
ar
X

iv
:2

20
5.

07
52

8v
1

 [
m

at
h.

R
A

]
 1

6
M

ay
 2

02
2

The Smallest Hard Trees

Manuel Bodirsky∗, Jakub Buĺın†, Florian Starke‡, Michael Wernthaler§

May 2022

Abstract

We find an orientation of a tree with 20 vertices such that the corresponding fixed-template
constraint satisfaction problem (CSP) is NP-complete, and prove that for every orientation of
a tree with fewer vertices the corresponding CSP can be solved in polynomial time. We also
compute the smallest tree that is NL-hard (assuming L 6= NL), the smallest tree that cannot
be solved by arc consistency, and the smallest tree that cannot be solved by Datalog. Our
experimental results also support a conjecture of Buĺın concerning a question of Hell, Nešetřil
and Zhu, namely that ‘easy trees lack the ability to count’. Most proofs are computer-based
and make use of the most recent universal-algebraic theory about the complexity of finite-
domain CSPs. However, further ideas are required because of the huge number of orientations
of trees. In particular, we use the well-known fact that it suffices to study orientations of trees
that are cores and show how to efficiently decide whether a given orientation of a tree is a core
using the arc-consistency procedure. Moreover, we present a method to generate orientations
of trees that are cores that works well in practice. In this way we found interesting examples
for the open research problem to classify finite-domain CSPs in NL.

Keywords: Graph Homomorphism, Constraint Satisfaction Problem, Polymorphism, Tree,
Computational Complexity, Arc Consistency, Bounded pathwidth duality,
Datalog, linear Datalog, symmetric linear Datalog

1 Introduction

For a fixed directed graph (short: digraph) H, the constraint satisfaction problem for H, denoted
by CSP(H), is the computational problem of deciding whether a given finite digraph G admits a
homomorphism to H. This problem is also known as the H-coloring problem. If H is finite and
symmetric, then CSP(H) can be solved in polynomial time if H is bipartite or contains a loop,
and is NP-complete otherwise [37]. The situation if H is a finite but not necessarily symmetric
digraph is much more complicated. The Feder-Vardi dichotomy conjecture states that CSP(H)
is in P or NP-complete [32]. In fact, the conjecture was phrased not only for digraphs but for
the corresponding computational problem for general finite relational structures. However, it is
known that every CSP for a finite relational structure is polynomial-time (and even logspace)
equivalent to the CSP for a finite digraph [32, 22]. The Feder-Vardi conjecture was proved in
2017 independently by Bulatov [19] and by Zhuk [64, 63]. Prior to their break-through result, the
conjecture was open even if H is an orientation of a finite tree.

The description of the polynomially solvable cases in the proofs of Bulatov and of Zhuk is based
on the so-called algebraic approach and phrased using polymorphisms of H, i.e., edge-preserving
multivariate operations on the vertex set (‘higher-dimensional symmetries’) [12]. The algebraic

∗Institut für Algebra, TU Dresden. https://orcid.org/0000-0001-8228-3611.
†Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics,

Charles University, Prague. https://orcid.org/0000-0001-5235-8715.
‡Institut für Algebra, TU Dresden. https://orcid.org/0000-0003-2360-9364.
§Institut für Algebra, TU Dresden. https://orcid.org/0000-0003-4978-0928.

1

http://arxiv.org/abs/2205.07528v1

condition for polynomial-time tractability in the proofs of Bulatov and of Zhuk has numerous
equivalent characterizations, e.g. [60, 56, 6]. Siggers was the first to show the (at the time
somewhat surprising) fact that the condition can be characterized by the existence of a single, 6-
ary polymorphism satisfying certain identities [60] — which can readily be tested at least for very
small digraphs. This was later improved by Kearnes, Marković, and McKenzie [49] to the existence
of a single 4-ary operation, commonly referred to as a Siggers polymorphism, or a pair of 3-ary
operations which we will call Kearnes-Marković-McKenzie polymorphisms (for the definition, see
Section 6.1). The latter is computationally the most feasible (the search space is the smallest) and
thus the most suitable for our purposes. The question whether a given finite digraph H satisfies
any of the equivalent characterizations of the algebraic tractability condition is decidable, but
NP-hard [24].

1.1 Computational Complexity

Several other important conjectures about the computational complexity of the constraint satis-
faction problem for a fixed finite structure H with finite relational signature remain open: most
notably the question for which finite structures H the problem CSP(H) is in the complexity class
NL (non-deterministic logspace), and for which finite structures H it is in the complexity class
L (deterministic logspace). As in the case of P versus NP-hard, it appears that these questions
are closely linked to central dividing lines in universal algebra, as illustrated by the following
conjectures.

Conjecture 1 (Larose and Tesson [52]). If the polymorphisms of a finite structure H with finite
relational signature contain a Kearnes-Kiss chain (defined in Section 6.7), then CSP(H) is in NL.

It is known that if H does not satisfy the condition from Conjecture 1, then H is hard for
complexity classes that are not believed to be in NL (more details can be found in Section 6.7).
Conjecture 1 is wide open and we believe it to be one of the most difficult research problems in
the theory of finite-domain constraint satisfaction that remains open.

Conjecture 2 (Egri, Larose, and Tesson [29]). If the polymorphisms of a finite structure H with
finite relational signature contain a Noname chain (defined in Section 6.9) then CSP(H) is in L.

Also here it is known that if H does not satisfy the condition from Conjecture 2, then H is hard
for complexity classes that are not believed to be in L (more details can be found in Section 6.9).

We mention that both conjectures can equivalently be phrased by the inability to primitively
positively construct in H certain finite structures that are known to be L-hard, ModpL-hard, or
NL-hard (see Section 6). Kazda proved a conditional result that states that resolving the first
conjecture would also provide a solution to the second [46].

Again, these conjectures are already open if H is a finite digraph, or even if H is an orientation
of a finite tree. It is also known that answering the question of containment in NL for finite
digraphs would also answer the question for general finite structures [22]. For orientations of finite
trees, however, the question might be easier to resolve. For brevity, an orientation of a finite
tree is simply called a tree in this paper and we adopt the following terminology: a digraph H

is NP-hard if CSP(H) is NP-hard, and tractable if CSP(H) is in P. Similarly, we say that H is
P-hard, NL-hard, in NL, in L, NP-complete, NL-complete, etc. if CSP(H) has that property.

Unfortunately, there is no graph theoretic characterization of which trees are NP-hard. The
first NP-hard tree T was found by Gutjahr, Welzl, and Woeginger and had 287 vertices [35]. This
was later improved by Gutjahr to a smaller NP-hard tree with 81 vertices [34], and then to an
NP-hard tree with just 45 vertices by Hell, Nešetřil, and Zhu [36]. The tree T constructed there is
even a triad, i.e., a tree with exactly one vertex of degree three and all other vertices of degree one
or two. An NP-hard triad with 39 vertices was found by Barto, Kozik, Maróti, and Niven [8, 9]
using an in-depth analysis of the polymorphisms of triads; they conjectured that their triad is
the smallest NP-hard tree (assuming P 6= NP). This approach lead to a study of certain classes
of trees [4, 21]. Fischer [33] used a computer search and found an NP-hard tree with just 30

2

author year size comment

Gutjahr, Welzl, and Woeginger [35] 1992 287 First published

Gutjahr [34] 1991 81 PhD thesis

Hell, Nešetřil, and Zhu [36] 1996 45 Triad

Barto, Kozik, Maróti, and Niven [8] 2009 39 Triad

Fischer [33] 2015 30 Master thesis

Tatarko [61] 2019 26 Triad, Bachelor thesis

Present article 2022 22 Smallest triad

Present article 2022 20 Smallest tree

Table 1: A time-line of the history of the smallest known NP-hard orientation of a tree.

vertices (refuting the conjecture of Barto et al. mentioned above). Later, independently, Tatarko
constructed a 26-vertex NP-hard triad, by manual analysis of polymorphisms. See Table 1.

1.2 Descriptive Complexity

Besides the computational complexity of CSPs, the descriptive complexity of CSPs has been stud-
ied intensively, and leads to a fruitful interplay of finite model theory, graph theory, and universal
algebra. Since the results obtained in this context are highly relevant for the open conjectures
mentioned above, we provide a brief introduction to the most prominent concepts. A digraph H

has tree duality if for all finite digraphs G, if whenever all trees that map homomorphically to
G also map to H, then G maps to H. It is well-known that a finite digraph H has tree duality
if and only if the so-called arc-consistency procedure solves CSP(H) [32]. This procedure is of
central importance to our work, for many independent reasons that we mention later, and will be
introduced in detail in Section 2.1.

For every finite digraph H, the arc-consistency procedure for CSP(H) can be formulated as a
Datalog program [32]; Datalog is the fragment of Prolog where function symbols are forbidden.
Every Datalog program can be evaluated in polynomial time. Feder and Vardi proved that CSP(H)
can be solved by Datalog if and only if H has so-called bounded treewidth duality; the definition
of this concept is similar to the concept of tree duality but we omit it since it is not needed in
this article. Bounded treewidth duality can be strengthened to bounded pathwidth duality, which
corresponds precisely to solvability by a natural fragment of Datalog, namely linear Datalog [25].
Linear Datalog programs can be evaluated in NL. An even more restricted fragment of Datalog is
linear symmetric Datalog; such programs can be evaluated in L [29].

A structure H has the ability to count [53] if CSP(H) can encode, in some natural sense
(namely pp-constructibility [13, 12]), solving systems of linear equations over Zp (for some prime
p); thus making CSP(H) ModpL-hard. The ability to count adds substantial complexity to the
CSP. Structures that cannot count are all tractable and even in Datalog [17, 5] and this result,
known as the bounded width theorem, was an important intermediate step towards the resolution
of the Feder-Vardi CSP dichotomy conjecture. Based on this theorem, the lack of the ability to
count has a number of equivalent characterizations: bounded width, bounded treewidth duality,
definability in Datalog, solvability by Singleton Arc Consistency [50].

Several important classes of structures exhibit a dichotomy between NP-hardness and the lack
of the ability to count (assuming P 6= NP), which we will refer to as “easy structures cannot
count”. Examples include undirected graphs [37], smooth digraphs (digraphs without sources and
sinks) [10], conservative digraphs (digraphs expanded with all subsets of vertices as unary relations)
[41], binary conservative structures (even 3-conservative) [47]. We note that this phenomenon also
occurs for many large classes of infinite structures H: for example for all first-order expansions of
the basic relations of RCC5 [14]; see [15] for a survey on the question of which infinite-domain CSPs
can be solved in Datalog. In this paper, however, we only consider finite structures. Additionally,
for classes of finite structures, if the easy structures in the class cannot count, then the algebraic

3

tractability condition for that class can be tested in polynomial time [24].
In [21] Buĺın conjectured that easy trees cannot count, establishing this fact for a large yet

structurally limited subclass of trees.

Conjecture 3. Let T be a tree. If T has the ability to count, then T is NP-hard.

This conjecture (which is rephrasing Conjecture 2 in [21]) would answer an open question posed
by Hell, Nešetřil, and Zhu [40] (Open Problem 1 at the end of the article): they asked whether
there exists a tractable tree which does not have bounded treewidth duality.

1.3 Contributions

In this article, we obtain the following results.

1. We find 36 NP-hard trees with 20 vertices; moreover, we prove that all smaller trees and all
other trees with 20 vertices are tractable.

2. We find four NP-hard triads with 22 vertices, and prove that all smaller triads and all other
triads with 22 vertices are tractable.

3. We show that all the trees with at most 20 vertices that are not NP-hard can be solved by
Datalog, confirming Conjecture 3 for trees with at most 20 vertices.

4. We find a tree with 19 vertices that can not be solved by arc consistency, and prove that all
smaller trees and all other trees with 19 vertices can be solved by arc consistency.

5. We find 8 NL-hard trees with 12 vertices; moreover, we prove that all smaller trees and all
other trees with 12 vertices are in L.

Even though we draw from the results of the universal-algebraic approach to the CSP which led
to the theorems of Bulatov and of Zhuk, and use state-of-the-art computers for our computations,
these tasks remain challenging due to the huge number of trees: for example, even considered up to
isomorphism, there are 139,354,922,608 trees with 20 vertices (see Table 2), which is prohibitive
even if we could test the algebraic tractability condition within milliseconds. Several further
contributions of this article are related to the way we managed to overcome these difficulties.

A well-known key simplification is to only consider trees that are cores ; a digraph H is a core if
every homomorphism from H to H is injective. Two graphs H1 and H2 are called homomorphically
equivalent if there is a homomorphism from H1 to H2 and vice versa. Clearly, in that case
CSP(H1) = CSP(H2) and so H1,H2 are either both tractable or both NP-hard. It is easy to see
that every finite digraph H is homomorphically equivalent to a core digraph H′, which is unique up
to isomorphism. Moreover, if H is a tree, then H′ is a tree as well (and its size is smaller or equal
to the size of H). Hence, it suffices to work with trees that are cores. However, Hell and Nešetřil
proved that deciding whether a given digraph is a core is coNP-complete [38]. Remarkably, the
following fact seems to be unnoticed in the literature.

6. There is a polynomial-time algorithm for deciding whether a tree is a core.

There are far too many trees with at most 20 vertices to run the core test on each of them.
Our next contribution is a method to generate the core trees more directly, rather than generating
all trees and then discarding the non-cores (the details can be found in Section 4). Applying our
method we were able to construct all trees that are cores up to size 20, and all triads that are
cores up to size 22, which was essential to achieve the results 1.-5. above.

7. We computed the number of trees that are cores for sizes up to 20 (see Table 2). In particular,
there are 779268 core trees of size 20.

4

These are still too many to be tested for the algebraic tractability condition if this is implemented
naively. We therefore use results from the universal algebraic approach to first run more efficient
tests for certain sufficient conditions, such as the existence of a binary symmetric polymorphism,
and only run the full test for Kearnes-Marković-McKenzie polymorphisms if the simpler conditions
all fail; this will be explained in Section 6.

Finally, we identify trees that are important ‘test-cases’ for the open problems that have been
mentioned earlier.

8. We computed the two smallest trees that are not known to be in NL; they have 16 vertices,
and they are the smallest trees that do not have a majority polymorphism.

9. We computed 28 smallest trees that are candidates for failing the condition in Conjecture 1
and hence might be P-hard (and that are thus candidates for not being in NL, unless NL =
P); they have 18 vertices.

1.4 Outline of the Article

Basic notation and terminology about directed and undirected graphs and homomorphisms is
introduced in Section 2. This section also presents a brief description of the arc-consistency
procedure which plays an important role in several of our results. In Section 3 we explain how to
use the arc-consistency procedure to efficiently test whether a given tree is a core. In Section 4
we present our method to generate all trees that are cores (directly, without having to discard
too many non-cores in the process). We then use these trees to make extensive experiments
about their computational and descriptive complexity. For this, we need to introduce important
polymorphism conditions and related facts from universal algebra (Sections 5 and 6). Finally, the
results of our experiments as announced in Section 1.3 can be found in Section 7.

2 Graphs, Digraphs, Homomorphisms

For the definition of relational structure we refer to any text-book in mathematical logic; note
that we allow the signature of structures to be infinite (but the constraint satisfaction problem is
only defined for relational structures with finite relational signature). Since we work most of the
time with digraphs, we present the basic definitions only for digraphs; most of them generalize
to relational structures in a straightforward way. We use standard terminology for graphs and
undirected graphs as introduced e.g. in [28]. All graphs we consider are finite. A digraph is a pair
H = (H ;E) where H is a nonempty set and E = E(H) ⊆ H2 is a set of (directed) edges. A (simple,
undirected) graph is a pair H = (H ;E) where H is a nonempty set and E = E(H) ⊆

(
H
2

)
is a

set of two-element subsets of H . An orientation of a graph G is a digraph O such that O = G,
(x, y) ∈ E(O) implies {x, y} ∈ E(G), and for every {x, y} ∈ E(G) either (x, y) ∈ E(O) or
(y, x) ∈ E(O), but not both. If H is a digraph, then the reverse of H is the digraph HR = (H ;ER)
where ER = {(y, x) | (x, y) ∈ E}. The operation that obtains HR from H is called edge reversal.

If G and H are digraphs, then a homomorphism from G to H is a map h : G→ H such that for all
(x, y) ∈ E(G) we have (h(x), h(y)) ∈ E(H). We write CSP(H) (for constraint satisfaction problem)
for the class of all finite digraphs G which admit a homomorphism to H. A homomorphism from
H to H is called an endomorphism of H. A finite digraph H is called a core if all endomorphisms
of H are injective. It is easy to see that an injective endomorphism of H must in fact be bijective
and an automorphism, i.e., an isomorphism between H and H. It is easy to see that every finite
digraph G is homomorphically equivalent to a finite core digraph H, and that this core digraph is
unique up to isomorphism [39], hence H will be called the core of G.

An undirected tree is a connected undirected graph without cycles. If u, v ∈ T and T is an
undirected tree, then there exists a unique path P from u to v in T; the number of edges of P is
denoted by dist(u, v). A vertex v ∈ T is called a center of T if v lies in the middle of a longest
path in T. An edge e ∈ E(T) is called a bicenter of T if e is the middle edge of a longest path in
T. We will use the following classical result.

5

Theorem 1 (Jordan (1869)). An undirected tree T has exactly one center or one bicenter.

If O is an orientation of a tree and u, v ∈ O, then dist(u, v) (center of O, bicenter O) is meant
with respect to the underlying undirected tree. As mentioned in the introduction in this article an
orientation of a finite tree will simply be called a tree. A digraph H is balanced if its vertices can
be organized into levels, that is, there exists a function lvl : H → N such that lvl(v) = lvl(u) + 1
for all (u, v) ∈ E(H) and the smallest level is 0. The height of H is the maximum level. Note
that trees are balanced and observe that if G and H are balanced of the same height, and G is
connected, then any homomorphism from G to H must preserve levels, that is, lvl(v) = lvl(h(v))
for all v ∈ G. A rooted tree is a tuple (T, r), where T is a tree and r ∈ T ; r is then called the
root of T. A rooted tree (T, r) is called a rooted core if every endomorphism of T that fixes r is
injective. The depth of a rooted tree (T, r) is max{dist(r, v) | v ∈ T }.

2.1 The Arc-consistency Procedure

One of the most efficient algorithms employed by constraint solvers to reduce the search space is
the arc-consistency procedure. In the graph homomorphism literature, the algorithm is sometimes
called the consistency check algorithm. The arc-consistency procedure is important for us for
several reasons:

• It plays a crucial role for efficiently deciding whether a given tree is a core (Section 3).

• It is well suited for combination with exhaustive search to prune the search space, and this
will be relevant in Section 5.

• It is an important fragment of Datalog of independent interest from the point of view of the
CSP theory (see Section 6.5), and we will later perform experiments to compute the smallest
tree that cannot be solved by arc consistency (Section 7.1.4).

We need to give a short description of the procedure.
Let G and H be finite digraphs. We would like to determine whether there exists a homomor-

phism from G to H. The idea of the arc-consistency procedure is to maintain for each x ∈ G a
set L(x) ⊆ H . Informally, each element of L(x) represents a candidate for an image of x under
a homomorphism from G to H. The algorithm initializes each list L(x) with H and successively
removes vertices from these lists; it only removes a vertex u ∈ H from L(x) if there is no homo-
morphism from G to H that maps x to u. To detect vertices x, u such that u can be removed from
L(x), the algorithm uses two rules (in fact, one rule and a symmetric version of the same rule): if
(x, y) ∈ E(G), then

remove u from L(x) if there is no v ∈ L(y) with (u, v) ∈ E(H);

remove v from L(y) if there is no u ∈ L(x) with (u, v) ∈ E(H).

If eventually we cannot remove any vertex from any list with these rules any more, the digraph G

together with the lists for each vertex is called arc-consistent. Note that formally we may view L
as a function L : G→ 2H from the vertices of G to sets of vertices of H.

Note that we may run the algorithm also on digraphs G where for some x ∈ G the list L(x) is
already set to some subset of H . In this setting, the input consists of G and the given lists, and we
are looking for a homomorphism h from G to H such that for every x ∈ G we have h(x) ∈ L(x).
The pseudocode of the entire arc-consistency procedure is displayed in Algorithm 1. The standard
arc-consistency procedure ACH(G) is then obtained by calling ACH(G, L) with L(x) := H for all
x ∈ G.

Clearly, if the algorithm removes all vertices from one of the lists, then there is no homomor-
phism from G to H. It follows that if ACH rejects G, then there is no homomorphism from G to
H. The converse implication does not hold in general. For instance, let H be the loopless digraph
with two vertices and two edges, denoted K2, and let G be K3 = ({0, 1, 2}; 6=). In this case, ACH

6

Algorithm 1: ACH(G, L)

input: a finite digraph G

data : a list L(x) ⊆ H for each vertex x ∈ G
repeat

foreach (x, y) ∈ E(G) do

if there is no v ∈ L(y) with (u, v) ∈ E(H) then
remove u from L(x)

if there is no u ∈ L(x) with (u, v) ∈ E(H) then
remove v from L(y)

if L(x) is empty for some vertex x ∈ G then
reject

until no list changes

does not remove any vertex from any list, but obviously there is no homomorphism from K3 to
K2.

The arc-consistency procedure can be implemented so that it runs in O(|E(G)| · |H |3), e.g. by
Mackworth’s AC-3 algorithm [55].

3 Cores of Trees

Recall that the problem of deciding whether a given digraph is a core is coNP-complete [38]. The
following theorem implies that whether a given finite tree is a core can be tested in polynomial
time.

Theorem 2. Let T be a finite tree. Then the following are equivalent.

1. T is a core;

2. End(T) = {idT };

3. ACT(T) terminates such that the list for each vertex contains a single element.

Corollary 3. There is a polynomial-time algorithm to decide whether a given finite tree is a core.

We first prove the following two useful lemmata.

Lemma 4. Let T be a finite tree and let H be a finite digraph such that ACH(T) does not reject. Let
t ∈ T , and let a ∈ H be such that a ∈ L(t) after running ACH(T). Then there is a homomorphism
h : T→ H such that h(t) = a.

Proof. Let S be a maximal subtree of T such that t ∈ S and there exists a partial homomorphism
h : S → H with h(t) = a. If S 6= T , then there exists x ∈ S and y ∈ T \ S such that either (x, y)
or (y, x) is an edge in T; without loss of generality assume that (x, y) ∈ E(T). Because the value
u = h(x) was not removed from L(x) when running ACH(T), it follows that there exists v ∈ L(y)
such that (u, v) ∈ E(H). But then setting h(y) = v extends h to a partial homomorphism from
S ∪ {y} to H contradicting maximality of the subtree S.

Lemma 5. Let (T, r) be a rooted tree with an automorphism that is not the identity. Then (T, r)
has a non-injective endomorphism.

Proof. We prove the statement by induction on the number of vertices of T. Consider the compo-
nents of the graph obtained from T by deleting r. If there is a component C such that h does not
map C into itself, then the mapping which agrees with h on C and which fixes all other vertices
of T is a non-injective endomorphism of (T, r).

7

If each component C is mapped by h into itself, then each h|C is an automorphism of (C, rC),
where rC is the unique neighbor of r that lies in C. Since h is not idT there must be some C such
that h|C is not idC and by induction hypothesis there exists a non-injective endomorphism h′ of
(C, rC). Since h′(rC) = rC the mapping which extends h′ to T by fixing all other vertices of T is
a non-injective endomorphism of (T, r).

Proof of Theorem 2. We prove the equivalence of 1. and 2., and then the equivalence of 2. and 3.
Clearly, 2. implies 1. Conversely, suppose that T has an endomorphism h which is not the

identity map. If h is not injective, then T is not a core and we are done. Hence, suppose that h
is an automorphism. Note that by Theorem 1, if T has a center, then h(c) = c and if T has a
bicenter (x, y) ∈ E(T), then h({x, y}) = {x, y}. In the latter case, since (y, x) /∈ E(T), we must
have h(x) = x and h(y) = y. In both cases h has a fixed point r and h is an automorphism of
(T, r). By Lemma 5, T has a non-injective endomorphism and is therefore not a core.

To prove that 2. implies 3., we prove the contrapositive. Suppose that ACT(T) terminates with
|L(x)| > 1 for some x ∈ T . Then there exists y ∈ L(x), y 6= x. Lemma 4 implies that there is an
endomorphism h of T such that h(x) = y and thus h 6= idT .

To see that 3. implies 2., note that L(x) = {x} since because of the identity endomorphism
idT , x cannot be removed from L(x). Therefore, for any endomorphism h : T→ T and any x ∈ T
we must have h(x) ∈ L(x), and so h(x) = x and h = idT .

4 Generating all Core Trees

In this section we present an algorithm to generate all core trees with n vertices up to isomorphism.
To this end, we first present a known algorithm that generates all trees with n vertices up to
isomorphism [62]. Later we explain how to modify this algorithm to directly generate core trees.

We also refer to the isomorphism classes of trees as unlabeled trees, as opposed to labeled trees,
which are trees with vertex set {1, . . . , n} for some n ∈ N. The difference between the enumeration
of labelled and unlabeled trees is significant: while the number of labelled trees is Sloane’s integer
sequence A097629, given by 2(2n)n−2, the number of unlabeled trees is Sloane’s integer sequence
A000238, which grows asymptotically as cdn/n5/2 where d ≈ 5.6465 and c ≈ 0.2257 are constants;
the initial terms are shown in Table 2. However, these numbers are still too large to apply the
core test to all the unlabeled trees separately. The number of unlabeled trees that are cores is
again much smaller. We therefore present a modification of the generation algorithms that allows
us to generate unlabeled trees that are cores directly without enumerating all unlabeled trees.

Let ≥ be some total order on all rooted trees that linearly extends the order by depth. The
idea of the algorithm is to generate all unlabeled rooted trees with at most n− 1 vertices and then
use Theorem 1.

It is easy to verify that Algorithm 3 produces all unlabeled rooted trees with n vertices and
depth d. Analogously, Algorithm 2 generates all unlabeled trees with n vertices. Remarkably,
there are no isomorphism checks necessary and Algorithm 2 runs in linear time in the number
of unlabeled trees with n vertices plus the number of unlabeled rooted trees with at most n − 1
vertices.

Let us make some observations. Let (T1, r1) ≥ · · · ≥ (Tm, rm) be rooted trees, s ∈ {0, 1}m,
T := {r} ⊎ T1 ⊎ · · · ⊎ Tm, and E := {(ri, r) | si = 1} ⊎ {(r, ri) | si = 0} ⊎ E(T1) ⊎ · · · ⊎ E(Tm).

• A rooted tree (T, r) is a rooted core if and only if ACT(T, L), where L(r) = {r} and L(x) = T
for x ∈ T \ {r}, terminates such that the list for each vertex contains a single element.

• By Corollary 3, testing whether a (rooted) tree is a (rooted) core can be checked in polynomial
time using the arc-consistency procedure.

• If (T, r) is a rooted core, then (Ti, ri) is a rooted core for every i.

• If T is a core and r is its center, then (Ti, ri) is a rooted core for every i.

8

Algorithm 2: GenerateTrees

input : a positive integer n
output: a list of trees with n vertices
begin

Trees← ∅
// bicenter

foreach (T1, r1), (T2, r2) rooted trees where |T1|+ |T2| = n and
depth(T1, r1) = depth(T2, r2) do

T := T1 ⊎ T2

E := {(r1, r2)} ⊎ E(T1) ⊎ E(T2)
T := (T ;E)
Trees← Trees ∪ {T}

// center

foreach (T1, r1) ≥ (T2, r2) ≥ · · · ≥ (Tm, rm) rooted trees where
|T1|+ · · ·+ |Tm| = n− 1 and depth(T1, r1) = depth(T2, r2) do

foreach s ∈ {0, 1}m where i < j and (Ti, ri) = (Tj , rj) imply si ≤ sj do
T := {r} ⊎ T1 ⊎ · · · ⊎ Tm

E := {(ri, r) | ri = 1} ⊎ {(r, ri) | ri = 0} ⊎E(T1) ⊎ · · · ⊎ E(Tm)
T := (T ;E)
Trees← Trees ∪ {T}

return Trees

• If (T1 ⊎ T2; {(r1, r2)}⊎E(T1)⊎E(T2)) is a core and (r1, r2) is its bicenter, then (T1, r1) and
(T2, r2) are rooted cores.

• If two trees that are cores are homomorphically equivalent, then they are isomorphic.

To generate all oriented trees that are cores we slightly modify both algorithms. In both
functions we only add trees to the output if they are cores or rooted cores, respectively. By the
above observations, these modified algorithms generate each tree with n vertices that is a core
exactly once. We do now know whether our algorithm is a polynomial-delay generation procedure
for unlabeled core trees. In practice, it is fast enough to generate all core trees with at most 20
vertices within reasonable time (see Section 7).

5 Polymorphism Conditions

In this section we introduce basic facts from the universal-algebraic approach that are essential
for obtaining our results. If H is a digraph and k ≥ 1 is an integer, then Hk denotes the k-th
categorical power of H, i.e., the digraph with vertex set Hk and edge set

{((u1, . . . , uk), (v1, . . . , vk)) | (u1, v1), . . . , (uk, vk) ∈ E(H)}.

A polymorphism of H is a homomorphism from Hk to H, for some k ≥ 1. Clearly, every projection,
i.e., every operation of the form (x1, . . . , xk) 7→ xi, for some fixed i ≤ k, is a polymorphism for
every digraph H. Of particular interest to us will be polymorphisms that satisfy certain sets of
identities, introduced in Section 5.2. The connection between such identities and computational
complexity is described in Section 5.1.

5.1 Primitive Positive Constructions

Primitive positive definitions are a natural type of gadget construction which can be used to
obtain logspace reductions between CSPs. Central to the algebraic theory of the CSP is the

9

Algorithm 3: GenerateRootedTrees

input : two positive integers n, d
output: a list of rooted trees with n vertices and depth d
begin

if n = 0 then
return ∅

if n = 1 then
return {(({r}; ∅), r)}

RootedTrees← ∅
foreach (T1, r1) ≥ · · · ≥ (Tm, rm) rooted trees where |T1|+ · · ·+ |Tm| = n− 1 and
depth(T1, r1) = d− 1 do

foreach s ∈ {0, 1}m where i < j and (Ti, ri) = (Tj , rj) imply si ≤ sj do
T := {r} ⊎ T1 ⊎ · · · ⊎ Tm

E := {(ri, r) | ri = 1} ⊎ {(r, ri) | ri = 0} ⊎E(T1) ⊎ · · · ⊎ E(Tm)
T := (T ;E)
RootedTrees← RootedTrees ∪ {(T, r)}

return RootedTrees

fact that the possibility of such an encoding can be determined from the polymorphisms of the
respective templates. Let A = (A;R1, . . . , Rn) be a relational structure. A relation S ⊆ An is
primitive positive (pp-) definable from A if it can be defined (without parameters) by a first order
formula which only uses the predicate symbols R1, . . . , Rn, the equality predicate, conjunction,
and existential quantification.

Primitive positive constructions are a more powerful generalization of primitive positive defi-
nitions. A relational structure B = (B;S1, . . . , Sm) is pp-constructible from A if there exists k > 0
and a structure B′ = (B′;S′

1, . . . , S
′

m) which is homomorphically equivalent to B such that B′ = Ak

and for every i ∈ {1, . . . ,m} the relation Si ⊆ B′ri , when considered as a kri-ary relation on A, is
pp-definable from A. In this case there is a logspace reduction from CSP(B) to CSP(A).

If A and B are finite structures, then B is pp-constructible from A if and only if B satisfies
every height-one condition satisfied by A; these concepts will be introduced in the next section.
This algebraic characterization of pp-constructibility was shown in [13, Theorem 1.3, Corollary
4.7] (see also [12, Theorem 38, Corollary 20]).

5.2 Linear Conditions and Height-one Conditions

Height-one conditions and linear conditions are particular types of strong Maltsev condition [48]
that are essential for the algebraic approach to CSPs. If f is a function symbol of arity k and h
is a function symbol of arity ℓ, and σ : {1, . . . , k} → {1, . . . , n} and ρ : {1, . . . , ℓ} → {1, . . . , n} are
functions, then an expression of the form

f(xσ(1), . . . , xσ(k)) ≈ g(xρ(1), . . . , xρ(ℓ))

is called a height-one identity. For the purposes of this paper, a finite set of height-one identities will
be called a height-one condition. Height-one conditions are important because of the mentioned
tight link with pp-constructibility (Section 5.1). More generally, an identity is linear if each
side has one or zero occurrences of function symbols, i.e., it is either height-one, or of the form
f(xσ(1), . . . , xσ(k)) ≈ xj , xi ≈ g(xρ(1), . . . , xρ(ℓ)), or xi ≈ xj . Then a linear condition is a finite set
of linear identities.

A set of operations F on some domain D satisfies a linear condition Σ if we can interpret
every function symbol appearing in Σ as an operation from F so that for every identity in Σ, the
left-hand side of the identity and the right-hand side of the identity evaluate to the same element
under all possible substitutions of variables by elements of D. We say that a structure A satisfies
a linear condition if the set of all polymorphisms of A satisfies it.

10

An example of a height-one condition consisting of a single height-one identity involving a
single binary function symbol f is

{f(x1, x2) ≈ f(x2, x1)}

which is satisfied by A if and only if A has a binary symmetric polymorphism. Since x1, x2, x3, . . .
are just variable names we sometimes use x, y, z, etc. instead.

An operation f : Dk → D is called idempotent if it satisfies the identity f(x, . . . , x) ≈ x. Note
that this identity is linear but not height-one.

Remark 6. It is well-known and easy to see that the polymorphisms of a finite core digraph satisfy
a height-one condition if and only if its idempotent polymorphisms satisfy the condition.

Linear conditions have been introduced and studied first, in particular motivated by the fact
that idempotence of operations can only be expressed in linear conditions, but not in height one
conditions, and that idempotence plays a central role in many classical areas of universal algebra.
Also note that in the setting of finite-domain CSPs we may use the idempotence assumption for
free because of Remark 6 and the fact that the core of a structure has the same CSP and satisfies
the same height-one identities (which is not true for linear conditions in general).

5.3 The Indicator Construction

The question whether a given digraph H has polymorphisms that satisfy a given height-one or
even linear condition can be tested algorithmically as follows. To illustrate the well-known idea,
suppose that the given set consists of a single identity, namely f(x, y) ≈ f(y, x). We then compute
H2 and contract every vertex of H2 of the form (x, y) with the vertex (y, x). The resulting digraph
HInd will be called the indicator digraph for the height-one condition. We finally search for a
homomorphism from HInd to H. Note that HInd may be viewed as an instance of CSP(H), and
that the homomorphisms from HInd to H are in 1-1 correspondence with the binary symmetric
polymorphisms of H (see Definition 9).

Analogously we may proceed for any other height-one condition: to compute HInd, we construct
for each function symbol the categorical power of H of the corresponding arity, take their disjoint
union, and then identify vertices as dictated by the identities. Clearly, the size of the indicator
digraph grows exponentially with the arity of the function symbols in the condition and linearly
with number of function symbols in the condition so we generally prefer conditions where the
function symbols are of low arity even if the number of function symbols is large.

Linear conditions can be tested in the following way. Note that the left- and right-hand sides
of identities can be switched, and that identities of the form xi ≈ xj are only satisfied in one-
element structures. Therefore, we may assume that every identity is either height-one or of the
form f(xσ(1), . . . , xσ(k)) ≈ xj . First, construct the indicator digraph HInd using only the height-
one identities when identifying vertices. Then, for every identity that is not height-one, find every
vertex of HInd that comes from a tuple of vertices of H matching the left-hand side and set its
value to the vertex of H given by the right-hand side. For example, if the identity is f(x, y, x) ≈ x,
we require that (a, b, a) ∈ HInd must be mapped to a, for every a, b ∈ H . In this way, we obtain
an instance of the H-precoloring extension problem (see also the discussion in Section 8). It is
well known that for cores, this problem is logspace-equivalent to CSP(H) [20, 13]. Moreover, it
is particularly easy to implement within the arc-consistency procedure, see the next section. For
balanced digraphs, another important improvement—based on the decomposition into levels—that
can be applied for many height-one conditions is described in Section 5.5 below.

5.4 Arc Consistency with Exhaustive Search

Chen and Larose [24] give a polynomial-time procedure to test for the existence of polymor-
phisms satisfying a given linear condition, providing that the linear condition implies the algebraic
tractability condition. Their procedure uses the algorithm of Zhuk which is known to be uniform

11

in the sense that it runs in polynomial time even if we assume that also the template H is part of
the input to the algorithm for CSP(H) [64].

However, in our approach we avoid implementing and running the algorithm of Zhuk (which is
complex and whose running time is a polynomial of a yet unknown degree). Instead, we run the
arc-consistency procedure for H on the indicator digraph HInd and then perform an exhaustive
search. While this procedure is not (provably) in P, it is very efficient in practice.

We initialize the lists for vertices of HInd with preset values dictated by non-height-one iden-
tities, as explained above. Additionally, for every u ∈ H , we initialize the list for every vertex of
HInd of the form (u, . . . , u) with {u} (since it suffices to look for idempotent polymorphisms as
we have explained in Remark 6 and this reduces the search space). For the remaining vertices of
HInd, the lists are initialized to H .

If ACH detects an inconsistency, we can be sure that no polymorphisms satisfying the linear
condition exist. Otherwise, we select some vertex x ∈ HInd, and set L(x) to u for some u ∈ L(x).
Then we proceed recursively with the resulting lists. If ACH now detects an empty list, we
backtrack, but remove u from L(x). Finally, if the algorithm does not detect an empty list at the
first level of the recursion, we end up with singleton lists for each vertex x ∈ HInd, which defines a
homomorphism from HInd to H. This homomorphism can then be interpreted as polymorphisms
satisfying the linear condition.

There are numerous methods to speed up this backtracking procedure. One of the best known is
called Maintaining Arc Consistency (MAC) [58]. This family of algorithms has the arc-consistency
procedure at its core and takes advantage of the incremental design of the backtracking procedure
by maintaining data structures which help to reduce the number of consistency checks. Another
common way to speed up the search procedure is to choose the vertex x ∈ HInd that has a list of
smallest size.

5.5 Level-wise satisfiability

If H is a balanced digraph (in particular, a tree), the test from the previous section can sometimes
be significantly simplified. We say that a linear condition is level-wise satisfied if we can interpret
the function symbols as polymorphisms of H in such a way that for every level in H, the identities
are satisfied under all evaluations of variables by vertices from that level.

When testing whether a linear condition is level-wise satisfied, we do not need to construct the
full indicator digraph. Instead, for every function symbol (say of arity k) we construct only the
subgraph of Hk consisting of k-tuples of same-level vertices. Note that this is a union of connected
components of Hk and that polymorphisms can be defined the first projection on the remaining
connected components of Hk.

While we do not have a general construction, for many linear conditions relevant to the com-
plexity of the CSP we can show that if a linear condition is level-wise satisfied in H, then it is
satisfied in H. The idea is to start with polymorphisms satisfying the identities level-wise, and
then redefine those polymorphisms for tuples of vertices that are not all on the same level, in such
a way as to satisfy the identities. We will introduce several such concrete constructions in the next
section. Similar constructions have appeared in [8, 4, 21, 22]. This optimization is particularly
useful when testing the condition TS(n) for all n; see Section 7.1.4.

6 Specific Polymorphism Conditions

In this section we focus on certain concrete linear conditions that are relevant for studying the
membership of CSPs in the most prominent complexity classes in the subsequent sections. An
overview of the classes and the respective linear conditions is given in Figure 1. Solid arrows
indicate implications, dotted arrows indicate conjectures. Figure 2 shows the relationships between
relevant linear polymorphism conditions that are defined throughout the section. The left side
shows the general case and the right side shows the case for trees assuming Conjecture 3 (and
P 6= NP). The implications are either immediate or from the literature [42] (Chapter 9), [11, 49, 3].

12

Computational
Complexity

Descriptive
Complexity

pp-Obstructions
Height-one
Conditions

∈ L

Linear
symmetric
Datalog

st-Con
3Linp

Noname

∈ NL
Linear
Datalog

Horn-3SAT
3Linp

Kearnes-
Kiss

∈ P K3

Kearnes-
Marković-
McKenzie

HMcK

E

LT

HMcK

AC

D

KMM

P 6= NP

BZ

NL 6= P, NL 6= Modp L

L 6= NL, L 6= Modp L

Conj. 2

Conj. 1

Figure 1: An overview of (computational and descriptive) complexity classes that are relevant
for finite-domain CSPs, of important pp-constructions, and of the respective polymorphism con-
ditions. LT stands for Larose and Tesson [52], E stands for Egri [30], HMcK stands for Hobby-
McKenzie [42] (Chapter 9), D stands for Dalmau [26], AC stands for Afrati and Cosmadakis [1], BZ
stands for Bulatov [19] and Zhuk [64], and KMM stands for Kearnes, Marković, and McKenzie [49].

3-4 WNU

KMM

KK

HMcK

HM

NN

Majority

Jónsson

(∃k)NU(k)

(∀k)TS(k)

KMM
3-4 WNU

HMcK
KK

HM
NN

Majority

Jónsson
(∃k)NU(k)

(∀k)TS(k)

Figure 2: Taxonomy of polymorphism conditions of structures with a finite domain that are
relevant for the computational complexity of CSPs, ordered by strength; the arrows point from
stronger conditions to weaker ones. The right picture shows the situation for trees assuming
Conjecture 3 (and P 6= NP).

13

6.1 Containment in P

As discussed above, the characterization of the algebraic condition for tractability which is the
most suitable for testing with a computer consists of a pair of ternary operations [49].

Definition 7. A pair of ternary operations p, q : D3 → D is called Kearnes-Marković-McKenzie
if it satisfies the height-one condition

p(x, y, y) ≈ q(y, x, x) ≈ q(x, x, y)

p(x, y, x) ≈ q(x, y, x).

Using this characterization, the CSP dichotomy can be stated as follows.

Theorem 8 ([64, 19, 49]). A finite digraph H has Kearnes-Marković-McKenzie polymorphisms if
and only if there is no pp-construction of K3 from H. In this case, CSP(H) is in P.

This characterization is optimal in the following sense: every height-one condition equivalent
to Kearnes-Marković-McKenzie polymorphisms involves either an operation of arity at least 4
or at least two operations of arity 3 [49]. However, there are several height-one conditions that
imply the existence of Kearnes-Marković-McKenzie polymorphisms and that are easier to test. In
particular, we use the following.

Definition 9. An operation f of arity k, for k ≥ 2, is called a k-ary weak near-unanimity
operation (short, k-wnu) if it satisfies the following height-one condition

f(y, x, . . . , x) ≈ f(x, y, x, . . . , x) ≈ · · · ≈ f(x, . . . , x, y).

A binary operation f is called symmetric if it is a 2-wnu, i.e., if it satisfies f(x, y) ≈ f(y, x).

It is known that the existence of a k-wnu implies the existence of Kearnes-Marković-McKenzie
polymorphisms [60, 49], and that the existence of Kearnes-Marković-McKenzie polymorphisms
implies the existence of a k-wnu for some k ≥ 2 [56]. Hence, in particular, if a finite digraph H has
a binary symmetric polymorphism then CSP(H) can be solved in polynomial time. Our results
will show that the converse is false even if H is a tree, see Section 7.1.4.

For both Kearnes-Marković-McKenzie and k-wnu, it is enough to test for level-wise satisfiability
as discussed in Section 5.5. We prove the following more general claim.

Lemma 10. Let Σ be a height-one condition in two variables such that both the variables appear
on each side in every identity from Σ. Then a balanced digraph level-wise satisfies Σ if and only
if it satisfies Σ.

Proof. Fix some polymorphisms f, . . . that level-wise satisfy Σ, and define polymorphisms f ′, . . . in
the following way (say f is k-ary): If lvl(x1) = lvl(x2) = · · · = lvl(xk), define f ′(x1, x2, . . . , xk) =
f(x1, x2, . . . , xk). Else, let ℓ = min{lvl(xi) | 1 ≤ i ≤ k} and define f ′(x1, x2, . . . , xk) = xj

where j ∈ {1, 2, . . . , k} is the smallest index such that lvl(xj) = ℓ. To verify that the f ′s are
polymorphisms, note that if (xi, yi) is an edge for i ∈ {1, 2, . . . , k}, then f ′(x1, x2, . . . , xk) and
f ′(y1, y2, . . . , yk) fall under the same case of the definition. If it is the second case, xj lies on
the smallest level out of {lvl(xi) | 1 ≤ i ≤ k} if and only if yj lies on the smallest level out of
{lvl(yi) | 1 ≤ i ≤ k}. Hence, the selected coordinate j is the same. To see that every identity
is satisfied, note that the only interesting case is when lvl(x) 6= lvl(y), and f ′ then chooses the
variable on the lower level. The other implication is trivial.

6.2 Containment in Datalog

We have already mentioned in the introduction that containment in Datalog has numerous equiv-
alent characterizations. In this section, we formally state one of these characterizations in terms of
pp-constructibility and one in terms of height-one conditions. The structure 3Linp has the domain
D = {0, . . . , p− 1} where p is some prime, the relation {(x, y, z) | x+ y + z ≡ 0 (mod p)}, and the
relation {x} for every x ∈ D. It is well-known that CSP(3Linp) is not in Datalog [32].

14

Definition 11. A 3-4 weak near-unanimity pair (short, 3-4 WNU) is a pair of operations f, g
such that f is a 3-wnu, g is a 4-wnu, and they additionally satisfy the identity

f(x, x, y) ≈ g(x, x, x, y).

Theorem 12 ([7, 51]). Let H be a finite digraph. Then the following are equivalent.

• H can be solved by Datalog.

• there is no pp-construction of 3Linp in H, for any prime p.

• H has a 3-4 weak near-unanimity pair of polymorphisms.

Note that this shows that Conjecture 3 implies (assuming P 6= NP) that every tree with
Kearnes-Marković-McKenzie polymorphisms has a 3-4WNU pair of polymorphisms and in partic-
ular, that it has a 3-wnu polymorphism, which is open as well. Also note that by Lemma 10, it is
enough to test for level-wise 3-4 WNU.

6.3 Containment in NL

In this section we present a strong sufficient condition for the containment of H in NL.

Definition 13. For n ≥ 0, a Jónsson chain of length n over D is a sequence of ternary operations
j1, j2, . . . , j2n+1 on D that satisfy

x ≈ j1(x, x, y)

j2i−1(x, y, y) ≈ j2i(x, y, y) for all i ∈ {1, . . . , n}

ji(x, y, x) ≈ x for all i ∈ {1, . . . , 2n + 1}

j2i(x, x, y) ≈ j2i+1(x, x, y) for all i ∈ {1, . . . , n}

j2n+1(x, y, y) ≈ y.

The respective height one condition is abbreviated by J(n).

Note that J(n) implies J(n+1) for every n ≥ 0. Also note that for n = 0 the operation j1 must
be a so-called majority operation, which is the ternary case of a near-unanimity (NU) operation,
that is, an operation satisfying the identities

x ≈ f(y, x, . . . , x) ≈ f(x, y, x, . . . , x) ≈ · · · ≈ f(x, . . . , x, y).

The existence of a near-unanimity polymorphism characterizes bounded strict width [32]. More
importantly for us, a near-unanimity polymorphism is sufficient to put H in NL, using the following
two results. Barto, Kozik, and Willard proved that finite structures with finite relational signature
and a near-unanimity polymorphism have bounded pathwidth duality [11]. Dalmau proved that
bounded pathwidth duality implies containment in NL [26].

Barto [3] moreover proved that if a finite structure with a finite relational signature has poly-
morphisms that form a Jónsson chain, then it also has a near-unanimity polymorphism (albeit its
arity in the proof is doubly exponential in the size of the domain). In the other direction, it is well
known that NU(n) implies J(n− 2), syntactically. Therefore, we do not test for near-unanimities
of arities higher than 3; it is more efficient to test for a Jónsson chain.

Theorem 14 ([3, 11, 26]). If a finite digraph H satisfies J(n) for some n ≥ 1, then CSP(H) is in
linear Datalog, and hence in NL.

Note that the existence of polymorphisms of H that form a Jónsson chain is only a sufficient
condition for the containment of CSP(H) in NL. An incomparable sufficient condition for the
containment of CSP(H) in NL was identified in [23]. The condition presented there also has a
characterization via height-one identities, but the arities of the operations are prohibitively large
so that we did not implement this test for trees.

The conjectured characterization of containment in NL, the Kearnes-Kiss chain from Conjec-
ture 1, is defined in Section 6.7 (Definition 21).

15

6.4 Containment in L

One of the strongest known sufficient conditions for containment in L is a conditional result of
Kazda, which involves the following linear condition.

Definition 15. For n ≥ 1, a Hagemann-Mitschke chain of length n over D is a sequence of
ternary operations p1, . . . , pn on D that satisfy

x ≈ p1(x, y, y)

pi(x, x, y) ≈ pi+1(x, y, y) for all i ∈ {1, . . . , n− 1}

pn(x, x, y) ≈ y.

The respective height one condition is abbreviated by HM(n).

Note that HM(n) implies HM(n + 1) for every n ≥ 1. For n = 1 the operation p1 is known as
a Maltsev operation. Kazda [46] proved the following conditional result.

Theorem 16 ([46]). If a finite digraph H can be solved by linear Datalog, and H satisfies HM(n)
for some n ≥ 1, then H can also be solved by linear symmetric Datalog (and hence is in L).

The conjectured characterization of containment in L, the Noname chain from Conjecture 2,
is defined in Section 6.9 (Definition 24).

6.5 Solvability by Arc Consistency

Solvability by Arc-Consistency (and tree duality) can be characterized in terms of height one
conditions as well.

Definition 17. An operation sn : Dn → D is called totally symmetric if for all variables x1, . . . , xn

and y1, . . . , yn such that {x1, . . . , xn} = {y1, . . . , yn} the operation sn satisfies

sn(x1, . . . , xn) ≈ sn(y1, . . . , yn).

The respective height one condition is abbreviated by TS(n).

The digraph H can be solved by arc consistency if and only if H has totally symmetric poly-
morphisms of all arities [32, 27]. Note that TS(4) implies 3-4 WNU. Also note that a finite digraph
H satisfies TS(n) for all n > 0 if and only if it satisfies TS(2|E(H)|) (see the proof given in [27]).
The arity 2|E(H)| is still fairly large; therefore it is particularly useful that the level-wise test is
sufficient.

Lemma 18 (see [8, proof of Lemma 4.1]). For any balanced digraph H and n > 0, H level-wise
satisfies TS(n) if and only if H satisfies TS(n).

Proof. Let sn be an n-ary polymorphism of H that level-wise satisfies the condition TS(n). We can
construct an n-ary totally symmetric polymorphism s′n of H by applying sn to the set of vertices
on the smallest level. That is, for an input tuple (x1, . . . , xn) let ℓ = min{lvl(xi) | 1 ≤ i ≤ n},
{xi | lvl(xi) = ℓ} = {xi1 , . . . , xik}, and set

s′n(x1, . . . , xn) = sn(xi1 , . . . , xik , xik , . . . , xik
︸ ︷︷ ︸

(n−k) times

).

Clearly, the definition of s′n(x1, . . . , xn) depends only on the set {x1, . . . , xn}. To see that s′n is a
polymorphism, note that similarly as in Lemma 10 if (xi, yi) is an edge for i ∈ {1, 2, . . . , n}, then
xij lies on the smallest level if and only if yij does. The rest follows from the fact that sn is totally
symmetric on each level. The other implication is again trivial.

16

6.6 P-hardness

The structure Horn-3SAT has the domain {0, 1} and a ternary relation {0, 1}3 \ {(1, 1, 0)}, and
the two unary relations {0} and {1}). It is well-known that CSP(Horn-3SAT) is P-complete, i.e.,
complete for the complexity class P under deterministic logspace reductions.

Definition 19. A Hobby-McKenzie chain consists of ternary operations d0, . . . , dn, p, e0, . . . , en
such that

d0(x, y, z) ≈ x

di(x, y, y) ≈ di+1(x, y, y) for even i < n

di(x, x, y) ≈ di+1(x, x, y) for odd i < n

di(x, y, x) ≈ di+1(x, y, x) for odd i < n

dn(x, y, y) ≈ p(x, y, y)

p(x, x, y) ≈ e0(x, x, y)

ei(x, y, y) ≈ ei+1(x, y, y) for even i < n

ei(x, x, y) ≈ ei+1(x, x, y) for odd i < n

ei(x, y, x) ≈ ei+1(x, y, x) for even i < n

en(x, y, z) ≈ z.

The respective height one condition is abbreviated by HMcK(n).

Theorem 20 (consequence of Theorem 9.8 in [42]). A finite structure does not satisfy HMcK(n)
for some n ≥ 1 if and only if it can pp-construct Horn-3SAT.

The theorem implies that if a finite digraph H does not satisfy HMcK(n) for some n ≥ 1, then
H is P-hard (see Section 5.1).

6.7 P-hardness or ModpL-hardness

It is widely believed that NL is a proper subclass of P. Another complexity class which is believed
to be a proper subclass of P is the class ModpL, for some prime p: this is defined to be the class
of problems such that there exists a non-deterministic logspace machine M such that an instance
is in the class if and only if the number of accepting paths of M on the instance is divisible by p;
see [52]. It is well known that CSP(3Linp) is ModpL-complete. If NL would contain ModpL then
this would be a considerable breakthrough in complexity theory.

Definition 21 (from Theorem 9.11 in [42]). Let D be a set. A Kearnes-Kiss chain of length n ≥ 2
over D is a sequence of ternary operations d0, d1, . . . , dn on D such that

d0(x, y, z) ≈ x

di(x, y, y) ≈ di+1(x, y, y) for even i ∈ {0, 1, . . . , n− 1}

di(x, y, x) ≈ di+1(x, y, x) for even i ∈ {0, 1, . . . , n− 1}

di(x, x, y) ≈ di+1(x, x, y) for odd i ∈ {1, . . . , n− 1}

dn(x, y, z) ≈ z.

The respective height one condition is abbreviated by KK(n).

Note that KK(n) implies KK(n+ 1) for every n ≥ 0. Also note that the existence of a Jónsson
chain implies the existence of a Kearnes-Kiss chain [42]; namely J(n) trivially implies KK(2n+ 4).

Theorem 22 (see [12] and [42]). A finite structure does not satisfy KK(n) for some n ≥ 2 if and
only if it can pp-construct Horn-3SAT or 3Linp for some prime p.

17

We have already mentioned that if a finite digraph H pp-constructs Horn-3SAT then it is P-
hard, and hence CSP(H) is not in NL unless NL = P. Similarly, if H pp-constructs 3Linp then
it is ModpL-hard, and in this case it is not in NL unless NL contains ModpL. If the conjecture
that ‘easy trees cannot count’ (Conjecture 3) is true, then the existence a Kearnes-Kiss chain is
equivalent to the existence of a Hobby-McKenzie chain for trees (assuming P 6= NP).

6.8 NL-hardness

The structure st-Con has the domain {0, 1}, the binary relation {(0, 0), (0, 1), (1, 1)} and the unary
relations t = {0} and s = {1}. Note that an instance of the CSP of st-Con is unsatisfiable if and
only if there exists a directed path from s to t in the digraph defined by the binary relation. It is
well-known that CSP(st-Con) is complete for the complexity class NL.

Theorem 23 ([52, 42]). If a finite digraph H does not satisfy HM(n) for some n ≥ 1, then it can
pp-construct the structure st-Con, and H is NL-hard.

6.9 NL-hardness or ModpL-hardness

We now present a polymorphism condition that characterizes the finite structures that can pp-
construct st-Con or 3Linp for some prime p.

Definition 24 ([42], Theorem 9.15). For n ≥ 0, a Noname chain of length n over D is a sequence
of operations f0, f1, . . . , fn of arity four on D such that

f0(x, y, y, z) ≈ x

fi(x, x, y, x) ≈ fi+1(x, y, y, x) for all i ∈ {0, . . . , n− 1}

fi(x, x, y, y) ≈ fi+1(x, y, y, y) for all i ∈ {0, . . . , n− 1}

fn(x, x, y, z) ≈ z.

The respective height one condition is abbreviated by NN(n).

Note that NN(n) implies NN(n + 1) for every n ≥ 0.

Theorem 25 ([42, 12]). A finite structure does not satisfy NN(n) for some n ≥ 1 if and only if
it can pp-construct the structure st-Con or the structure 3Linp for some prime p.

It follows that if a finite digraph H does not satisfy NN(n) for any n ≥ 1, then CSP(H) is
NL-hard or ModpL-hard. Hence, H is in this case not in L, unless L = NL or L = ModpL. Note
that Conjecture 3 together with Conjecture 2 implies that NN(n) for some n and HM(n) for some
n are equivalent for trees (assuming L 6= NL).

7 Experimental Results

We implemented the AC-3 algorithm for establishing arc-consistency and used its adaptation,
known as the MAC-3 algorithm, for maintaining arc-consistency during the backtracking procedure
described in Section 5.3. The lists and related operations were implemented by doubly-linked lists.
The code is written in Rust1 and the experiments were run on a Intel(R) Xeon(R) CPU E5-2680
v3 (12 cores) @ 2.50GHz with Linux. We also used another implementation written in Python.
All tests for chains of polymorphisms and for totally symmetric polymorphisms where done using
this implementation on a AMD Ryzen 5 4500U (with 8 cores) @ 2.38 GHz with Windows. An
efficient implementation was essential to obtain our results.2

1https://gitlab.com/WhatDothLife/tripolys
2For comparison, we modeled some polymorphism tests in the constraint modeling language MiniZinc [57] and

used the CP solver Gecode [59]. However, this turned out to not be competitive.

18

n trees cores
rooted
cores

core
checks

time per
core check (µs)

total time

1 1 1 1 1 10 0.7 ms

2 1 1 2 1 10 0.8 ms

3 3 1 3 3 11 1.0 ms

4 8 1 6 8 12 1.1 ms

5 27 1 11 19 13 1.3 ms

6 91 2 28 39 15 2.0 ms

7 350 3 63 94 24 2.3 ms

8 1376 7 170 198 25 5.6 ms

9 5743 15 439 439 30 12.0 ms

10 24635 36 1200 953 36 30.9 ms

11 108968 85 3307 2180 40 69.1 ms

12 492180 226 9380 5050 48 187.9 ms

13 2266502 578 26731 12218 55 547.2 ms

14 10598452 1569 77508 29785 66 1.6 s

15 50235931 4243 226399 74902 71 5.0 s

16 240872654 11848 668228 190632 84 15.9 s

17 1166732814 33104 1984592 496373 98 52.5 s

18 5702001435 94221 5937276 1308847 121 3.0 min

19 28088787314 269455 17856807 3512229 129 9.8 min

20 139354922608 779268 53996424 9538804 142 31.7 min

Table 2: The number of unlabeled trees with n vertices together with results of Algorithm 2.

Table 2 shows the number of unlabeled trees with n vertices and the number of those that are
cores. The table suggests that the fraction of trees that are cores quickly goes to 0. The next
columns contain the number of unlabeled rooted cores with n vertices, the number of core checks,
and the mean cpu time per core check on a tree with n vertices. The final column in the table
shows the computation time needed to generate all the unlabeled core trees with n vertices with
Algorithm 2.

In this section we present the results of testing the discussed linear conditions on these trees
to classify them with respect to their computational complexity. In some cases we manage to
compute all the minimal trees in the respective complexity class; the corresponding results are
presented in Section 7.1. In Section 7.2 we present trees whose precise complexity status is open.
While the numbers of trees given in the text are up to isomorphism, the corresponding figures
make a further restriction based on the following fact.

Remark 26. An operation is a polymorphism of H if and only if it is a polymorphism of HR.

The remark justifies that our figures contain exactly one of the trees T, TR. It turns out that
the trees in our figures that do not satisfy a certain height-one condition have a unique minimal
subtree which has no idempotent polymorphisms satisfying the respective condition (see Remark
6). The vertices and edges drawn in gray do not belong to this minimal subgraph of T.

7.1 The Smallest Hard Trees

In this section we present the smallest trees that are NP-hard and that are NL-hard, under standard
assumptions from complexity theory. We also compute the smallest tree that cannot be solved by
arc consistency, the smallest trees that cannot be solved by Datalog, and the smallest trees that

19

cannot be solved by linear symmetric Datalog; these results hold without any assumptions from
complexity theory.

7.1.1 The Smallest NP-Hard Trees

Our algorithm found that all trees with at most 19 vertices have Kearnes-Marković-McKenzie
polymorphisms and hence are tractable. It also found that there exist exactly 36 trees with 20
vertices that have no Kearnes-Marković-McKenzie polymorphisms and hence are NP-hard. For
such an NP-hard tree T with 20 vertices it takes our algorithm about 0.07 seconds to construct
the indicator digraph TInd for the Kearnes-Marković-McKenzie polymorphisms and about 0.03
seconds to verify that TInd does not have a homomorphism to T. When applying the level trick,
it takes about 0.01 seconds to construct the indicator digraph and 0.03 seconds to verify that TInd

does not have a homomorphism to T.
The trees with 20 vertices that have no Kearnes-Marković-McKenzie polymorphisms are dis-

played in Figure 3. Note that the smallest subtree without idempotent Kearnes-Marković-McKenzie
polymorphism is the same for the trees A2–A4, A5–A12, and A13–A18.

Moreover, there are 4 smallest triads with 22 vertices that have no Kearnes-Marković-McKenzie
polymorphisms; these are shown in Figure 4. All smaller triads have a binary symmetric poly-
morphism.

7.1.2 The Smallest NL-hard Trees

There are 8 trees with 12 vertices that are NL-hard. Two of them are isomorphic to their reverse,
so we only display 5 trees in Figure 5, called B1, B2, B3, B4, and B5. The proof that they are
NL-hard can be found below. All other trees with at most 12 vertices satisfy HM(8).

Since the trees B1-B5 have a majority they are in NL. To prove that B1-B5 are NL-hard, we
show that they can pp-construct st-Con. Hence we need to construct the three relations {0}, {1},
and {(0, 0), (0, 1), (1, 1)}. First note that in a core tree T any singleton set is pp-definable from T,
since End(T) = {idT } by Theorem 2. The following two graphs represent two pp-formulas φ1(x, y)
and φ2(x, y). The filled vertices stand for existentially quantified variables.

x y x
y

The trees B1, B2, B3 can pp-define a structure that is homomorphically equivalent to st-Con
using φ1(x, y) for E(st-Con). The trees B4 and B5 can do the same using φ2(x, y) for E(st-Con).
Since st-Con is NL-hard, B1-B5 are NL-hard as well.

So for 12 vertices, 8 out of 226 trees are NL-hard (assuming L 6= NL). In Table 6 we present
how this distribution in core trees changes with increasing number of vertices. Every tree with at
most 20 vertices falls into one of two cases:

• it satisfies HM(16) and has a majority polymorphism, hence it is in L, or

• it has no HM(30).

We strongly suspect that in the latter case the trees have no HM(n) for any n, can pp-construct
st-Con, and are NL-hard.

7.1.3 The Smallest Tree not Solved by Datalog

It turns out that every tree with at most 20 vertices which is not NP-hard can be solved by
Datalog, thus confirming Conjecture 3. In fact, up to 20 vertices all trees that have Kearnes-
Marković-McKenzie polymorphisms either have a majority polymorphism or totally symmetric

20

Tree A1 Tree A2 Tree A3 Tree A4

Tree A5 Tree A6 Tree A7 Tree A8

Tree A9 Tree A10 Tree A11 Tree A12

Tree A13 Tree A14 Tree A15 Tree A16

Tree A17 Tree A18

Figure 3: The smallest NP-hard trees (up to edge reversal and assuming P 6= NP).

Triad 1 Triad 2

Figure 4: The smallest NP-hard triads (up to edge reversal and assuming P 6= NP).

21

Tree B1 Tree B2 Tree B3 Tree B4 Tree B5

Figure 5: The smallest NL-hard trees (up to edge reversal and assuming L 6= NL).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

have HM(2)
but not HM(1)

have HM(4)
but not HM(3)

have HM(6)
but not HM(5)

likely
NL-hard

Figure 6: Distribution of core trees in L.

polymorphisms of all arities. The picture is however more complex for larger trees: there exists a
tree which can be solved by Datalog but does not have a near-unanimity polymorphism (of any
arity) and does not have totally symmetric polymorphisms of all arities, see [4, Proposition 5.5]
for an example and [21] for its solvability in Datalog.

7.1.4 The Smallest Tree not Solved by Arc Consistency

The smallest tree T that has no binary symmetric polymorphism has 19 vertices and is displayed
in Figure 7. It has a 3-wnu polymorphism, and even a majority polymorphism which satisfies
f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ T . Note that CSP(T) cannot be solved by the
arc-consistency procedure since in this case T must have a binary symmetric polymorphism [32, 27].
All other trees with at most 19 vertices satisfy TS(n) for all n. For a tree T the vertices of the
indicator digraph for TS(2|E(T)|) correspond to the nonempty subsets of T . Hence the indicator
structure of a tree T with 19 vertices has 219 − 1 = 524287 vertices. Using level-wise satisfiability
(see Section 6.5) the number of vertices of the indicator structure is reduced to something between
19 and 513, depending on the number of vertices on each level.

Tree C

Figure 7: The smallest tree that cannot be solved by Arc Consistency (it has 19 vertices and a
majority, but no binary symmetric polymorphism).

22

Tree D

Figure 8: The smallest tree without a majority polymorphism (unique up to edge reversal; it has
16 vertices). It satisfies KK(5) but does not satisfy Jónsson(1000). Therefore, Conjecture 1 puts
it in NL but we cannot prove this fact; it is an interesting open case.

7.2 Open Trees

In this section we present trees that are interesting test cases, in particular regarding the conjec-
tured classification of digraphs in NL (Conjecture 1).

7.2.1 A Tree not Known to be in NL

We found a tree with polymorphisms that form a Kearnes-Kiss chain of length five and a Hobby-
McKenzie chain of length 2, but has no Majority, and no (level-wise) Jónsson chain of length 1000
(see Figure 8). This tree is neither known to be P-hard or ModpL-hard, nor is it known to be
in NL. It is the smallest tree without a majority polymorphism. Note that the existence of a
Jónsson chain of some length is decidable because for a given digraph there are only finitely many
operations of arity three. Moreover, by the discussion from Section 5.5 we know that we may
narrow down the set of operations that have to be considered; the resulting number of operations
is 1236. Even if we could show that the tree has no Jónsson chain we would not know that the
tree is not in NL. We believe that the tree is in NL, but new ideas are needed to prove that (e.g.,
ideas to prove Conjecture 1). We mention that it can pp-construct st-Con, so it is NL-hard.

7.2.2 Trees that might be P-hard

There are 28 trees with 18 vertices that satisfy neither HMcK(1000) nor KK(1000), not even
level-wise (see Figure 9). They satisfy TS(n) for all n, so they are in P and cannot pp-construct
3Linp for every p. Hence, this is in accordance with Conjecture 3. All other trees with up to 18
vertices satisfy KK(5) and are in NL assuming Conjecture 1. Hence, if this conjecture is true, and
if NL 6= P, and if indeed these 28 trees do not have HMcK(n) for any n, then they are the smallest
trees that are P-hard.

7.3 Majority Polymorphisms

Majority polymorphisms play a central role in the early theory of the constraint satisfaction
problem [32, 31, 43], in graph theory [45, 41], and in the algebraic theory of CSPs [18, 19]. We
have therefore also computed a smallest tree without a majority polymorphism (see Figure 8).
Interestingly, when solving the indicator problem for the existence of a majority polymorphism of
H for graphs with at most 15 vertices (which all have a majority polymorphism), no backtracking
was needed: pruning with the arc-consistency procedure did suffice to avoid all dead-ends in the
search. Theoretical results only guarantee this behavior for establishing (2, 3)-consistency (since H

has a majority polymorphism). So one might ask: can every tree with a majority polymorphism be
solved by arc consistency? This is not the case; see Lemmata 4.1 and 4.2 in [8]. In our experiments
we found the smallest such tree: Figure 7 shows a tree with a majority polymorphism which does
not even have a binary symmetric polymorphism, and hence in particular cannot be solved by arc
consistency.

23

Tree E1 Tree E2 Tree E3 Tree E4 Tree E5

Tree E6 Tree E7 Tree E8 Tree E9

Tree E10 Tree E11 Tree E12 Tree E13 Tree E14

Figure 9: Smallest trees without HMcK(1000) (they have 18 vertices). These trees are tractable
and candidates for being P-complete.

8 Open Problems and Future Work

The following conjecture is implied by Conjecture 3, but might be easier to answer.

Conjecture 4. A tree has Kearnes-Marković-McKenzie polymorphisms if and only if it has a
3-wnu polymorphism.

Question 1. Is it true that the probability that a tree drawn uniformly at random from the set of
all trees with vertex set {1, . . . , n} is NP-hard tends to 1 as n tends to infinity? The answer is yes
if we ask the question for random labelled digraphs instead of random labelled trees [54].

The table in Figure 6 suggests that the following conjecture is true.

Conjecture 5. The fraction of core trees with n vertices that are NL-hard goes to 1 as n goes to
infinity.

Question 2. Determine the smallest trees that are P-hard (assuming that NL 6= P). We know
from Section 7.3 that they must have at least 16 vertices, since all smaller trees have a majority
and thus are in NL.

Question 3. Is our algorithm from Section 4 to generate unlabeled core trees a polynomial-delay
enumeration algorithm (in the sense of [44])?

Question 4. Characterize linear conditions that can be tested level-wise (in the sense of Sec-
tion 5.5) for balanced digraphs, and more specifically, for trees.

It would be interesting to perform experiments similar to the experiments presented here for
trees that are equipped with a singleton unary relation {a} for each vertex a of the tree; in this

24

case, if Tc is the resulting expanded tree structure, CSP(Tc) models the so-called T-precoloring
extension problem. This setting is particularly nice from the algebraic perspective because then
all the polymorphisms of Tc are idempotent. Note, however, that all these structure Tc are cores,
so there are far more structures to consider, and hardness will dominate more rapidly.

Taking this one step further, it would also be interesting to study the so-called list homomor-
phism problem for trees T from an experimental perspective. Here, the input contains besides the
graph G a list of vertices from H and we are looking for a homomorphism from G to H that maps
each vertex to an element from its list. This can be seen as a special case of a CSP for a relational
structure, which contains besides the edge relation also a unary relation for each subset of the
vertices of H. On the algebraic side, we are therefore interested in polymorphisms that preserve
all subsets of H; such polymorphisms (and consequently the respective CSPs) are also called con-
servative. The algorithms and complexities for conservative CSPs are better understood than the
general case [16, 2, 18, 47], which will help to determine the complexity of the list homomorphism
for trees. On the other hand, as in the case of the precoloring extension problem we have much
larger numbers of trees to consider since all the structures that we study are already cores.

9 Declarations

The authors are grateful to the Center for Information Services and High Performance Computing
[Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)] at TU Dresden for provid-
ing its facilities for high throughput calculations. Manuel Bodirsky has received funding from
the European Research Council (Grant Agreement no. 681988, CSP-Infinity). Jakub Buĺın was
supported by the MŠMT ČR INTER-EXCELLENCE project LTAUSA19070 and the Charles
University project UNCE/SCI/004. Florian Starke is supported by DFG Graduiertenkolleg 1763
(QuantLA). The authors have no competing interests to declare that are relevant to the content
of this article.

References

[1] F. N. Afrati and S. S. Cosmadakis. Expressiveness of restricted recursive queries (extended
abstract). In D. S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 113–126. ACM,
1989.

[2] L. Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings of the Symposium on Logic in Computer Science (LICS), Toronto, Canada, 2011.

[3] L. Barto. Finitely related algebras in congruence distributive varieties have near unanimity
terms. Canadian Journal of Mathematics, 65(1):3–21, 2013.

[4] L. Barto and J. Buĺın. CSP dichotomy for special polyads. Int. J. Algebra Comput.,
23(5):1151–1174, 2013.

[5] L. Barto and M. Kozik. Constraint satisfaction problems of bounded width. In Proceedings
of Symposium on Foundations of Computer Science (FOCS), pages 595–603, 2009.

[6] L. Barto and M. Kozik. Absorbing subalgebras, cyclic terms and the constraint satisfaction
problem. Logical Methods in Computer Science, 8/1(07):1–26, 2012.

[7] L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consistency meth-
ods. Journal of the ACM, 61(1):3:1–3:19, 2014.

[8] L. Barto, M. Kozik, M. Maróti, and T. Niven. CSP dichotomy for special triads. Proceedings
of the American Mathematical Society, 137(9):2921–2934, 2009.

25

[9] L. Barto, M. Kozik, M. Maróti, and T. Niven. Erratum to: CSP dichotomy for special triads.
Available from the website of the first author, 2009.

[10] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with no sources
and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM Journal on
Computing, 38(5), 2009.

[11] L. Barto, M. Kozik, and R. Willard. Near unanimity constraints have bounded pathwidth
duality. In Proceedings of the 27th ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 125–134, 2012.

[12] L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and how to use them. In A. Krokhin
and S. Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximabil-
ity, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2017.

[13] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Israel Journal of Math-
ematics, 223(1):363–398, 2018.

[14] M. Bodirsky and B. Bodor. Canonical polymorphisms of Ramsey structures and the unique in-
terpolation property. In Proceedings of the Symposium on Logic in Computer Science (LICS),
2021.

[15] M. Bodirsky and P. Jonsson. A model-theoretic view on qualitative constraint reasoning.
Journal of Artificial Intelligence Research, 58:339–385, 2017.

[16] A. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of the
Symposium on Logic in Computer Science (LICS), pages 321–330, Ottawa, Canada, 2003.

[17] A. A. Bulatov. Bounded relational width. Manuscript, 2009.

[18] A. A. Bulatov. Conservative constraint satisfaction re-revisited. Journal Computer and
System Sciences, 82(2):347–356, 2016. ArXiv:1408.3690.

[19] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages
319–330, 2017.

[20] A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

[21] J. Buĺın. On the complexity of H-coloring for special oriented trees. Eur. J. Comb., 69:54–75,
2018.

[22] J. Buĺın, D. Delic, M. Jackson, and T. Niven. A finer reduction of constraint problems to
digraphs. Log. Methods Comput. Sci., 11(4), 2015.

[23] C. Carvalho, V. Dalmau, and A. Krokhin. CSP duality and trees of bounded pathwidth.
Theoretical Computer Science, 411:3188–3208, 2010.

[24] H. Chen and B. Larose. Asking the metaquestions in constraint tractability. TOCT, 9(3):11:1–
11:27, 2017.

[25] V. Dalmau. Computational complexity of problems over generalized formulas. PhD-thesis
at the Departament de Llenguatges i Sistemes Informátics at the Universitat Politécnica de
Catalunya, 2000.

[26] V. Dalmau. Linear Datalog and bounded path duality of relational structures. Logical Methods
in Computer Science, 1(1), 2005.

26

[27] V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Proceedings of the
International Conference on Principles and Practice of Constraint Programming (CP), pages
159–173, 1999.

[28] R. Diestel. Graph Theory. Springer–Verlag, New York, 2005. Third edition.

[29] L. Egri, B. Larose, and P. Tesson. Symmetric datalog and constraint satisfaction problems
in logspace. In Proceedings of the Symposium on Logic in Computer Science (LICS), pages
193–202, 2007.

[30] L. Egri, B. Larose, and P. Tesson. Directed st-connectivity is not expressible in symmetric
datalog. In Proceedings of the 35th International Colloquium on Automata, Languages and
Programming, Part II, ICALP ’08, pages 172––183, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] T. Feder. Classification of homomorphisms to oriented cycles and of k-partite satisfiability.
SIAM Journal on Discrete Mathematics, 14(4):471–480, 2001.

[32] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-
straint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing,
28:57–104, 1999.

[33] J. Fischer. CSPs of orientations of trees. Master thesis, TU Dresden, 2015.

[34] W. Gutjahr. Graph colourings. PhD Thesis, Free University Berlin, 1991.

[35] W. Gutjahr, E. Welzl, and G. J. Woeginger. Polynomial graph-colorings. Discret. Appl.
Math., 35(1):29–45, 1992.

[36] P. Hell, J. Nesetril, and X. Zhu. Complexity of tree homomorphisms. Discret. Appl. Math.,
70(1):23–36, 1996.

[37] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory,
Series B, 48:92–110, 1990.

[38] P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics, 109:117–126, 1992.

[39] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, Oxford, 2004.

[40] P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomorphisms.
TAMS, 348(4):1281–1297, 1996.

[41] P. Hell and A. Rafiey. The dichotomy of list homomorphisms for digraphs. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, page
1703–1713, USA, 2011. Society for Industrial and Applied Mathematics.

[42] D. Hobby and R. McKenzie. The structure of finite algebras, volume 76 of Contemporary
Mathematics. American Mathematical Society, 1988.

[43] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527–548, 1997.

[44] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal inde-
pendent sets. Information Processing Letters, 27(3):119–123, 1988.

[45] A. Kazda. Maltsev digraphs have a majority polymorphism. European Journal of Combina-
torics, 32:390–397, 2011.

[46] A. Kazda. n-permutability and linear Datalog implies symmetric Datalog. Logical Methods
in Computer Science, Volume 14, Issue 2, Apr. 2018.

27

[47] A. Kazda. CSP for binary conservative relational structures. Algebra universalis, Volume 75,
Issue 1:75–84, Feb. 2019.

[48] K. A. Kearnes and E. W. Kiss. The Shape of Congruence Lattices, volume 222 (1046) of
Memoirs of the American Mathematical Society. American Mathematical Society, 2013.

[49] K. A. Kearnes, P. Marković, and R. McKenzie. Optimal strong Mal’cev conditions for omitting
type 1 in locally finite varieties. Algebra Universalis, 72(1):91–100, 2015.

[50] M. Kozik. Weak consistency notions for all the CSPs of bounded width. In Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, page 633–641,
New York, NY, USA, 2016. Association for Computing Machinery.

[51] M. Kozik, A. Krokhin, M. Valeriote, and R. Willard. Characterizations of several Maltsev
conditions. Algebra universalis, 73(3):205–224, 2015.

[52] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satisfaction
problems. Theoretical Computer Science, 410(18):1629–1647, 2009.

[53] B. Larose, M. Valeriote, and L. Zádori. Omitting types, bounded width and the ability to
count. International Journal of Algebra and Computation, 19(5), 2009.

[54] T. Luczak and J. Nešetřil. When is a random graph projective? Eur. Journal Comb., 27(7),
2006.

[55] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

[56] M. Maróti and R. McKenzie. Existence theorems for weakly symmetric operations. Algebra
Universalis, 59(3-4):463–489, 2008.

[57] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack. Minizinc:
Towards a standard CP modelling language. In C. Bessière, editor, Principles and Practice
of Constraint Programming – CP 2007, pages 529–543, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[58] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satisfaction.
In ECAI, 1994.

[59] C. Schulte, M. Z. Lagerkvist, and G. Tack. Gecode, generic constraint development environ-
ment, 2010. http://www.gecode.org/.

[60] M. H. Siggers. A strong Mal’cev condition for varieties omitting the unary type. Algebra
Universalis, 64(1):15–20, 2010.

[61] W. Tatarko. CSP over oriented trees. Bachelor thesis, Charles University Prague, 2019.

[62] P. Taylor. Algorithm for generating all unlabeled trees with n nodes? Computer Science
Stack Exchange. URL:https://cs.stackexchange.com/q/103287 (version: 2019-01-23).

[63] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.

[64] D. N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages
331–342, 2017.

28

	1 Introduction
	1.1 Computational Complexity
	1.2 Descriptive Complexity
	1.3 Contributions
	1.4 Outline of the Article

	2 Graphs, Digraphs, Homomorphisms
	2.1 The Arc-consistency Procedure

	3 Cores of Trees
	4 Generating all Core Trees
	5 Polymorphism Conditions
	5.1 Primitive Positive Constructions
	5.2 Linear Conditions and Height-one Conditions
	5.3 The Indicator Construction
	5.4 Arc Consistency with Exhaustive Search
	5.5 Level-wise satisfiability

	6 Specific Polymorphism Conditions
	6.1 Containment in P
	6.2 Containment in Datalog
	6.3 Containment in NL
	6.4 Containment in L
	6.5 Solvability by Arc Consistency
	6.6 P-hardness
	6.7 P-hardness or ModpL-hardness
	6.8 NL-hardness
	6.9 NL-hardness or ModpL-hardness

	7 Experimental Results
	7.1 The Smallest Hard Trees
	7.1.1 The Smallest NP-Hard Trees
	7.1.2 The Smallest NL-hard Trees
	7.1.3 The Smallest Tree not Solved by Datalog
	7.1.4 The Smallest Tree not Solved by Arc Consistency

	7.2 Open Trees
	7.2.1 A Tree not Known to be in NL
	7.2.2 Trees that might be P-hard

	7.3 Majority Polymorphisms

	8 Open Problems and Future Work
	9 Declarations

