R3. We consider the energy functional

Eh(yh, nh) :=
1

h2|S|

ˆ
Ω\Ω0

W
(
x̄,∇hyh(x)

)
dx+

1

h2|S|

ˆ
Ω0

W
(
x̄, Lh(nh(x))−

1
2∇hyh(x)

)
dx

+
κ2

|S0|

ˆ
Ω0

∣∣∇hnh(x)(∇hyh(x))−1
∣∣2 det(∇hyh(x)) dx.

(5)

The first integral is the elastic energy stored in the deformed material with reference configu-
ration Ω \ Ω0. Here, ∇h := (∂1,

1
h∇̄), ∇̄ := (∂2, ∂3) denotes the scaled gradient which emerges

when passing from Ωh to Ω. The second integral is the elastic energy of the nematic LCE. It
invokes the step-length tensor

Lh : S2 → R3×3
sym, Lh(n) := (1 + hr̄)−

1
3 (I + hr̄n⊗ n),

which has been introduced by [BTW93] to model the elastic-nematic coupling. The last integral
is the (one-constant approximation of the) Frank-Oseen energy pulled back to the reference
configuration. As already mentioned, r̄ ∈ R and κ > 0 denote model parameters.
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We assume that the stored energy function W : S × R3×3 → [0,∞] is Borel-measurable and
satisfies for some q > 4 and C > 0, and for all F ∈ R3×3 and a.e. x̄ ∈ S,

W (x̄, RF ) = W (x̄, F ) for all R ∈ SO(3), (W1)

W (x̄, F ) ≥ 1

C
dist2(F,SO(3)) and W (x̄, I) = 0, (W2)

W (x̄, ·) is C2 in {F ∈ R3×3 : dist(F,SO(3)) < 1
C }, (W3)

W (x̄, F ) ≥

{
1
C max{|F |q, det(F )−

q
2 } − C if detF > 0,

+∞ else.
(W4)

The stored energy function thus describes a frame indifferent, cf. (W1), material with a stress-
free, non-degenerate reference configuration, cf. (W2). Furthermore, by (W3) the material law
is linearizable at identity and the linearization is Korn-elliptic, i.e., the quadratic form defined
by

Q : S × R3×3 → R, Q(x̄, G) :=
1

2
∇2W (x̄, I)G ·G, (6)

vanishes on R3×3
skew and is positive definite on R3×3

sym. We remarkt that (5) is precisely the analogue
for rods of the energy functional considered in [BGN+22] where the a bending model for LCE-
plates is studied. The next theorem shows that Eh Γ-converges as h→ 0 to the one-dimensional
limiting model (2):

Theorem 2.1 (Derivation via dimension reduction). Let the cross-section S and S0 ⊆ S satisfy
(3), (4), and let W satisfy (W1) – (W4). Let E : A → R be defined by (2) with Q̄, Kpre and
Eres given by Definition 2.6. Then the following properties hold:

(a) (Compactness). Suppose lim sup
h→0

Eh(yh, nh) <∞. Then there exists (y,R, n) ∈ A such that

for a subsequence (not relabeled), we have

(yh −
 

Ω
yh,∇hyh)→(y,R) in L2, (7)

nh →n in L2. (8)

(b) (Lower bound). Let (yh, nh) ⊂ H1(Ω;R3) × H1(Ω0;S2) and (y,R, n) ∈ A. Suppose that
(yh,∇hyh, nh)→ (y,R, n) strongly in L2. Then

lim inf
h→0

Eh(yh, nh) ≥ E(y,R, n).

(c) (Upper bound). Let (y,R, n) ∈ A. Then there exists a sequence (yn, nh) ⊂ H1(Ω;R3) ×
H1(Ω0; S2) such that (yh,∇hyh, nh)→ (y,R, n) strongly in L2 and

lim
h→0
Eh(yh, nh) = E(y,R, n).

For the proof see Section 4.

We can take also clamped boundary conditions for the deformation into account:

Proposition 2.2 (Clamped boundary conditions). Let ybc ∈ H2(ω;R3), Rbc ∈ H1(ω; SO(3)),
and suppose that ∂1ybc = Rbce1.
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(a) Consider the situation of Theorem 2.1 (a) and additionally suppose that

yh(0, x̄) = ybc(0) + hRbc(0)x̄ a.e. in S, (9)

where here and below, we write x̄ for the map S 3 x̄ 7→ (0, x̄)> ∈ R3. Then there exists
(y,R, n) ∈ A with

(y(0), R(0)) = (ybc(0), Rbc(0)), (10)

such that for a subsequence (not relabeled), we have

(yh,∇hyh, nh)→(y,R, n) in L2. (11)

(b) Consider the situation of Theorem 2.1 (c) and suppose that (y,R, n) ∈ A satisfies (10).
Then there exists a sequence (yn, nh) ⊂ H1(Ω;R3)×H1(Ω0;S2) that satisfies (9) such that
(yh,∇hyh, nh)→ (y,R, n) strongly in L2 and

lim
h→0
Eh(yh, nh) = E(y,R, n).

For the proof see Section 4. Next, we discuss soft anchoring conditions for the director nh.

They come in the form of an additional contribution to the energy functional that penalizes
deviations of the director nh from a prescribed configuration n̂bc. In this context, it is natural
to describe the director in local coordinates. In the following we first introduce a general form
of a soft anchoring condition for the three-dimensional model: Let | · |a denote a semi-norm
on R3, and let ρ ∈ L1(Ω0) denote a non-negative weight and set ρ̄(x1) :=

´
S0
ρ(x1, x̄) dx̄. For

(yh, nh) with Eh(yh, nh) <∞ and n̂bc ∈ H1(ω;S2) define

Gh(yh, nh; n̂bc) :=

ˆ
Ω0

∣∣∣∣ ∇hy>h nh|∇hy>h nh|
− n̂bc

∣∣∣∣2
a

ρ dx.

Furthermore, for (y,R, n) ∈ A and n̂bc ∈ H1(ω; S2) define

Gweak(y,R, n; n̂bc) :=

ˆ
ω

∣∣∣R>n− n̂bc∣∣∣2
a
ρ̄ dx1,

Gstrong(y,R, n; n̂bc) :=

{
0 if

∣∣R>n− n̂bc∣∣2a ρ̄ = 0 a.e. in ω,

∞ else.

Proposition 2.3 (Derivation of anchorings). (a) The statements of Theorem 2.1 hold with (Eh, E)
being replaced by (Eh + Gh, E + Gweak).

(b) Let 0 < β < 1. The statements of Theorem 2.1 hold with (Eh, E) being replaced by (Eh +
h−βGh, E + Gstrong).

For the proof see Section 4.

Example 2.1. (a) (Full anchoring). In the case | · |a := | · | and ρ ≡ |S0|−1 we obtain

Gweak(y,R, n; n̂bc) =

ˆ
ω

∣∣∣R>n− n̂bc∣∣∣2 dx1,

which penalizes deviations of the director from n̂bc. The corresponding strong anchoring
enforces the director (in local coordinates) to be equal to n̂bc a.e. in ω.
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(b) (Tangentiallity). Consider |ξ|2a := (ξ · e2)2 + (ξ · e3)2, ρ ≡ |S0|−1 and n̂bc := e1. We obtain

Gweak(y,R, n; n̂bc) =

ˆ
ω
(n ·Re2)2 + (n ·Re3)2 dx1,

which penalizes the non-tangential components of the director. The corresponding strong
anchoring enforces the director (in local coordinates) to be tangential, i.e., n = y′.

(c) (Normality). Consider |ξ|2a := (ξ · e1)2, ρ ≡ |S0|−1 and n̂bc := e2. We obtain

Gweak(y,R, n; n̂bc) =

ˆ
ω
(n · y′)2 dx1,

which penalizes the tangential components of the director. The corresponding strong an-
choring enforces the director (in local coordinates) to be normal to the tangent.

2.3 Definition and evaluation of the effective coefficients

In the following we present the definition of the effective coefficients Q̄, Keff and Eres. We first
define the effective coefficients abstractly based on a projection scheme introduced in [BNS20].
We then characterize the coefficients with help of cell-problems and correctors. Finally, we
derive more explicit formulas in the special case of an isotropic material. Throughout this
section we assume that W satisfies (W1) – (W4) and that Q is defined by (6).

For the abstract definition let H := L2(S;R3×3
sym) denote the Hilbert space with scalar product(

Ψ,Φ
)
Q

:=
1

2

 
S
L(x̄)Ψ(x̄) · Φ(x̄) dx̄,

where 1
2L(x̄)G ·G′ = 1

2∇
2W (x̄, I)G ·G′ for all G,G′ ∈ R3×3. Note that the associated norm is

given by ‖Ψ‖2Q =
ffl
S Q(x̄,Ψ(x̄)) dx̄. We consider the subspaces

Hrel :=
{
S 3 x̄ 7→ ae1 ⊗ e1 + sym(0, ∇̄ϕ(x̄)) : a ∈ R, ϕ ∈ H1(S;R3)

}
,

Hmicro :=
{
S 3 x̄ 7→ sym((Kx̄)⊗ e1) + χ(x̄) : K ∈ R3×3

skew, χ ∈ Hrel

}
.

With help of Korn’s inequality we deduce the following statement (whose elementary proof we
leave to the reader):

Lemma 2.4. Let H1
av(S;R3) denote the space of functions ϕ ∈ H1(S;R3) satisfying 

S
ϕ = 0 and

 
S
∂3ϕ2 − ∂2ϕ3 dx̄ = 0.

Then H1
av(S;R3) equipped with the norm ϕ 7→

(ffl
S | sym(0, ∇̄ϕ)|2 dx̄

) 1
2 is a Hilbert space. Fur-

thermore, the map
R×H1

av(S;R3) 3 (a, ϕ) 7→ sym
(
ae1, ∇̄ϕ

)
∈ Hrel

is an isomorphism.

The previous lemma implies that Hrel and Hmicro are closed subspaces of H. Thus, the subspaces
Hres and Hmacro defined by the (·, ·)Q-orthogonal decompositions

H = Hmicro ⊕Hres, Hmicro = Hmacro ⊕Hrel,

are closed as well. In the following, we write PX for the orthogonal projection onto a closed
subspace X ⊂ H.
We recall the following result, which is a special case of [BNS20, Lemma 2.10]:
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Lemma 2.5. The map

E : R3×3
skew → Hmacro, E(K) := PHmacro

(
sym

(
(Kx̄)⊗ e1

))
is a linear isomorphism.

We are now in position to define the effective coefficients as follows:

Definition 2.6 (Effective coefficients).

Q̄ : R3×3
skew → R, Q̄(K) := ‖E(K)‖2Q,

Kpre : R3×3
dev → R3×3

skew, Kpre(U) := (E−1 ◦ PHmacro)
(

1
21S0U

)
,

Eres : R3×3
dev → R, Eres(U) := ‖PHres

(
1
21S0U

)
‖2Q.

The definition is motivated by the following relaxation result:

Lemma 2.7 (Relaxation formula). Let K ∈ R3×3
skew and U ∈ R3×3

dev . Then

inf
χ∈Hrel

 
S
Q
(
x̄, sym

(
(Kx̄)⊗ e1

)
+ r̄

21S0U + χ
)

= Q̄(K + r̄Kpre(U)) + r̄2Eres(U).

Thanks to the assumptions on W and S we obtain the following properties:

Lemma 2.8. The maps Q̄ and Eres are quadratic, and Kpre is linear. Moreover, there exists
C > 0 only depending on W and S such that

1

C
|K|2 ≤ Q̄(K) ≤ C|K|2,

0 ≤ Eres(U) ≤ C|U |2,
|Kpre(U)| ≤ C|U |.

We omit the proof, since it is similar to [BGN+22, Lemma 2.6].

Next, we introduce a scheme to evaluate these quantities. The scheme invokes 3 + 5 correctors
that only depend on Q, S and S0, and are defined with help of linear elliptic systems on the
domain S. We start by representing the effective coefficients in coordinates. To that end, we
consider the following orthonormal basis of R3×3

dev ,

U1 :=
√

2 sym(e3 ⊗ e2), U2 :=
√

2 sym(e2 ⊗ e1), U3 :=
√

2 sym(e3 ⊗ e1),

U4 :=

√
2

3
(e1 ⊗ e1 −

1

2
e2 ⊗ e2 −

1

2
e3 ⊗ e3), U5 :=

1√
2

(e2 ⊗ e2 − e3 ⊗ e3),

and the following orthonormal basis of R3×3
skew,

K1 =
1√
2

(
e2 ⊗ e3 − e3 ⊗ e2

)
, K2 =

1√
2

(
e1 ⊗ e2 − e2 ⊗ e1

)
, K3 =

1√
2

(
e1 ⊗ e3 − e3 ⊗ e1

)
.

Lemma 2.9 (Coordinatewise representation).
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(a) For i = 1, 2, 3 consider

Ψi := PHmacro

(
sym

(
Kix̄⊗ e1

))
and define Q ∈ R3×3

sym and U ∈ R3×5 as

Qij :=
(
Ψi,Ψj

)
Q
, for i, j = 1, 2, 3,

Uij :=
(
1S0Uj ,Ψi

)
Q

for i = 1, 2, 3, j = 1, . . . , 5.

Then for all K ∈ R3×3
skew and U ∈ R3×3

dev we have

Q̄(K) = k ·Qk, k := (K ·K1, . . . ,K ·K3)>, (12)

Kpre(U) =

3∑
i=1

(Q−1Uu)iKi, u :=
1

2

(
U · U1, . . . , U · U5

)>
. (13)

(b) For j = 1, . . . , 5 consider

Φj := 1S0Uj − PHrel

(
1S0Uj

)
−

3∑
i=1

(Q−1U)ijΨi,

and define Eres ∈ R5×5
sym as

Eres,ij :=
(
Φi,Φj

)
Q
, for i, j = 1, . . . , 5.

Then for all U ∈ R3×3
dev we have

Eres(U) = u · Eresu, , u :=
1

2

(
U · U1, . . . , U · U5

)>
. (14)

The orthogonal projections onto Hmacro and Hrel appearing in the definition of Ψi and Φj lead
to corrector problems that take the form of quadratic minimization problems whose solutions
are characterized by linear elliptic systems:

Lemma 2.10 (Corrector equations). For i = 1, 2, 3 and j = 1, . . . , 5, let (ai, ϕi) and (aUj , ϕUj )
denote the unique minimizer in R×H1

av(S;R3) of the functional

(a, ϕ) 7→
 
S
Q
(
x̄, F + (ae1, ∇̄ϕ)

)
dx̄, (15)

with F = sym(Kix̄⊗ e1) and F = 1S0Uj, respectively. Then

Ψi = sym
(
Kix̄⊗ e1 + (aie1, ∇̄ϕi)

)
,

Φj = 1S0Uj + sym
(
aUj , ∇̄ϕUj

)
−

3∑
i=1

(
Q−1U

)
ij

Ψi.

2.4 The special case of an isotropic material with circular cross-section

We consider the special case of a homogeneous, isotropic material, i.e,

Q(G) =
λ

2
(traceG)2 + µ| symG|2. (16)

In that case the formulas for Q̄ and Kpre become more explicit. They further simplify if we
consider bi-rods with a circular cross-section:
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Lemma 2.11 (The isotropic case and the case with a circular cross-section). Let αS ∈ H1(S)
denote the unique minimizer to

 
S

∣∣∣ (∂2αS
∂3αS

)
+

1√
2

(
x3

−x2

) ∣∣∣2 dx̄ subject to

ˆ
S
αS dx̄ =

ˆ
S
∂2αS dx̄ =

ˆ
S
∂3αS dx̄ = 0, (17)

and set

cS :=

 
S

∣∣∣ (∂2αS
∂3αS

)
+

1√
2

(
x3

−x2

) ∣∣∣2 dx̄.
Assume (16). Then:

(a) We have Q = diag(q1, q2, q3) where

q1 :=
µ

2
cS , q2 :=

µ(3λ+ 2µ)

λ+ µ

 
S

x2
2

4
dx̄, q3 :=

µ(3λ+ 2µ)

λ+ µ

 
S

x2
3

4
dx̄,

and

Kpre(U) =
(
u2

( √
2

|S|cS

ˆ
S0

∂2αS+ x3√
2
dx̄
)

+ u3

( √
2

|S|cS

ˆ
S0

∂3αS− x2√
2
dx̄
))
K1

+ u4

( 2√
3

´
S0
x2 dx̄´

S x
2
2 dx̄

)
K2 + u4

( 2√
3

´
S0
x3 dx̄´

S x
2
3 dx̄

)
K3,

where u1, . . . , u5 are defined as in (13).

(b) In the case of a circular cross-section, S = B(0;π−
1
2 ), we have αS = 0, cS = 1

4π , and

q1 =
1

8π
µ, q2 = q3 =

1

16π

µ(3λ+ 2µ)

λ+ µ
.

If in addition S0 = S ∩ {x3 ≥ 0}, then

Kpre(U) =
8u2

3
√
π
K1 +

16u4

3
√

3π
K3,

where u1, . . . , u5 are defined as in (13).

3 Simulation and model exploration

For our numerical experiments, we use a discrete gradient flow approach based on the work
in [BR20] in order to numerically approximate critical points of the energy functional E . For
convenience we use the notation y′, y′′, · · · to denote derivatives with regard to x1. Furthermore,
in this section we use h to denote the discretization scale (and not the thickness of the three-
dimensional domain as in the previous section).
We first bring the energy functional E into a form that is similar to the one considered in [BR20].
Note that for a framed curve (y,R) the columns of the rotational frame take the form

R =
(
y′, b, y′ ∧ b), where b := Re2.

We may introduce two bending components and a twist rate of the curve via

κb := y′′ · b, κd := y′′ · (y′ ∧ b) and β := b′ · (y′ ∧ b),

10



and deduce that

K = R>∂1R =

 0 −κb −κd
κb 0 β
κd −β 0

 =
√

2
(
βK1 + κbK2 + κdK3

)
,

where K1,K2,K3 denote the orthonormal basis of R3×3
skew introduced above.

Motivated by this we introduce the functional

Ē(y, b, n̂) =
1

2

ˆ
ω
Q̄(K + r̄Kpre(U(n̂))) + r̄2Eres(U(n̂)) dx1

+
1

2
κ2

ˆ
ω
|(Rn̂)′|2 dx1,

where

U(n̂) :=
1

3
I− n̂⊗ n̂, n̂ := R>n, R := (y′, b, y′ ∧ b), (18)

and note that we have E(y,R, n) = 2Ē(y, b, n̂) provided y,R, b, n and n̂ are related by (18).
We note that with help of n̂ (which is just the LCE-director n expressed in local coordinates),
the terms Kpre(U(n̂)) and Eres(U(n̂)) become independent of y and R—a property that will
simplify the form of the gradient of Ē .
In the isotropic case, which we shall consider from now on, the expression further simplifies by
appealing to Lemma 2.11, and we obtain

Ē(y, b, n̂) =
1

2

ˆ
ω
q̄1|β − r̄k1(U(n̂))|2 + q̄2|κb − r̄k2(U(n̂))|2

+ q̄3|κd − r̄k3(U(n̂))|2 + r̄2Eres(U(n̂)) dx1

+
1

2
κ2

ˆ
ω
|(Rn̂)′|2 dx1,

where for i = 1, 2, 3, the linear maps ki : R3×3
dev → R are given by ki(U) = 1√

2
Kpre(U) ·Ki. By

appealing to binomial formulas and the relations |y′′|2 = |κb|2 + |κd|2 and |b′|2 = |κb|2 + |β|2,
we eventually get

Ē(y, b, n̂) =
1

2

ˆ
ω
q̄3|y′′|2 + q̄1|b′|2 + κ2|(Rn̂)′|2 dx1

+G(y, b) + Ēres(n̂) +N(y, b, n̂)

(19)

with the functionals

G(y, b) =
1

2
(q̄2 − q̄1 − q̄3)

ˆ
ω
|y′′ · b|2 dx1,

Ēres(n̂) =
1

2
r̄2

ˆ
ω
Eres(U(n̂)) dx1 and

N(y, b, n̂) =

ˆ
ω

1

2
r̄2

3∑
i=1

q̄i|ki(U(n̂))|2 − r̄q̄1(b′ · (y′ ∧ b))k1(U(n̂))

− r̄q̄2(y′′ · b)k2(U(n̂))− r̄q̄3(y′′ · (y′ ∧ b))k3(U(n̂)) dx1.

The structure of the energy functional (19) is similar to the bending-twisting energy that was
used in [BR20] with the difference that we now have additional terms which depend on the
LCE-director n̂.
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3.1 Numerical minimization by a discrete gradient flow

Next, we introduce a suitable discretisation. For the approximation of the deformation y, our
approach uses piecewise cubic, C1-conforming elements, whereas the frame director b and the
LCE-director n̂ are approximated via piecewise linear, continuous elements. More specifically,
following [Bar20] we consider a partitioning of ω̄ = [0, L] defined by sets of nodes Nh and
elements Th, and denote by

S1,0(Th) ={bh ∈ C0(ω̄)} : bh|T ∈ P1(T ) for all T ∈ Th},
S3,1(Th) ={yh ∈ C1(ω̄)} : yh|T ∈ P3(T ) for all T ∈ Th},

the associated spaces of piecewise linear and continuous (resp. piecewise cubic and C1-conforming)
finite elements. Moreover, we introduce the discrete space

V h
LCE = S3,1(Th)3 × S1,0(Th)3 × S1,0(Th)3.

On this vector space we define a discrete energy functional Ēh,ε, which contains the same terms
as Ē—in some cases with appropriate quadrature—as well as a penalty term to approximately
incorporate the contraint y′ · b = 0: For (yh, bh, n̂h) ∈ V h

LCE let Rh = (y′h, bh, y
′
h ∧ bh) and define

Ēh,ε(yh, bh, n̂h) =
1

2

ˆ
ω
q̄3|y′′h|2 + q̄1|b′h|2 + κ2|(Rhn̂h)′|2 dx1

+ Ph,ε(yh, bh) +Gh(yh, bh) + Ēres,h(n̂h) +Nh(yh, bh, n̂h),

(20)

where the aforementioned penalty term is defined as

Ph,ε(yh, bh) =
1

2ε

ˆ
ω
I1,0
h [(y′h · bh)2] dx1.

Above, I1,0
h denotes the nodal interpolation operator associated with S1,0(Th) and ε > 0 a

parameter to adjust the penalization. The functionals Gh, Ēres,h and Nh are discrete versions
of G, Ēres and N respectively, that contain nodal interpolation operators on the related discrete
spaces to simplify the computation of the integrals.
The energy (20) is minimized in the discretized admissible set

Ah := {(yh, bh, n̂h) ∈ V h
LCE : LBC(yh, bh, n̂h) = `BC,

|y′h(z)| = |bh(z)| = |n̂(z)| = 1 f.a. z ∈ Nh},

where Nh denotes the set of vertices related to Th. The expression LBC(yh, bh, n̂h) = `BC implies
that (yh, bh, n̂h) fulfil the boundary conditions specified by `BC. Different conditions such as
fixed, clamped, free and periodic are possible. The boundary conditions for the individual
variables are denoted by LBC,y, LBC,b and LBC,n̂.
We employ a discrete gradient flow scheme to approximate minimizers of the discretized energy
and incorporate linearized versions of the unit-length and boundary conditions by restrict-
ing each step of the iteration to a corresponding tangent space of the admissible set. For
(yh, bh, n̂h) ∈ Ah, these tangent spaces are given by

Fh,y(yh) = {δyh ∈ S3,1(Th)3 : LBC,y(δyh) = 0, y′h(z) · δy′h(z) = 0 f.a. z ∈ Nh},
Fh,b(bh) = {δbh ∈ S1,0(Th)3 : LBC,b(δbh) = 0, bh(z) · δbh(z) = 0 f.a. z ∈ Nh}

as well as

Fh,n̂(n̂h) = {δn̂h ∈ S1,0(Th)3 : LBC,n̂(δn̂h) = 0, n̂h(z) · δn̂h(z) = 0 f.a. z ∈ Nh}.
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Note that the functions in these tangent spaces are required to satisfy homogeneous versions of
the given boundary conditions.
The variations of the energy with respect to the different variables are approximated semi-
implicitly, where the convex quadratic terms are mostly handled implicitly while we rely on
an explicit treatment of the nonlinear and non-convex parts. We let (·, ·)Y , (·, ·)X and (·, ·)Z
denote bilinear forms on the spaces S3,1(Th)3, S1,0(Th)3 and S1,0(Th)3 respectively and use the
backwards difference quotient dt.

Algorithm 3.1. Set initial values (y0
h, b

0
h, n̂

0
h) ∈ Ah, a timestep size τ , a stopping criterion

εstop and initialize k = 1.

(1) Compute ykh = yk−1
h + τdty

k
h with dty

k
h ∈ Fh,y(y

k−1
h ) such that

(
dty

k
h, δyh

)
Y

+ q̄3

(
[ykh]′′, δy′′h

)
L2(ω)

+
∂Ph,ε(y

k
h, b

k−1
h )

∂ykh
[δyh]

= − κ2

(
(
∂Rk−1

h

∂yk−1
h

[δyh])n̂k−1
h )′, (Rk−1

h n̂k−1
h )′

)
L2(ω)

−
∂Gh(yk−1

h , bk−1
h )

∂yk−1
h

[δyh]−
∂Nh(yk−1

h , bk−1
h , n̂k−1

h )

∂yk−1
h

[δyh]

for all δyh ∈ Fh,y(yk−1
h ).

(2) Compute bkh = bk−1
h + τdtb

k
h with dtb

k
h ∈ Fh,b(b

k−1
h ) such that(

dtb
k
h, δbh

)
X

+ q̄1

(
[bkh]′, δb′h

)
L2(ω)

+
∂Ph,ε(y

k
h, b

k
h)

∂bkh
[δbh]

= − κ2

(
(
∂Rk−1

h

∂bk−1
h

[δbh])n̂k−1
h )′, (Rk−1

h n̂k−1
h )′

)
L2(ω)

−
∂Gh(ykh, b

k−1
h )

∂bk−1
h

[δbh]−
∂Nh(ykh, b

k−1
h , n̂k−1

h )

∂bk−1
h

[δbh]

for all δbh ∈ Fh,b(bk−1
h ).

(3) Compute n̂kh = n̂k−1
h + τdtn̂

k
h with dtn̂

k
h ∈ Fh,n̂(n̂k−1

h ) such that(
dtn̂

k
h, δn̂h

)
Z

+ κ2
(

(Rkhn̂
k
h)′, (Rkhδn̂h)′

)
L2(ω)

= −
∂Ēres,h(n̂k−1

h )

∂n̂k−1
h

[δn̂h]−
∂Nh(ykh, b

k
h, n̂

k−1
h )

∂n̂k−1
h

[δn̂h]

for all δn̂h ∈ Fh,n̂(n̂k−1
h ).

(4) Stop the iteration if ‖dtykh‖Y + ‖dtbkh‖X + ‖dtn̂kh‖Z ≤ εstop. Otherwise set k 7→ k + 1 and
continue with (1).

3.2 Numerical experiments

The experiments we present serve the purpose of investigating properties of the LCE-model and
the proposed algorithm. Stability and convergence can be investigated following the scheme
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presented in [BR20], where these results are available. Additionally, our experiments indicate
stability, at least for the parameters specified below.
We simulate an elastic rod made of a nearly incompressible isotropic material by using the
Lamé parameters λ = 1000 and µ = 1 and assume it to have a circular cross-section where the
LCE-material fills one semi-circle, i.e.

S = B(0;π−
1
2 ), S0 = S ∩ {x̄ = (x2, x3) : x3 > 0}.

With these specifications and Lemma 2.11, we are able to infer the representations of Q̄ and
Kpre. For Eres, the Lemmas 2.9 and 2.10 imply that we need to solve several quadratic mini-
mization problems to assemble the matrix Eres. The corresponding linear elliptic systems are
approximately solved using a standard finite-element-method and lead to

Eres = 10−2


0.95 0 0 0 0

0 10.77 −0.01 0 0
0 −0.01 0.18 0 0
0 0 0 34.94 0
0 0 0 0 4.9

 .

This matrix characterizes Eres with regard to the basis {U1, . . . , U5} of R3×3
dev which is used in

Lemma 2.9.
Additionally, we choose the spacial step size h = 1/200 and the constant timestep size τ = h/2 =
1/400 as well as the model parameter ε = 1/200. For yh, ȳh ∈ S3,1(Th)3 and bh, b̄h ∈ S1,0(Th)3,
the bilinear forms we use are given by

(yh, ȳh)Y = (yh, ȳh)L2(ω) + h(y′′h, ȳ
′′
h)L2(ω),

(bh, b̄h)X = (bh, b̄h)Z = (bh, b̄h)L2(ω) + h(b′h, b̄
′
h)L2(ω).

We next specify boundary conditions and external forces which we use in our experiments.

Example 3.1 (Bending via magnetic field). Our first experiment focuses on a straight line from
the clamped end (0, 0, 0) to the free end (2, 0, 0). In the beginning y′ = (1, 0, 0), b = (0, 1, 0),
d = (0, 0, 1) and n = n̂ = (0, 1, 0) are constant. For a visualisation of the starting configurations,
see the first graphic in Figure 1.
To simulate a homogeneous magnetic field that forces the LCE-director n to align with a vector
f ∈ R3, we add the forcing term − (f,Rn̂)L2(ω) to the energy. The computations of y, b and n̂
are modified accordingly. We split the (quasi-) time interval [0, T ] with T = 60 into the smaller
intervals Im = (10(m− 1), 10m] for m = 1, . . . , 6. Since we are interested in the LCE-director’s
influence on bending behaviour, we choose the external field to change periodically between two
constant states given by fodd = (0, 1, 0) and feven = (1, 0, 0). For t ∈ (0, T ) and x1 ∈ ω we thus
define

f(t, x1) :=

{
fodd if t ∈ Im,m is odd,

feven if t ∈ Im,m is even.

The remaining parameters we use are r̄ = κ = 1.
In the Figures 2 and 3 we can see the development of energy and deformation within (0, T ).
For both values of f we observe a different deformation the rod seems to converge to, basically
enabling us to switch between two states. However, the deformations and energy at the end of
the different time intervals corresponding to the same value of f are slightly different. This can
be explained by the fact, that these intervals are too short for a full relaxation and convergence
to the minimizer. Indeed we observe smaller differences when using longer time intervals.

14



Figure 1: Deformation of the rod in Example 3.1. From left to right we have t = 0, t = 30
and t = 40. The different coloured arrows represent the vectors y′, b and d = y′ ∧ b, that form
the frame R, as well as the LCE-director n = Rn̂. The two rightmost graphics show, that the
LCE-director n tends to align with the vectors fodd = (0, 1, 0) or feven = (1, 0, 0) at the end of
the intervals I3 and I4 respectively.

Figure 2: Energy development over the (quasi-) time interval in Example 3.1. The different
curves represent the energy term Ēh,ε, the bending energy, the torsion energy, the Frank-Oseen
energy, the penalty term Ph,ε and the contribution of Ēres,h. The energy is non-decreasing in
some parts. This is due to the fact that the energy functional Ēh,ε does not include the forcing
term − (f,Rn̂)L2(ω), which was added to simulate a magnetic field, and it takes some time until
n and f are realigned after f changes.

15



Figure 3: Deformation of the rod from Example 3.1. The top row shows the configurations at
t = 10 and t = 20, while the bottom row shows t = 30 and t = 40. The colouring of the tube
represents its curvature.

Example 3.2 (Buckling). In our second experiment, we aim to investigate the buckling be-
haviour of an LCE-rod. Again, we have a straight line from (0, 0, 0) to (2, 0, 0). This time
however, both ends are clamped and the rod is twisted twice. The initial LCE-director is
n = Rn̂ = b. This configuration can be seen in the first graphic of Figure 4.
In order to induce buckling behaviour, we modify the boundary conditions to move the end at
(2, 0, 0) towards (0, 0, 0) with a velocity of (−1, 0, 0). At t = 1, when the end on the right-hand
side is located at (1, 0, 0), we stop this movement and let the rod relax until T = 50. Since we
are interested in the influence of the parameter r̄, we fix κ = 0.4 and carry out the experiment
for r = 1, . . . , 10.
Figures 4 and 5 show the deformation at the end of the time frame for various values of r̄.
We observe a significant difference between the choice r̄ = 1 and the other cases. In order to
understand the dependence, we take a look at the energy plots which can be seen in Figure 6.
The cases r̄ = 1 and r̄ = 2 have a steep decline of mostly the torsion energy at some point
after the curve initially flattens. In the other cases, this decline is not present within the given
time frame. (Indeed, even when choosing a significantly longer time frame, the decline does not
happen for r̄ ≥ 3.)
The reason for the aforementioned decline is shown in Figure 7. The rod reaches a more
beneficial energetic state by effectively folding over. In doing so, it intersects itself, which is
possible due to the lack of a self-avoidance term in our model, but not concerning when we are
just interested in minimizing the energy. In reality, the rod would likely be stopped by itself and
form a loop, but the behavioural differences based on the parameter r̄ would still be significant.
In these two examples, we have seen that the competing contributions of the different energy
terms in the LCE rod model result in non-trivial deformations. Additionally, the LCE material
has a significant impact on the configuration that minimizes the energy. On the one hand, we
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Figure 4: Buckling behaviour of the rod from Example 3.2. The top row shows the starting
configuration while the bottom row depicts the relaxed state at time t = 50 with r̄ = 1 (left)
and r̄ = 3 (right). As in Figure 1, the vectors y′, b and d = y′ ∧ b, that form the frame R, as
well as the LCE-director n = Rn̂ are shown.

are able to change the bending behaviour of a rod by directly influencing the LCE-director via
a simulated magnetic field. On the other hand, we see a change in buckling behaviour when the
model parameter r̄ is modified. In practice, this could be realized by altering the surrounding
temperature.
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Figure 5: Buckling of the LCE-rod in Experiment 3.2 with r̄ = 1, 3, 5 (top to bottom). The line
of view is parallel to the x3-axis and the colouring of the tube represents its curvature.
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Figure 6: Energy development in Example 3.2. The top row shows the experiments with r̄ = 1
and r̄ = 2, while the bottom row shows r̄ = 3 and r̄ = 5. Again we see the total energy Ēh,ε,
the bending energy, the torsion energy, the Frank-Oseen energy, the penalty term Ph,ε and the
contribution of Ēres,h.
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Figure 7: Buckling behaviour of the LCE-rod from Example 3.2. We have r̄ = 1 and see
the configurations at t = 22, 24, 26 (top to bottom). The rod intersects itself to reach a more
beneficial energetic state.
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4 Proofs

4.1 Compactness – Proof of Theorem 2.1 (a) and Proposition 2.2 (a)

In this step we prove (7), (8). Furthermore, we show that there exists Rh : Ω → SO(3) and a
corrector χ ∈ L2(ω;Hrel) such that (for a subsequence) we have

R>h Lh(nh)−
1
2∇hyh − I
h

⇀ sym

(
(R>∂1Rx̄)⊗ e1

)
+ r̄

2χΩ0R
>(1

3I − n⊗ n)R+ χ. (21)

Indeed, by the argument of [BGN+22, Lemma 4.1] we see that lim sup
h→0

Eh(yh, nh) <∞ implies

lim sup
h→0

1

h2

ˆ
Ω

dist2(∇hyh, SO(3)) <∞, (22)

lim sup
h→0

ˆ
Ω
|∇hyh|q + | det(∇hyh)|−

q
2 <∞, (23)

lim sup
h→0

ˆ
Ω0

|∇hnh(∇hyh)−1|2|det(∇hyh)| <∞, (24)

lim sup
h→0

ˆ
Ω0

|∇hnh|p <∞, where p =
2q

q + 4
, (25)

and we find h̄ > 0 (depending on the sequence) such that

det(∇hyh) > 0 a.e. in Ω for all 0 < h ≤ h̄. (26)

From now on we assume that 0 < h ≤ h̄.
Thanks to (25) we find n ∈ H1(ω;S2) such that (up to a subsequence) we have nh ⇀ n weakly
in W 1,p(Ω0) and pointwise a.e. in Ω0. Since (nh) is bounded in L∞, (8) follows. Furthermore,
by appealing to [BNS20, Proposition 5.1 (a)] we conclude that there exists a subsequence (not
relabeled), and a rod configuration (y,R) such that (7) holds and

Eh(yh) ⇀ E := sym

(
(R>∂1Rx̄)⊗ e1

)
+ χ weakly in L2, (27)

for a corrector χ ∈ L2(ω; Hrel). To prove (21) we proceed as follows: In view of (26) and thanks
to the polar decomposition we find Rh : Ω→ SO(3) such that

∇hyh(x) = Rh(x)
√
∇hyh(x)>∇hyh(x).

We set Gh :=
R>

h∇hy−I
h and note that (27) implies Gh ⇀ E weakly in L2 and Rh → R strongly

in L2. Next, we rewrite the elastic part of the strain as follows,(
I+χΩ0(Lh(nh)−

1
2 − I)

)
∇hyh = Rh(I+hB̃h)(I+hGh), B̃h := χΩ0R

>
h

(Lh(nh)−
1
2 − I

h

)
Rh.

In view of the construction of L
− 1

2
h , the boundedness of nh, and the pointwise convergence of

nh and Rh a.e. in Ω0, we deduce that (B̃h) is bounded in L∞(Ω), and

B̃h → r̄
2χΩ0R

>(1
3I − n⊗ n)R in L2(Ω).

In combination with Gh ⇀ E, (21) follows.
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4.2 Lower bound – Proof of Theorem 2.1 (b)

By passing to a subsequence (not relabeled) and by appealing to compactness in form of The-
orem 2.1 (a), we may assume without loss of generality that (21) holds, and

lim inf
h→0

Eh(yh, nh) = lim
h→0
Eh(yh, nh) <∞.

From (21) we infer with the argument of [BGN+22, Proof of Theorem 2.3(b)] that

lim inf
h→0

1

h2|S|

(ˆ
Ω\Ω0

W
(
∇hyh(x)

)
dx+

ˆ
Ω0

W
(
Lh(nh(x))−

1
2∇hyh(x)

)
dx
)

≥ 1

|S|

ˆ
Ω
Q
(

sym
(

(R>∂1R x̄)⊗ e1

)
+ r̄

2χΩ0R
>(1

3I − n⊗ n)R+ χ
)
dx

≥
ˆ
ω

min
χ∈Hrel

 
S
Q
(

sym
(

(R>∂1R x̄)⊗ e1

)
+ r̄

2χS0R
>(1

3I − n⊗ n)R+ χ
)
dx̄ dx1.

We combine this with Lemma 2.7 to deduce

lim inf
h→0

1

h2|S|

(ˆ
Ω\Ω0

W
(
∇hyh(x)

)
dx+

ˆ
Ω0

W
(
Lh(nh(x))−

1
2∇hyh(x)

)
dx
)

≥
ˆ
ω
Q̄
(
R>∂1R+ r̄Kpre

(
1
3I −R

>n⊗R>n
))

+ r̄2Eres

(
1
3I −R

>n⊗R>n
)
dx1.

(28)

It remains to treat the Frank-Oseen energy. By (7) and (8) we have (∇hyh, nh)→ (R,n) in L2.
Furthermore, by the a propri bound (25) we have (up to a subsequence and for some p ∈ (1, 2))
∇hnh → (∂1n, d) in Lp where d ∈ Lp(Ω0;R3×2). As in the proof of [BGN+22, Theorem 2.3

(a)] we conclude that ∇hnh∇hy−1
h (det∇hyh)

1
2 ⇀ (∂1n, d)R> weakly in Lp, and thus, by lower

semicontinuity, we get

lim inf
h→0

1

|S0|

ˆ
Ω0

|∇hnh∇hy−1
h |

2 det∇hyh dx ≥
ˆ
ω

 
S0

|(∂1n, d)R>|2 dx̄ dx1

≥
ˆ
ω
|∂1n|2 dx1,

where for the last step we used |(∂1n, d)R>|2 = |(∂1n, d)|2 ≥ |∂1n|2. In combination with (28)
the claimed lower bound follows.

4.3 Upper bound – Proofs of Theorem 2.1 (c) and Proposition 2.2 (b)

The statements of Theorem 2.1 (c) and Proposition 2.2 (b) directly follow from the following
stronger statement (which we shall also use in the proof of Proposition 2.3): For all (y,R, n) ∈ A
and β ∈ [0, 1) there exists a sequence (yh) ⊂ C∞(Ω̄;R3) and nh ∈ H1(Ω0;S2) such that

yh(0, x̄) = y(0) + hR(0)x̄, (29)

and
lim sup
h→0

(∣∣∣E(y,R, n)− Eh(yh, nh)
∣∣∣+ ‖yh − y‖L2 + ‖nh − n‖H1

+ h−β‖∇hyh −R‖L∞ + h−β
∥∥∥ (∇hyh)>nh

|(∇hyh)>nh|
−R>n

∥∥∥
L∞

= 0.
(30)

For the proof we proceed in two steps.

Step 1. (Approximation argument).
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We first argue that for each k ∈ N we can choose (yk, Rk, nk) ∈ A such that yk, Rk ∈ C∞(ω),

yk(0) = y(0), Rk(0) = R(0), (Rk)>nk = R>n, (31)

and∣∣∣E(y,R, n)−E(yk, Rk, nk)
∣∣∣+‖y−yk‖H2 +‖R−Rk‖L∞ +‖∂1R−∂1R

k‖L2 +‖n−nk‖H1 <
1

k
. (32)

Indeed, in view of the approximation result [Neu12, Lemma 2.3] for all δ > 0 there exists
a smooth framed curve (yk, Rk) satisfying the one-sided boundary condition (31) such that
‖yk − y‖H2 + ‖Rk −R‖L∞ + ‖∂1R

k − ∂1R‖L2 < δ. Set nk := RkR>n. Then (31) is satisfied and
‖∂1n

k − ∂1n‖L2 ≤ δ(‖∂1n‖L2 + 1). Since E is continuous, (32) follows by choosing δ sufficiently
small.
Set Kk := (Rk)>∂1R

k and Uk = 1
3I−(Rk)>nk⊗(Rk)>nk. By Lemma 2.7 and an approximation

argument we find ak ∈ C∞c (ω) and ϕk ∈ C∞c (ω;C∞(S̄;R3)) such that∣∣∣∣∣E(yk, Rk, nk)− 1

|S|

ˆ
Ω
Q
(
x̄, sym

(
Kkx̄⊗ e1 + r̄

21S0U
k + (ake1, ∇̄ϕk)

))
dx

− κ2

ˆ
ω
|∂1n

k|2 dx1

∣∣∣∣∣ < 1

k
.

(33)

Step 2. (Definition of the recovery sequence).
Let yk, Rk, ak, ϕk be as in Step 1, and define for h > 0 the smooth 3d-deformation

ykh(x) := yk(x1) + hRk(x1)x̄+ h

ˆ x1

0
ak(s)Rk(s)e1 ds+ h2Rk(x1)ϕk(x).

A direct calculation yields

R>k ∇hykh − I
h

=Kkx̄⊗ e1 + (ake1, ∇̄ϕk) + hOkh,

R>k

(
I + χΩ0(Lh(nk)−

1
2 − I)

)
∇hykh − I

h
=Kkx̄⊗ e1 + (ake1, ∇̄ϕk)

+ r̄
2χΩ0(1

3I − (Rk)>nk ⊗ (Rk)>nk + okh,

(34)

with remainders Okh, o
k
h satisfying lim suph→0 ‖Okh‖L∞ <∞ and limh→0 ‖okh‖L∞ = 0. Hence, by

frame-indifference and an expansion at identity we get

lim
h→0

( 1

h2|S|

ˆ
Ω\Ω0

W
(
x̄,∇hykh

)
dx+

1

h2|S|

ˆ
Ω0

W
(
x̄, Lh(nk)−

1
2∇hykh(x)

)
dx
)

= lim
h→0

( 1

h2|S|

ˆ
Ω
W
(
x̄,
(
I + χΩ0(Lh(nk)−

1
2 − I)

)
∇hykh

)
dx

=
1

|S|

ˆ
Ω
Q
(
x̄, sym

(
Kkx̄⊗ e1 + r̄

21S0U
k + (ake1, ∇̄ϕk)

))
dx,

and

lim
h→0

κ2

|S0|

ˆ
Ω0

∣∣∇hnk(∇hykh)−1
∣∣2 det(∇hykh) dx = κ2

ˆ
ω
|∂1n

k|2 dx1.

Together with (32) and (33) we thus conclude that for any β ∈ [0, 1),

lim sup
k→∞

lim sup
h→0

(∣∣∣E(y,R, n)− Eh(ykh, n
k)
∣∣∣+ ‖ykh − y‖L2 + ‖nk − n‖H1

+ h−β‖∇hykh −R‖L∞ + h−β
∥∥∥ (∇hy

k
h)>nk

|(∇hy
k
h)>nk| −R

>n
∥∥∥
L∞

= 0

We thus obtain the sought for sequence (yh, nh) by extracting a diagonal sequence.
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4.4 Anchoring – Proof of Proposition 2.3

Step 1. (Proof of (a)).
Since Gh is non-negative, the conclusion of Theorem 2.1 (a) on compactness remains valid for
the modified functional Eh + Gh.
Next we prove the lower-bound: Consider a sequence (yh, nh) ⊂ H1(Ω;R3) × H1(Ω0; S2) and
(y,R, n) ∈ A such that (yh,∇hyh, nh) → (y,R, n) stronlgy in L2. In view of Theorem 2.1 (b),
in order to conclude the claimed lower bound lim inf

h→0
Eh(yh, nh) + Gh(yh, nh; n̂bc) ≥ E(y,R, n) +

Gweak(y,R, n; n̂bc), we only need to show that

lim inf
h→0

Gh(yh, nh; n̂bc) ≥ Gweak(y,R, n; n̂bc). (35)

W.l.o.g. we may assume that lim sup
h→0

Gh(yh, nh; n̂bc) < ∞. Hence, fh :=
∣∣∣ ∇hy

>
h nh

|∇hy
>
h nh|

− n̂bc
∣∣∣
a

√
ρ

defines a bounded sequence in L2. Since (∇hyh, nh)→ (R,n) in L2 and thus pointwise a.e. (up
to extraction of a subsequence), we conclude that fh ⇀

∣∣R>n− n̂bc∣∣a√ρ weakly in L2. Thus,
(35) follows by lower semicontinuity of the convex integral functional f 7→

ffl
Ω0
|f |2aρ dx and the

definition of Gweak.
We finally prove the upper-bound. To that end let (y,R, n) ∈ A and denote by (yh, nh) ⊂
H1(Ω;R3) × H1(Ω0; S2) the recovery sequence constructed in Section 4.3 satisfying (30) for
some β ∈ (0, 1). Moreover, we note that there exists a constant C > 0 (independent of h) such
that ∣∣∣Gh(yh, nh; n̂bc)− Gweak(y,R, n; n̂bc)

∣∣∣
=
∣∣∣ ˆ

Ω0

( ∣∣∣∣ ∇hy>h nh|∇hy>h nh|
− n̂bc

∣∣∣∣2
a

− |RTn− n̂bc|2a
)
ρ dx

∣∣∣
≤

(ˆ
Ω0

( ∣∣∣∣ ∇hy>h nh|∇hy>h nh|
−RTn

∣∣∣∣2
a

)
ρ dx

) 1
2
(ˆ

Ω0

( ∣∣∣∣ ∇hy>h nh|∇hy>h nh|
+RTn− 2n̂bc

∣∣∣∣2
a

)
ρ dx

) 1
2

≤C
∥∥∥ ∇hy

>
h nh

|∇hy
>
h nh|

− n̂bc
∥∥∥
L∞(Ω0)

.

(36)

Hence, (30) implies that limh→0 Eh(yh, nh) + Gh(yh, nh; n̂bc) = E(y,R, n) + Gweak(y,R, n; n̂bc) as
claimed.

Step 2. (Proof of (b)).
Since Gh is non-negative, the conclusion of Theorem 2.1 (a) on compactness remains valid for
the modified functional Eh + h−βGh.
Next we prove the lower bound. To that end consider a sequence (yh, nh) ⊂ H1(Ω;R3) ×
H1(Ω0; S2) and suppose that (yh,∇hyh, nh) → (y,R, n) strongly in L2 for some (y,R, n) ∈ A.
W.lo.g. we may assume that lim sup

h→0
Eh(yh, nh)+h−βGh(yh, nh; n̂bc) <∞. Note that this implies

that Gh(yh, nh; n̂bc)→ 0. Combined with (35) we infer that

0 = Gweak(y,R, n; n̂bc) =

ˆ
ω
|R>n− n̂bc|2aρ̄ dx1,

and thus Gstrong(y,R, n; n̂bc) = 0. Hence, Theorem 2.1 (b) yields the claimed lower bound

lim inf
h→0

Eh(yh, nh) + h−βGh(yh, nh; n̂bc) ≥ E(y,R, n) = E(y,R, n) + Gstrong(y,R, n; n̂bc).
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We remark that the constructed recovery sequence additionally satisfies the clamped one-sided
boundary condition (29).
For the upper bound let (y,R, n) ∈ A. It suffices to construct the recovery sequence in the case
Gstrong(y,R, n; n̂bc) = 0. To that end denote by (yh, nh) ⊂ H1(Ω;R3)×H1(Ω0;S2) the recovery
sequence of Section 4.3 satisfying (30). Then

|h−βGh(yh, nh; n̂bc)| = h−β|Gh(yh, nh; n̂bc)−Gweak(y,R, n; n̂bc)| ≤ Ch−β
∥∥∥ ∇hy

>
h nh

|∇hy
>
h nh|

− n̂bc
∥∥∥
L∞(Ω0)

,

and by (30) we conclude that the right-hand side converges to 0 as h→ 0. Hence,

lim
h→0

(
Eh(yh, nh) + h−βGh(yh, nh; n̂bc)

)
= E(y,R, n) = E(y,R, n) + Gstrong(y,R, n; n̂bc).

We remark that the constructed recovery sequence additionally satisfies the clamped one-sided
boundary condition (29).

4.5 Proofs of Lemmas 2.7, 2.9, 2.10, and 2.11

Proof of Lemma 2.7. By appealing to (·, ·)Q-orthogonality and the definition of the orthogonal
projections PHmicro

, PHres , PHmacro , we conclude that

inf
χ∈Hrel

 
S
Q(Kx̄⊗ e1 + r̄

21S0U + χ)

= min
χ∈Hrel

‖Kx̄⊗ e1 + PHmicro

(
r̄
21S0U

)
+ χ‖2Q + ‖PHres

(
r̄
21S0U

)
‖2Q

= ‖PHmacro

(
Kx̄⊗ e1 + r̄

21S0U
)
‖2Q + r̄2Eres(U)

= ‖E(K + r̄Kpre(U))
)
‖2Q + r̄2Eres(U)

= Q̄
(
K + r̄Kpre(U)

)
+ r̄2Eres(U).

Proof of Lemma 2.9. To prove (12), note that by linearity of E and the definition of Ψi we have
E(K) =

∑3
i=1 kiΨi, and thus

Q̄(K) =
∥∥ 3∑
i=1

kiΨi

∥∥2

Q
=

3∑
i,j=1

kikj
(
Ψi,Ψj

)
Q

= k ·Qk.

Next, we prove (13). From the definition of Q and U we conclude that

(
PHmacro(1S0Uj),Ψî

)
Q

=
(
1S0Uj ,Ψî

)
Q

=

3∑
i=1

(
Q−1U

)
ij

(
Ψi,Ψî

)
Q

for î = 1, 2, 3.

Hence, since {Ψ1,Ψ2,Ψ3} is a basis of Hmacro, we get

PHmacro(1S0Uj) =
3∑
i=1

(
Q−1U

)
ij

Ψi. (37)

In view of the definition of Kpre, an application of E−1 to both sides yields

Kpre(Uj) =
1

2

3∑
i=1

(
Q−1U

)
ij

E−1
(
Ψi

)
.
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Combined with the definition of Ψi, which yields E−1
(
Ψi

)
= Ki, we conclude Kpre(Uj) =

1
2

∑3
i=1

(
Q−1U

)
ij
Ki and (13) follows by linearity of Kpre. Finally, we note that in view of

orthogonal decomposition H = Hres ⊕Hmacro ⊕Hrel and (37), we have Φj = PHres(1S0Uj), and
thus (14) follows.

Proof of Lemma 2.10. By the variational characterization of PHrel
we have for all F ∈ H,

PHrel
F = −χF where χF ∈ Hrel is characterized by ‖F + χF ‖Q = inf

χ∈Hrel

‖F + χ‖Q.

In view of Lemma 2.4 we further conclude that χF = (aF , ∇̄ϕF ), where (aF , ϕF ) ∈ R ×
H1

av(S;R3) is the unique minimizer of the functional (15). Applied with F = 1S0Uj , the
claimed identity for Φj follows. The identity for Ψi follows by considering F = sym(Kix̄⊗ e1).
Indeed, by definition we have Ψi = PHmacro

(
sym(Kix̄⊗ e1)

)
and since sym(Kix̄⊗ e1) ∈ Hmicro,

we conclude (with help of the orthogonal decomposition Hmicro = Hmacro ⊕ Hrel) that Ψj =
sym(Kix̄⊗ e1)− PHrel

(
sym(Kix̄⊗ e1)

)
.

Proof of Lemma 2.11 (a). Step 1. (Calculation of Q).

We first claim that
ffl
S ∇̄ϕi dx̄ = 0. To that end consider

A :=

 
S
∇̄ϕi dx̄, ϕ̃(x̄) := ϕi(x̄)−Ax̄.

Since Q is independent of x̄ and
ffl
SKix̄⊗ e1 dx̄ = 0, we have

 
S
Q
(
Kix̄⊗ e1 + (aie1, ∇̄ϕi)

)
dx̄ =

 
S
Q
(
Kix̄⊗ e1 + (0, ∇̄ϕ̃)

)
dx̄+Q

(
(ae1, A)

)
.

By minimality of (ai, ϕi) we conclude that (a,A) = 0 and thus the claim follows.
Substep 1.1 We prove the formula for q1 and claim that

Ψ1 = sym


 0

x3√
2

+ ∂2αS

− x2√
2

+ ∂3αS

⊗ e1

 .

We already now that a1 = 0 and
ffl
S ∇̄ϕ1 dx̄ = 0. For the argument write ϕ1 = (α, ϕ̄)> and

K1 := sym(Kix̄⊗ e1). Since traceK1 = 0 a.e. in S, a direct calculation yields

‖K1 + sym(0, ∇̄ϕ1)‖2Q =

 
S

µ
2 (|∂2α+ x3√

2
|2 + |∂2α− x2√

2
|2) + λ

2 (trace ∇̄ϕ̄)2 + µ| sym ∇̄ϕ̄|2 dx̄.

Since ϕ1 is a minimizer, we conclude that ϕ̄ = 0 and that α minimizes (17). Hence, ϕ1 =
(αS , 0, 0). Now, the identities for Ψ1 and q1 follow by a direct calculation.

Substep 1.2 We prove the formulas for q2 and q3 and claim that

Ψ2 =
x2√

2
diag

(
1,−1

2
λ

λ+µ ,−
1
2

λ
λ+µ

)
, Ψ3 =

x3√
2

diag
(
1,−1

2
λ

λ+µ ,−
1
2

λ
λ+µ

)
.

Indeed, by appealing to the Euler-Lagrange equation one can check that

ϕ2 = − 1

4
√

2

λ

λ+ µ

 0
x2

2 − x2
3

2x2x3

+ C2, ϕ3 = − 1

4
√

2

λ

λ+ µ

 0
2x2x3

x2
3 − x2

2

+ C3 (38)
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where C2, C3 ∈ R3 are chosen such that
ffl
S ϕ2 =

ffl
S ϕ3 = 0. Now, the identities for Ψi, qi,

i = 2, 3 follow by direct calculations.

Substep 1.3 A direct calculation shows that Ψ1,Ψ2,Ψ3 are (·, ·)Q-orthogonal. Hence, Q =
diag(q1, q2, q3) as claimed.

Step 2. (Formulas for Kpre).
In the isotropic case we have for i = 1, 2, 3 and all U ∈ R3×3

dev ,

(
1S0U,Ψi

)
Q

= µ

 
S

1S0U ·Ψi dx̄,

since traceU = 0. Hence, a direct calculation yields

U =


0 µ

√
2

2

ffl
S 1S0(∂2αS+ x3√

2
) dx̄ µ

√
2

2

ffl
S 1S0(∂3αS− x2√

2
) dx̄ 0 0

0 0 0 µ(3λ+2µ)
λ+µ

1
2
√

3

ffl
S 1S0x2 dx̄ 0

0 0 0 µ(3λ+2µ)
λ+µ

1
2
√

3

ffl
S 1S0x3 dx̄ 0

 ,

and thus,

Q−1U =


0

√
2

|S|cS

´
S0
∂2αS+ x3√

2
dx̄

√
2

|S|cS

´
S0
∂3αS− x2√

2
dx̄ 0 0

0 0 0 2√
3

´
S0
x2 dx̄´

S x
2
2 dx̄

0

0 0 0 2√
3

´
S0
x3 dx̄´

S x
2
3 dx̄

0

 .

Proof of Lemma 2.11 (b). Since S is a disc centered at 0, the vector (x3,−x2)> is tangential
for all x̄ ∈ ∂S and a short calculation shows that

 
S

∣∣∣ (∂2αS
∂3αS

)
+

1√
2

(
x3

−x2

) ∣∣∣2 dx̄ =

 
S
|∇αS |2 +

1

2

 
S
|(x3,−x2)>|2 dx̄.

Since αS is a minimizer, we conclude αS = 0. Now the identities for q1, q2, q3 and Kpre follow
by direct calculations starting from the formulas derived in Lemma (2.11) (a). We note that
for Kpre we also use that

´
S0
x2 dx̄ = 0.
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[BR20] Sören Bartels and Philipp Reiter. Numerical solution of a bending-torsion model
for elastic rods. Numer. Math., 146(4):661–697, 2020.

[BTW93] P Bladon, EM Terentjev, and M Warner. Transitions and instabilities in liquid
crystal elastomers. Physical Review E, 47(6):R3838, 1993.

[BWR+08] Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grin-
spun. Discrete elastic rods. In ACM SIGGRAPH 2008 papers, pages 1–12. 2008.

[CDD02a] Sergio Conti, Antonio DeSimone, and Georg Dolzmann. Semisoft elasticity and
director reorientation in stretched sheets of nematic elastomers. Physical Review
E, 66(6):061710, 2002.

28



[CDD02b] Sergio Conti, Antonio DeSimone, and Georg Dolzmann. Soft elastic response of
stretched sheets of nematic elastomers: a numerical study. Journal of the Mechanics
and Physics of Solids, 50(7):1431–1451, 2002.

[CPB15] Pierluigi Cesana, Paul Plucinsky, and Kaushik Bhattacharya. Effective behavior of
nematic elastomer membranes. Arch. Ration. Mech. Anal., 218(2):863–905, 2015.

[GMAM22] Alain Goriely, Derek E Moulton, and L Angela Mihai. A rod theory for liquid
crystalline elastomers. Journal of Elasticity, pages 1–24, 2022.
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