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The amplitude expansion for a magnetic phase-field-crystal (magnetic APFC) model enables a
convenient coarse-grained description of crystalline structures under the influence of magnetic fields.
Considering higher-order magnetic coupling terms, we demonstrate the possibility of tuning the
magnetic anisotropy in these models. This allows for reproducing the easy and hard direction of
magnetization. Such a result can be achieved without increasing the computational cost, enabling
simulations of the manipulation of dislocation networks and microstructures in ferromagnetic ma-
terials. As a demonstration, we report on the simulation of the shrinkage of a spherical grain with
the magnetic anisotropy of Fe.
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I. INTRODUCTION

In order to explore the possibilities external magnetic fields offer to manipulate microstructure in ferromagnetic
materials [1], a detailed understanding of the interactions between magnetic fields and solid-state matter transport
is required. Various modeling approaches have been introduced to describe the magneto-structural interactions in
a multiscale framework. A promising approach is the phase-field-crystal (PFC) model [2, 3], describing crystal
lattices through a periodic density field, that was extended to capture the fundamental physics of magnetocrystalline
interactions [4, 5]. In [4], the PFC density is coupled with magnetization to generate a ferromagnetic solid below
a critical temperature, while in [5] this PFC model is extended to multiferroic binary solid solutions and used to
demonstrate the influence of magnetic fields on the growth of crystalline grains. Magneto-structural interactions are
incorporated phenomenologically and building on symmetry arguments. This model, which consists of a system of
evolution equations for the rescaled atomic density field ϕ and an averaged magnetization m, is used in [6, 7] in
a simplified form to study the role played by external magnetic fields on the evolution of defect structures, grain
boundaries, long-time scaling behaviors and various geometrical and topological properties in grain growth. While
the microscopic details are well resolved with the considered magnetic PFC model and experimental relevant time
scales can be reached, the required spatial resolution restricts simulations to two-dimensional settings. Furthermore,
all previous investigations have considered generic material parameters for magnetic anisotropy.

The complex amplitude PFC (APFC) model initially introduced in [8, 9] provides a framework to overcome the
restriction resulting from the spatial resolution required by PFC models. The idea is to model the amplitude of
the density fluctuations instead of the density itself. This allows for reaching larger spatial scales while retaining
essential microscopic effects [10–12], thus enabling mesoscale investigations of crystalline systems. For a recent review
of APFC models, we refer to [13]. In [14], a magnetic APFC model is introduced, and the applicability for a simple
three-dimensional setting has been demonstrated. Together with advanced numerical approaches [15], this enables the
description of magneto-structural interactions in multiscale simulations, combining the dynamics of defects, dislocation
networks, and grain boundaries with experimentally accessible microstructure evolution on diffusive time scales [13].
We here build on this approach and modify the magnetic coupling energy. The considered modification allows for
tuning the magnetic anisotropy, reproducing the easy and hard direction of ferromagnetic materials. We demonstrate
this for BCC and FCC crystals. This modification essentially overcomes the limitations of previous approaches and
enables the modeling of material-specific magnetic anisotropies.

The paper is structured as follows: In Section II, we briefly review the magnetic PFC and APFC models. We
describe the numerical approach to solve the magnetic APFC model, discuss a modification of the magnetic coupling
energy which does not increase the computational cost, and introduce the few-mode approximation and the minimal
energy surface in the reciprocal space as a tool to analyze the impact of the magnetic coupling. In Section III, we
analyze the magnetic properties of BCC and FCC crystals and demonstrate the possibility of tuning the easy and
hard direction with the modified magnetic coupling energy. We further apply this new setting to study the magnetic
impact on grain growth. In Section IV we draw conclusions.

II. MAGNETIC PFC AND APFC MODELS

A. Magnetic PFC model

In [4, 5] a magnetic PFC model was proposed. This model describes the basic phenomenology of magneto-structural
interactions in crystals, namely magnetic anisotropy, and magneto-striction. In the limit of constant magnetization
or strong external magnetic field, the free energy, on which the magnetic PFC model builds, reads

F [ϕ,m] =

∫
Ω

[
Bx0
2
ϕ(q2

0 +∇2)2ϕ+
∆B0

2
ϕ2 − t

3
ϕ3 +

v

4
ϕ4

]
dr + Fm[ϕ,m],(1)

Fm[ϕ,m] =

∫
Ω

[
α̃0m

2ϕ2 +
∑
i=1

α̃2i

2i
(m · ∇ϕ)2i

]
dr,(2)

where ϕ denotes the scaled particle density and m the magnetization. q0 defines the lattice spacing at equilibrium, Ω
is the domain of integration, Bx0 , ∆B0, τ and v are parameters as introduced in [16]. Together with the average density
ϕ̄, they define crystal structure and physical properties. Fm[ϕ,m] accounts for the magnetocrystalline interactions
with magnetization m, which is assumed to be constant and scaled to unit length, |m| = 1. Even powers are
considered in the expansion due to the required mirror symmetry m → −m. The parameters α̃2i can be tuned to
control the magnetic anisotropy. However, already by setting α̃0 = 0 and considering the expansion only to lowest
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order, resulting in Fm[ϕ,m] =
∫

Ω
α̃2

2 (m · ∇ϕ)2dr, leads to magnetic anisotropy and can be considered as a minimal
model. In this setting, α̃2 simply controls the strength of the magnetic interaction. Integrating by parts allows to
rewrite this as Fm[ϕ,m] =

∫
Ω
− α̃2

2 ϕ(m ·∇)2ϕdr, which is numerically advantageous and has been considered in [6, 7].
The evolution equation for ϕ reads

(3)
∂ϕ

∂t
= ∇2 δF

δϕ
.

As the expansion in eq. (2) is phenomenological, we can also propose a different expansion fulfilling the same symmetry
constraints

(4) Fm′ [ϕ,m] =

∫
Ω

[
α̂0m

2ϕ2 +
∑
i=1

α̂2i

2
ϕ(m · ∇)2iϕ

]
dr.

We again set α̂0 = 0 and, as already seen, in lowest order Fm[ϕ,m] = Fm′ [ϕ,m] if α̂2 = −α̃2. However, in this
formulation also higher-order terms can be considered in a numerically efficient manner. We will consider expansions
to order i = 2 and demonstrate the possibility of tuning the magnetic anisotropy.

B. Magnetic APFC model

In the crystal phase, the density field ϕ described by the PFC model is periodic, with maxima at the atomic-lattice
sites, thus encoding the crystal structure directly. In the amplitude expansion of the PFC model, this density is
expanded in terms of a small set of Fourier modes

(5) ϕ(r) = ϕ̄+

N∑
j=1

[
Aj(r)eikj ·r +A∗j (r)e−ikj ·r

]
,

with ϕ̄ the overall mean density and {kj}Nj=1 defining the symmetry of a reference crystal usually corresponding to a
bulk, relaxed lattice. The reference crystal is then described by real and constant amplitudes Aj ∈ R. Complex and
space-dependent amplitudes account for deviations from the reference crystal. |Aj | entails information on the local
ordering while the phase of the complex amplitudes accounts for displacement with respect to the reference crystal.
Thus, at defects where singular displacement occurs, some of the amplitudes vanish, namely the ones having singular
phases. Far from defects, both phase and argument of Aj vary typically on a larger length scale than the distance
between particles in the crystal. Only at defects the amplitudes vary at a similar scale.

In [14] a corresponding magnetic APFC model to eqs. (1), (3) and (4) has been derived. It results from substituting
eq. (5) into eq. (1) and (4) and averaging fluctuations on small scales. The resulting equations read

(6) F [{Aj}] =

∫
Ω

[ N∑
j=1

Bx0
(
A∗jG2

jAj +A∗jCjAj
)

+ gS({Aj})
]
dr,

with

(7) gS({Aj}) =

N∑
j=1

(
−3v

2
|Aj |4

)
+

∆B0

2
A2 +

3v

4
A4 + fS({Aj}),

and A2 ≡ 2
∑N
j=1 |Aj |2, A4 ≡ (A2)2, Gj ≡ q2

0 − |kj |2 +∇2 + 2i kj · ∇ and Cj = 1
Bx

0

∑
i=1 α̂2i(m · ∇+ im · kj)2i.

The magnetic coupling is considered in the terms A∗jCjAj . In [14] only the lowest order (i = 1) is considered,
leading to a minimal magnetic APFC model. The equilibrium crystal without magnetization is chosen as a reference,
which leads to |kj | = q0. fS is a polynomial function in {Aj} and {A∗j}. It depends on the reference crystal structure,
see [11, 13, 17].

The evolution equations for each amplitude read

(8)
∂Aj
∂t

= −|kj |2
δF
δA∗j

,

with

(9)
δF
δA∗j

= Bx0
[
G2
j + Cj

]
Aj +

∂gS({Aj})
∂A∗j

.
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Considering Cj =M2
j +Qj we can write[

G2
j +M2

j

]
= (Gj + iMj)(Gj − iMj) =: N+

j N
−
j ,(10)

and eqs. (8) can be written as systems of second-order equations

(11)

∂Aj
∂t

= −|kj |2
[
Bx0N+

j µj +Bx0QjAj +Gj({Aj})
]
,

µj = N−j Aj ,

with Gj({Aj}) := ∂gS({Aj})/∂A∗j the nonlinear terms. In the following, we consider two specific forms of the magnetic
coupling term:

Model A : M2
j = α2 (m · ∇+ im · kj)2

and Qj = 0,(12)

Model B : M2
j = α2

[
q2
m + (m · ∇+ im · kj)2

]2
and Qj = −α2 q

4
m,(13)

with α2 = α̂2/B
x
0 . Model A corresponds to the lowest order expansion i = 1 and has been considered in [14] and Model

B considers also the next higher order term i = 2. It is only reformulated by completing the square. It introduces an
additional parameter qm which can be used to tune the magnetic anisotropy. The original parameters are obtained
by α̂2 = 2α2q

2
mB

x
0 and α̂4 = α2B

x
0 . Model A and Model B can be solved with almost the same computational cost.

We follow the numerical approach in [14], see [15, 17] for further details. The FEM discretization is implemented in
the parallel and adaptive finite element toolbox AMDiS [18, 19].

C. Minimum Energy Surface (MES)

In order to analyze the influence of m in a bulk system, it is not necessary to solve eqs. (11). For a single crystal
without defects and deformations, which are constant in space, the density can be expanded as in eq. (5) considering
deformed reciprocal space vectors k′j = Dkkj , with Dk = (D−1)T and D the deformation matrix, see [14]. This
description is exact for homogeneous deformed single crystals and provides a good approximation in more general
situations [20]. For Model A, the free energy, eq. (6), simplifies to

F
[
{Aj}, {k′j}

]
= |Ω′|

[ N∑
j=1

Aj B
x
0

[
(q2

0 − k′j
2
)2 − α2(m · k′j)2

]
︸ ︷︷ ︸

w(k′
j)

Aj + gS({Aj})
]
,(14)

where |Ω′| is the volume of the integration domain. The elastic and magnetic properties of the model are solely
governed by the kernel w(q). The first term in w(q) corresponds to the approximation of the excess free energy of
classical density functional theory [21–23] and resembles the approximation of a correlation function in the reciprocal
space. It is invariant on the orientation of q and, thus, on the orientation of the crystal structure. The rotational
symmetry of the crystal is broken by the magnetization, m. This is reflected in the second term of w(q), which
depends on the relative orientation of m and q and the coupling strength α2.

Model B leads to a similar expression with

w(k′j) = Bx0

[
(q2

0 − k′j
2
)2 + α2(q2

m − (m · k′j)2)2
]
.(15)

To visualize the impact of the magnetization on the crystal structure we consider the energy contribution given by
w(q). For a given orientation q in the reciprocal space, w(q) is minimized by adapting the length of q. The resulting
lengths for all possible q’s can be plotted as a surface in reciprocal space, referred as Minimum Energy Surface (MES).
Fig. 1 shows such surfaces for different cases with a color map corresponding to the energy contribution from w(q).
In Fig. 1 a) the contribution of the first term in w(q) is shown, corresponding to the case without magnetization.
Considering only this part, α2 = 0, a monochrome sphere with radius q0 is obtained. The k′j vectors lie on this
sphere, as shown for a BCC crystal by the red dots in Fig. 1 a) (see Fig. 2 for details), and any rotation of the
crystal does not change the energy. This reflects the rotational symmetry of the model inherited from the correlation
function. Deformations shift the vectors k′j away from the MES, thus leading to an increase in the energy. When
considering the magnetic coupling, the scenario changes. The energy depends on the orientation with respect to m.
For directions aligned with m, w(q) is increased for α2 < 0. In addition, the MES is deformed. For α2 < 0 it shrinks
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no magnetic coupling magnetic coupling
isotropic anisotropic

Model A Model B

a) b) c)

FIG. 1. Symmetry breaking due to magnetic interaction. Minimum energy surface (MES) without and with magnetic
coupling. The red spheres corresponds to the (shortest) kj ’s representing an undeformed BCC crystal. The color indicates
the energy contribution in the reciprocal space of w(kj). For α2 > 0, the energy is increased in the direction of m ‖ [1 0 0],
and the MES results comporessed in this direction. In Model A the MES becomes ellipsoidal and the kj ’s are no longer
on the deformed MES. In Model B, qm = 1/

√
2 is chosen and all the kj ’s are still on the MES. Here the deformation

of MES is exaggerated by considering unrealistic large α2 = −0.75 (Model A) and α2 = 0.75 (Model B) for illustration
purposes.

in the direction of m. The kj vectors describing a relaxed crystal then do not lie anymore on the MES. This leads to
additional effects such as the tendency of the crystal to deform in order to minimize the energy, or in other words the
deviation from the MES, known as magnetostriction. We note that this effect is relatively small. As the k′j vectors
cannot vary independently they cannot always lie on the MES, as seen in Fig. 1 b), where the effect is exaggerated
with large values of α2 for illustration purposes. As discussed below, however, parameters entering Model B can be
tuned to have both kj and k′j on the MES (thus suppressing magnetostriction). With all the information it conveys,
the MES can then be used as a suitable tool to study the impact of magnetic coupling.

III. ANALYSIS AND SIMULATION

A. Magnetic Properties

We consider eq. (14) to calculate the free energy of a single crystal. We minimize the free energy w.r.t {Aj}
and compute the deformation along and perpendicular to m, this leads to the estimation of the eigenvalues of the
deformation matrix, d0 and d1, see [14]. This deformation defines the magnetostriction. The energy dependence on
the direction of m defines the magnetic anisotropy. The direction with the lowest and highest energy are called easy
and hard direction of magnetization, respectively. BCC as well as FCC crystals are considered.

FIG. 2. Crystal structure. The red spheres represent the kj vectors. Their numbering is according to eqs. (17) and
(19). The energetic equivalent vectors, −kj , are numbered in grey. BCC (left) and FCC (right) crystals are illustrated.
m is shown in green and is aligned to the [1 0 0] direction.
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1. BCC crystals

For BCC crystals the structure dependent part in eq. (7) reads

fBCC({Aj}) =− 2t(A∗1A2A4 +A∗2A3A5 +A∗3A1A6 +A∗4A
∗
5A
∗
6 + c.c.)

+ 6v(A1A
∗
3A
∗
4A
∗
5 +A2A

∗
1A
∗
5A
∗
6 +A3A

∗
2A
∗
6A
∗
4 + c.c.)(16)

with kj vectors defined as, see e.g. [17],

{kj} =
1√
2

1
1
0

 ,

1
0
1

 ,

0
1
1

 ,

 0
1
−1

 ,

 1
−1
0

 ,

−1
0
1

(17)

where we have used q0 = 1. They are numbered from j = 1, . . . , 6 and shown in Fig. 2(left).

a) b)

c) d)

FIG. 3. Comparison of coupling methods for a BCC crystal and magnetization along the [1 0 0] direction in terms
of {Aj} and dj as function of α2: a)-b) Model A and c)-d) Model B (with qm = 1/

√
2).

In Fig. 3 we compare Model A and Model B for m in [1 0 0] direction and different α2. Fig. 3 a) and b) consider
Model A and show in panel a) the minimized amplitudes {Aj} as a function of α2 and in panel b) the deformations
along and perpendicular to m, d0 and d1, for different α2. Fig. 3 c) and d) show the same quantities for Model B with

qm = 1/
√

2. For α2 = 0, all amplitudes are equal, and there is no deformation. However, with magnetic coupling,
differences occur. The amplitudes Aj depend on α2 according to the relative orientation of the corresponding kj
vectors to m. For those which are perpendicular, the influence is less pronounced. In these directions, the MES is
not influenced by magnetic coupling. All others contribute equally. This behavior is qualitatively the same for Model
A and Model B, but with opposite signs. Differences between the models are found in the deformation. While Model
A leads to an expansion in the m direction for negative α2 and the opposite behavior perpendicular to m, there is no
deformation in Model B. This difference results from the double well structure of w(q) of Model B and the choice of

qm = 1/
√

2. The latter is indeed chosen to have kj lying on the MES and thus to have no deformation (d0 = d1 = 1)
for k′j , independently of α2. Model B then allows for decoupling magnetic anisotropy from magnetostriction effects
and, in general, tuning these properties through qm and α2.

The results reported in Fig. 3 show the influence of m in [1 0 0] direction. The same analysis can be considered for
other directions of m. Sampling all directions allows to compute the magnetic anisotropy. Figs. 4 and 5 show the
energy for representative values of α2 for Model A and Model B, respectively. For Model A the hard directions are
always the 〈1 0 0〉 directions. The easy directions are 〈1 1 1〉. Only for positive α2 the 〈1 1 0〉 becomes energetically
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a)

b) c) d)

α2 =0.08 α2 =0.04 α2 =-0.06

FIG. 4. BCC, Model A. Comparing magnetic anisotropy for α2 = 0.08, 0.04 and -0.06. a) Energy along the edges
of the triangle defined by [1 0 0], [1 1 1] and [1 1 0]. Maximum defines the hard direction and minimum the easy
direction of magnetization. The energy is plotted relative to the minimum energy (easy direction). b)-d) Energy
surface for α2 = 0.08, 0.04 and -0.06.

comparable to 〈1 1 1〉. However, we can conclude that for BCC crystals the hard direction of magnetization can not
be controlled by Model A. This changes for Model B. With the considered set of parameters, for α2 > 0 the easy
directions of magnetization are 〈1 0 0〉 and the hard directions are 〈1 1 1〉.

2. FCC crystals

For FCC crystals the structure dependent part in eq. (7) reads

fFCC({Aj}) =− 2t[A∗1(A∗2A5 +A∗3A7 +A∗4A
∗
6) +A∗2(A∗3A6 +A∗4A

∗
7) +A∗3A

∗
4A
∗
5 + c.c.]

+ 6v[A∗1(A∗2A
∗
3A
∗
4 +A2A

∗
6A7 +A3A5A

∗
6 +A4A5A7) +A∗2A5(A3A

∗
7 +A4A6) +A∗3A4A6A7 + c.c.].(18)

and kj vectors are defined as, see e.g. [17],

{kj} =
1√
3

−1
1
1

 ,

 1
−1
1

 ,

 1
1
−1

 ,

−1
−1
−1

 ,

2
0
0

 ,

0
2
0

 ,

0
0
2

 .(19)

They are numbered from j = 1, . . . , 7 and shown in Fig. 2 b). Due to their different length they define two MES.
The amplitude expansion for this setting follows from PFC models with two or more modes, e.g. [24–27]. However,
in eq. (6) we can account for this feature by considering different values for q0 for the different sets of kj vectors, see
[11, 27]. Eq. (14) thus reads

(20)

F
[
{Aj}, {k′j}

]
= |Ω′|

{
gS({Aj})+

4∑
j=1

AjB
x
0

[(
1− k′j

2
)2

− α2(m · k′j)2

]
Aj

+

7∑
j=5

AjB
x
0

[(
4

3
− k′j

2
)2

− α2(m · k′j)2

]
Aj

}
,
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a)

b) c) d)

α2 =-0.05 α2 =0.05 α2 =0.1

FIG. 5. BCC, Model B. Comparing magnetic anisotropy for α2 = -0.05, 0.05 and 0.1. a) Energy along the edges
of the triangle defined by [1 0 0], [1 1 1] and [1 1 0]. Maximum defines the hard and minimum the easy direction of
magnetization. The energy is plotted relative to the minimum energy (easy direction). b)-d) Energy surface for
α2 = -0.05, 0.05 and 0.1. The easy direction is [1 1 1] for α2 =-0.05 and [1 0 0] otherwise.

with q0 = {1, 4
3} for the different sets of kj ’s in Model A and analogously in Model B. Model B now allows to tune

the parameter qm independently for the different sets of kj ’s. We consider qm = {1/
√

3, 1/
√

2} for k1−4 and k5−7,
respectively. With these modifications the same analysis as for BCC crystals can be done. Figure 6 and 7 show the
results concerning mangetic anisotropy for Model A and Model B, respectively.

For FCC, Model A describes the easy directions always aligned tothe 〈1 0 0〉 directions. The hard directions are
〈1 1 1〉. Only for highly positive α2 the 〈1 1 0〉 becomes energetically comparable to 〈1 1 1〉. However, we can conclude
that for FCC crystals the easy direction of magnetization cannot be controlled by Model A. As for BCC this changes
for Model B. With the considered set of parameters for α2 > 0 the easy directions of magnetization are 〈1 1 1〉 and
the hard directions are 〈1 0 0〉.

3. Magnetic anisotropy of ferromagnetic materials

Tuning the easy and hard directions of magnetization becomes necessary as the magnetic anisotropy of various
ferromagnetic materials features [1 0 0] and [1 1 1] as the easy direction of magnetization for BCC and FCC crystals,
respectively. Model A does not allow for such versatility. Thus, to account for the proper easy and hard directions of
magnetization, Model B has to be considered. Table I shows such directions for Fe, Ni, and Co.

material crystal easy hard Ref.
structure directions

Fe BCC 〈1 0 0〉 〈1 1 1〉 [28]
Ni FCC 〈1 1 1〉 〈1 0 0〉 [28, 29]
Co FCC 〈1 1 1〉 〈1 0 0〉 [28]

TABLE I. Material specific magnetic anisotropies.

These properties also hold for various alloys, e.g. Fe1−xGax [30]. PFC and APFC models for alloys have been
introduced in [31], and magnetic coupling for these models has been introduced in [5]. The considered modifications
in Model B can also be applied to these models.
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a)

b) c) d)

α2 =0.1 α2 =-0.1 α2 =-0.15

FIG. 6. FCC, Model A. Comparing magnetic anisotropy for α2 = 0.1, -0.1 and -0.15. a) Energy along the edges
of the triangle defined by [1 0 0], [1 1 1] and [1 1 0]. Maximum defines the hard direction and minimum the easy
direction of magnetization. The energy is plotted relative to the minimum energy (easy direction). b)-d) Energy
surface for α2 = 0.1, -0.1 and -0.15.

B. Impact of magnetization on grain growth

We consider a system with the basic magnetic properties of Fe and examine the influence of magnetization on the
shrinkage of an initially spherical grain with a small rotation with respect to the surrounding matrix [12, 32, 33]. We

consider a BCC crystal and Model B with α2 = 0.1 and qm = 1/
√

2. The spherical grain has a radius of 60π, and
is rotated about the [1 0 1] direction by 5◦ with respect to the surrounding matrix, see Fig. 8 a). This initial setting
is considered by a definition of the phase of complex amplitudes in the grain reading δk(θ) · r and vanishing in the
matrix, with δk(θ) the difference between the rotated and unrotated kj vectors (see [12, 17, 33] for more details).
Fig. 8 b) illustrates the cubic unit cell. The rotational axis, [1 0 1], coincides with the grain and the matrix, while
magnetizations are defined with respect to the crystallographic axes of the matrix. For a magnetization oriented
along the [0 1 1], [0 0 1], and [0 1 1] directions, the free energy of the matrix and grain, computed as reported in the
previous sections, vary as illustrated in Fig. 8 c). For the matrix, there are energy maxima for m oriented along 〈0 1 1〉
directions and energy minima for m oriented along 〈0 0 1〉 directions. For the rotated grain, magnetization in these
directions results in slightly shifted easy and hard directions, owing to the (small) rotation of its crystallographic axes.
Also, the energy difference between grain and matrix varies with the orientation of m. We select orientations of m,
which maximize this difference. In particular, we consider m between [0 0 1] and [0 1 1], (m1), for which the crystal
structure in the grain is energetically favorite, and between [0 1 1] and [0 0 1], (m2), for which the crystal structure in
the matrix is favorite, see Fig. 8 c). No preference for grain or matrix is achieved by choosing m along the axis of
rotation of the grain, [1 0 1], m0, which will be considered for comparison.

Fig. 9 illustrates the grain shrinkage for the magnetization m0. In particular, the dislocation network forming
between grain and matrix is shown. This is obtained by exploiting the decrease of amplitudes at defects. We consider
here regions with A2 < 0.083 see [13, 33]. The dislocation network shrinks anisotropically, as it has been observed
in previous studies [32, 33]. For m0, m1, and m2, shrinking grains with very similar dislocation networks (as in
Fig. 9) are obtained, indicating negligible effects on the fine details of the dislocation network structure. This can
be ascribed to the unchanged incommensurability of the crystals in the grain and the matrix, leading to similar
topological defects and small changes in the elastic interactions due to small magnetostriction as dictated by model
parameters and magnetization direction. Qualitatively different results are indeed obtained if considering Model A,
resulting however from an unphysically large magnetostriction and with easy and hard directions that cannot be
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a)

b) c) d)

α2 =-0.05 α2 =0.05 α2 =0.1

FIG. 7. FCC, Model B. Comparing magnetic anisotropy for α2 = -0.05, 0.05 and 0.1. a) Energy along the edges
of the triangle defined by [1 0 0], [1 1 1] and [1 1 0]. Maximum defines the hard direction and minimum the easy
direction of magnetization. The energy is plotted relative to the minimum energy (easy direction). b)-d) Energy
surface for α2 = -0.05, 0.05 and 0.1. The easy direction is [1 1 1] for α2 =-0.05 and [1 0 0] otherwise.

a) b) c)

FIG. 8. Setup for magnetic APFC simulation of grain shrinkage. a) Schematics of the spherical grain rotated
about the [1 0 1] axis (grain) and embedded in an unrotated crystal (matrix). b) Illustration of the crystals unit
cell: the [1 0 1] direction of both the grain and matrix is aligned with the axis of rotation. The direction of
magnetization is defined w.r.t the crystallographic orientations of the matrix. c) Magnetic anisotropy of matrix
(blue squares) and grain (orange circles) along the lines defined by [0 1 1], [0 0 1] and [0 1 1]. m1 and m2 point
at specific magnetizations considered in simulations, favoring the crystal structure in the grain and the matrix,
respectively, while maximising the corresponding energy difference.

tuned [14]. Importantly, the shrinkage speed is largely influenced by the orientation of m, which due to magnetic
anisotropy introduces an additional driving force related to the differences in the bulk energy when moving across the
grain boundary between grain and matrix.

A detailed analysis of this evidence is reported in Fig. 10. Fig. 10 a) shows the energy decay relative to the initial
energy during grain shrinkage. Constant energy is obtained when the grain vanishes, at a time here referred to as
vanishing time tv, which is found to depend on the magnetization. The slowest shrinkage is achieved if the grain
is energetically preferred, m1. Here the additional driving force related to magnetization tends to favor the crystal
structure in the grain, opposing the shrinkage dynamics (well described by mean-curvature flow [34]). The energy gain
during shrinkage is the lowest. Consistently, the highest shrinkage speed and energy gain are observed when the grain
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FIG. 9. Defect networks of an initially spherical grain in a BCC crystal during shrinkage. A-F) are the structures
are representative times, also indicated in Fig. 10. The magnetization is aligned with the axis of rotation (m0).
Measures of the grain extension, a0−2, are introduced to characterize its shape, corresponding to axes of an ellipsoid
approximating the grain-matrix interface extension. a0 is parallel to the rotation axis or [1 0 1], see Fig. 8. a1,2 lay
in the corresponding planes.

has higher energy, m2. Here the driving force introduced by magnetization enhances the underlying shrinkage dynamic
favoring the crystal structure in the matrix. If matrix and grain are energetically equivalent, m0, the vanishing time
is between the two cases. Thus, the magnetization enhances or hinders grain shrinkage according to its direction.

More details on the structure of the evolving dislocation network are reported in Fig. 10 b) and c). The ini-
tially spherical small-angle (semi-coherent) grain boundary is approximated as the surface of a three-dimensional
ellipsoid interpolating the dislocation network, whose axes are along x,y, and z-direction are denoted as a0,1,2. The
corresponding surface area is computed by the so-called Knud Thomsen’s formula [33]:

S =
π

31/p
((a0a1)p + (a1a2)p + (a0a2)p)

1/p
,(21)

with p = 1.6075. This quantity normalized by the surface area of the initial spherical grain as well as the axes a0,1,2

are reported in Fig. 10 b) and c), respectively, against the time normalized by tv. In all considered cases, the grain
boundary between grain and matrix decreases nearly linearly (Fig. 10 b). Such a linear scaling, as well as a linear
decrease in energy, is predicted by the classical theory of grain shrinkage driven by mean curvature flow [34], and
it is reproduced by PFC and APFC without magnetic interaction [32, 33]. This indicates that the evolution is still
mainly governed by the minimization of interface energy, owing to the relatively small size of the grain and, thus,
the relatively large mean curvature of the grain boundary between grain and matrix. Deviations are expected for
larger systems [35]. Nevertheless, the magnetic anisotropy may enhance or hinder the evolution with a volumetric-
energy contribution that acts isotropically on the grain boundary and its dislocation network. This is further shown
in Fig. 10 c) where the evolution of the axes a0,1,2 are shown. a0 shrinks nearly linearly with a constant speed up
to the end of the shrinking process, t/tv > 0.9. A more complex evolution is observed for a1 and a2 due to defect
annihilation. In particular, in the interval 0.6 < t/tv < 0.8 indicated by C-E in Fig. 9, dislocation lines vanish, and
sudden changes in the dislocation network morphology occur. This stage can also be detected in the decay of energy
and grain boundary surface, where the decay rate deviates the most from linear scaling and could be ascribed to
additional elasticity effects enhanced by short-range dislocation interaction. However, the magnetization is found to
affect negligibly the anisotropy during the shrinkage of the grain as a0,1,2 vary only slightly among the different chosen
orientations of m.

IV. CONCLUSION

We have reviewed and extended magnetic PFC and APFC models. Our focus has been on the control of magnetic
anisotropy in these models. For various ferromagnetic materials, the easy direction of magnetization is [1 0 0] for BCC
crystals and [1 1 1] for FCC crystals. Modeling this behavior requires an extension of magnetic couplings in existing
models. By analyzing the Minimal Energy Surface (MES), we explored the possibility of tuning the easy and hard



12

a)

b) c)

FIG. 10. Influence of magnetization on grain shrinkage. a) Energy decay during shrinkage. Dependent on magnetization
the grain vanishes at different times tv. b) Grain shrinkage illustrated by the decrease over time of the grain boundary
between grain and matrix, which is approximated by Eq. (21) normalized by the initial area. The timescale is normalized
by the vanishing time tv. c) Decrease over time of a0,1,2 (as defined in Fig. 9).

direction of magnetization by including higher-order coupling terms. This can be achieved without increasing the
complexity of the model significantly. The numerical realization only requires directional derivatives of order four
and thus does not increases the order of the derivatives in the equations. The higher-order terms describe a double
well in the direction of magnetization in the reciprocal space. Therefore, the local extrema of the double well can be
chosen freely, and the energy contributions at the MES are changed without deformation of its shape. The considered
parameters are the coupling strength α2 and an additional length scale qm. Both can be used to tune the magnetic
anisotropy to those of specific ferromagnetic materials.

Besides the influence of magnetic anisotropy, the magnetic coupling terms also influence magnetostriction. Both
phenomena depend on the coupling strength α2 and are strongly correlated. However, in some cases, the magne-
tostriction vanishes, and Model B allows for controlling this through qm. A different approach to decoupling both
phenomena is addressed in [36].

The model has been applied to the simulation of the shrinkage of a spherical grain in a matrix under the influence
of a constant magnetic field and using the basic magnetic properties of Fe. The shrinkage is anisotropic and can
be enhanced or hindered by magnetization. However, the details of the considered magnetic coupling affects the
shrinkage only slightly in terms of morphologies of dislocation networks and scaling laws. This is attributed to the
small grain and, thus, dominating effects of the curvature of the grain boundary between grain and matrix.
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FIG. 11. *

How do magnetic fields interact with dislocations and what is the effect of this interaction on the microstructure of
ferromagnetic materials? A multiscale modeling approach is considered which allows to answer these questions. Parameterised

for Fe the influence of a magnetic field on the evolution of the dislocation network of a spherical grain is analysed.
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