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ABSTRACT

This paper presents a novel approach for robust linear time-varying control design for space
launchers. It allows the controller to explicitly respect the launcher’s highly time-varying dy-
namics as well as changing control objectives along the ascent trajectory. The latter are readily
incorporated via time-varying weighting functions in the mixed sensitivity synthesis. For a more
traceable and effective control design a recently proposed weighting scheme is applied, which sig-
nificantly reduces the controller tuning effort. The synthesis uses a novel observer-based finite
horizon linear time-varying (LTV) synthesis approach. It provides a highly structured controller
which is easy to implement and facilitates, for example, the incorporation of anti wind-up compen-
sation. The approach is used to design a pitch controller for a small expendable launch vehicle in
atmospheric ascent tracking the open-loop guidance reference signal.
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1 Introduction
The atmospheric ascent of space launchers poses a formidable control problem. It requires the sta-

bilization of an aerodynamically unstable system, the fulfillment of tight tracking constraints, load relief
to fulfill stringent structural requirements as well as an optimal use of propellant. All these requirements
must be fulfilled for constantly changing environmental conditions, rapidly decreasing mass, and thus,
changing launcher dynamics. Besides, the launcher is subject to numerous external disturbances, such
as wind turbulence.

State of the art control synthesis approaches do not explicitly respect the time-varying launcher
dynamics in the controller synthesis. Most commonly, classic linear time-invariant (LTI) methods are
applied to design and synthesize single controllers for frozen points in time along the trajectory. These
controllers are then interpolated and scheduled with a measurable parameter such as the non-gravitational
velocity. The resulting controllers are typically gain-scheduled proportional-integral-derivative (PID)
controller [1, 2]. More recently, robust linear control methods such as mixed sensitivity H∞ design [3]
have been applied to the atmospheric ascent problem, see, e.g., [4]. However, classical gain scheduling
for such controllers is in general complicated [5]. To resolve this matter, the structured H∞ approach
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[6] has been applied in e.g. [7]. The resulting controllers are more structured and easier to schedule.
However, the design is still limited to frozen invariant points considered over infinite horizons. Therefore
the approach fails to adequately cover the launchers time-varying dynamics. Moreover, for each point in
time the controller has to be tuned separately. To account for the launchers varying dynamics and avoid
the tuning of individual controller, linear parameter-varying (LPV) control has been applied to the ascent
problem [8]. It uses the non-gravitational velocity as the scheduling parameter. However, the design is
restricted to a relatively low number of grid points, due to the numerical and computational complexity of
standard LPV control synthesis [9]. Therefore, the time varying-dynamics can only be covered coarsely.
Also, LPV control considers infinite time horizons and, thus, neglects that the trajectory is finite. Thus,
LTI and LPV syntheses fail to adequately cover the ascent problem, which is, in fact strictly time-
dependent due to the pre-fedined trajectory. Therefore, finite horizon linear time-varying (LTV) control
synthesis presents an alternative. The general suitability of finite horizon techniques to the launcher
problem have been successfully demonstrated in [10, 11]. However, no application of robust finite
horizon LTV methods for the launcher control problem can be found in literature.

The present paper proposes a novel approach to design a mixed-sensitivity finite horizon LTV con-
troller for the ascent problem. It explicitly respects the launcher’s time-varying dynamics in the synthesis.
A representative LTV launcher model in atmospheric ascent is introduced in Section 3. The synthesis is
conducted using the LTV equivalent of a recently proposed observer-based mixed sensitivity synthesis
for LPV systems [12] introduced in Section 2. The synthesis procedure essentially requires the sequen-
tial solution of two unidirectionally coupled Riccati differential equations (RDEs). As these solutions
scale better with the grid density as the LPV approach, a more accurate representation of the launcher
dynamics over time is possible. Moreover, the resulting controller is highly structured making it particu-
larly easy to implement. The control design applies a highly traceable weighting scheme first introduced
in [13], which is presented in Section 3. The time-varying weights represent changing control objectives
along the ascent trajectory, which are mainly imposed by the rapidly changing dynamic pressure.

The suitability of the approach is demonstrated via a nominal LTV analysis of the control design
and a Monte Carlo simulation in Section 4. The Monte Carlo simulation is conducted over a large set of
realistic wind turbulence as encountered by the launcher during ascent.

2 Background

2.1 Linear Time-Varying Systems
A finite horizon continuous LTV system P is defined as ẋ(t)

y(t)

=

 A(t) B(t)

C(t) D(t)

  x(t)

u(t)

 (1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu the input vector, and y(t) ∈ Rny the output vector. Its
system matrices are locally bounded continuous functions of time t. They are compatible size-wise to
the corresponding vectors, e.g., A(t) ∈ Rnx×nx . The explicit time dependence will be omitted regularly
to shorten the notation. The size of signals in this paper is measured by the L2[0,T ] norm

‖u‖2[0,T ] =

[∫ T

0
u(t)T u(t)dt

] 1
2

. (2)

In the course of the paper, the notation y = Pu is used to state the input-output map defined by the
state space representation (1) for zero initial conditions. The performance of such a finite horizon LTV
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input-output map can be quantified by its finite horizon induced L2[0,T ] norm

‖P‖2[0,T ] := sup
u∈L2[0,T ],u 6=0,x(0)=0

‖y‖2[0,T ]

‖u‖2[0,T ]
, (3)

where u ∈ L2[0,T ] implies y ∈ L2[0,T ]. An upper bound on ‖P‖[0,T ] is provided by a generalization of
the Bounded Real Lemma (BRL) as stated in the following theorem.

Theorem 1 ([14]). Let P be an LTV system defined by (1). Given x(0)=0, if there exists a continuous
differentiable, symmetric positive semi-definite matrix function Q(t), t∈ [0,T ] such that Q(T ) = 0 and

Q̇ =−QA−AT Q+CTC− (QB+CT D)(DT D− γ
2I)−1(DTC+QT Q), (4)

then γ is an upper bound on the induced L2[0,T ] gain of P.

Proof 1. The proof is given in [14].

2.2 Mixed Sensitivity Finite Horizon LTV Synthesis
This paper considers a standard unity feedback control loop with plant P = [Pd Pu] and controller

K. Both systems are finite horizon LTV systems. The plant has two inputs, namely the control input u
and disturbance input d and a single output y. The plant’s state space realization is

 ẋ

y

=

 A(t) Bd(t) Bu(t)

C(t) 0 0




x

d

u

 . (5)

The assumption that the plant model (5) is strictly proper is only made to simplify the notation and
the following results can be generalized to non-strictly proper plants at the cost of more complicated
notation. However, most engineering problems can be accurately represented by strictly proper models,
for example, by including actuator dynamics in the model.

The considered four-block mixed sensitivity formulation characterizes performance as the finite
horizon L2[0,T ]-norm of the weighted closed-loop system shown in Fig. 1. The corresponding optimal

[Pd Pu]

WuV−1
u

K

WeV−1
eVe Vd

w2 w1z1 z2

e u
−

Fig. 1 Weighted four-block mixed sensitivity problem.

controller synthesis problem is

min
K

∥∥∥∥∥∥
WeV−1

e 0

0 WuV−1
u

 −SPd S

−KSPd KS

Vd 0

0 Ve

∥∥∥∥∥∥ , (6)
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where S = (I + PuK)−1 denotes the output sensitivity function [15]. Performance specifications are
imposed through shaping filters We and Wu with state space realizations ξ̇e

z1

=

 0 BWe(t)

CWe(t) DWe(t)

  ξe

ẽ

 (7a)

 ξ̇u

z2

=

 AWu(t) BWu(t)

CWu(t) DWu(t)

  ξu

ũ

 . (7b)

A high gain in We enforces a sensitivity reduction and specifies tracking and disturbance rejection ca-
pabilities. An integrator in We enforces integral control. A high gain in Wu dictates a reduction in
control effort. Hence, the weight Wu can dictate controller roll-off at high frequencies. The inputs to the
dynamic weights We and Wu are a statically weighted control error ẽ =V−1

e e and a statically weighted
control effort ũ =V−1

u u. The static time-varying weights Ve and Vu are tuning knobs that trade off track-
ing accuracy and control effort. They can be selected based on the maximum allowable errors (Ve) and
maximum allowable inputs (Vu). Similarly, Vd is a tuning knob for disturbance rejection that can be
chosen based on maximum expected disturbances. Thus, initial guesses are particularly easy. For details
about this parametrization see [12, 13].

2.3 Structured Observer-Based LTV Control Synthesis
In [12] a novel observer based synthesis procedure for LPV systems is proposed that circumvents

drawbacks of conventional LPV output feedback synthesis. The procedure uses the mixed sensitivity
formulation (6) to solve for a structured observer-based LPV controller. It requires the separate solution
of two semidefinite programs (SDPs), one for the observer and one for the state feedback problem and
yields a highly structured controller. A strictly time-varying problem can be derived from the LPV case
by considering only one specific parameter trajectory. In case of the launcher, this would be the pre-
calculated ascent trajectory. The resulting time-dependent linear matrix inequalities can be reformulated
using Schur’s complement yielding two unidirectionally coupled RDEs. Assuming a finite time horizon
these RDEs can be readily integrated. The resulting observer-based LTV controller K has the form: ξ̇

u

=

 A(t)+B(t)F(t)+L(t)C(t) L(t)

F(t) 0

  ξ

e

 , (8)

where L is a time-varying observer gain and F is a time-varying state feedback gain. The structure of
the controller is depicted in Fig. 2. Its dynamic part, the observer, consists of the three highlighted parts
on the left. The following Theorem 2 formalizes the LTV case. To simplify notation, the weights and
tuning knobs are chosen as We = I and Wu = I as well as Ve = I, Vu, and Vd = I, respectively.

Theorem 2 (Observer-Based Controller Synthesis). Consider an LTV system (5). There exists an observer-
based controller K defined by (8) such that ‖F (G,K)‖ ≤ γ if the following two conditions hold.

1) There exists a continuously differentiable, symmetric positive semi-definite matrix function Z(t),
t ∈ [0,T ] such that Z(0) = 0 and

Ż = AZ +ZAT −ZCTCZ +BdBT
d . (9)

2) There exists a continuously differentiable, symmetric positive semi-definite matrix function X(t),
t ∈ [0,T ] such that X(T ) = 0 and

Ẋ =−ĀT X−XĀ+XT̄ X +CTŪC, (10)
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with Ā = A− 1
1−γ2 ZCT , T̄ = 1

1−γ2 ZCTCZ +BuBT
u , and Ū = γ2

1−γ2CTC.

Proof. The given space limits the proof to a sketch. Essentially, the solvability of the RDE (9) guarantees
the existence of a normalized left coprime factorization (see [16] for details) and provides the output
injection gain L =−ZCT . In the same way, the solvability of the RDE (10) guarantees the existence of a
state feedback gain F =−BT

u X . The co-isometric property of the LTV coprime factorization guarantees
that the structured LTV synthesis provides the exact same induced L2[0,T ]-norm as the original LTV
output feedback synthesis stated in, e.g., [17], [18], or [19].

The argumentation follows the proof in [12] for LPV systems to which the reader is referred for
a discussion of the general case, including weights. The observer based approach avoids the two main
short-comings of classical LTV output synthesis [18, 19], firstly, the solution of two RDEs coupled by a
spectral radius condition, secondly, the synthesized controller’s lack of structure.

B
∫

A+LV−1
e C

LV−1
ee

ξ

Luenberger
Observer

BWuV
−1
u

∫
AWu

ξWu

Control
Effort Filter

BWeV
−1
e

∫
AWe

ξWe

Error
Filter

F u

State
Feedback

Fig. 2 Observer-based controller with weights

3 Space Launcher Control Design Problem

3.1 Model
A representative LTV model for a space launcher in atmospheric ascent is provided in [20]. It

describes the first-stage rigid-body pitch dynamics of the Vanguard space launcher following a gravity
turn trajectory. To include the effects of external wind disturbances in the control design, the model
is extended with an additional input δα̇ representing the additional wind-induced angle of attack. The
corresponding LTV model is

α̇(t)

θ̇(t)

q̇(t)

=


Zα (t)
m(t)vref(t)

−gsinθref
vref(t)

1

0 0 1
Mα (t)
Jyy(t)

0 Mq(t)
Jyy(t)




α(t)

θ(t)

q(t)

+


T
m(t)vref(t)

1

0 0
T ξ

Jyy(t)
0


δµ(t)

δα̇(t)

 (11)

The states, which are also the system’s output, are the angle of attack α , the pitch angle θ and the pitch
rate q. They represent deviation values from the time-varying reference trajectory. The input δµ is the
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corrective gimbal input rotating the thrust vector for attitude control. This signal is the output of a first
order lag with ω = 50rad/s representing the gimbal dynamics, which are explicitly respected in the
controller synthesis. The functions Zα , Mα and Mq denote the aerodynamic stability derivatives. Their
values along the trajectory are provided in [20] together with expressions for mass m and pitch inertia
Jyy in dependence on t. The variables vref and θref represent the reference velocity and pitch angle of the
launcher along the trajectory. The values are given in [20] for the time interval t ∈ [11.35,146.35] with
a step size of 2.7 s. The thrust T , the distance ξ of the center of gravity from the gimbal, as well as the
gravitational acceleration g are constants.

3.2 Control Objective
The control design considers a time horizon from 15 s to 100 s after lift-off; the start and end point of

the gravity turn maneuver. Fig. 3 shows the reference pitch angle value θref along this trajectory segment
as well as the value µα = Mα

Jyy
. The magnitude of µα is a measure for pitch stability. Larger values of µα

indicate faster unstable dynamics posing in a more difficult control problem. Note that the launcher can
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Time [s]

µ
α
[s
−

2 ]
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90
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θ
re

f[
de
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Fig. 3 Reference pitch angle θref and pitch stiffness µα along the trajectory.

be considered perfectly rotationally symmetric. Furthermore, pitch and yaw dynamics can be considered
decoupled in absence of a roll rate. Thus, it is sufficient to only design one controller for both motions.
Typical pitch control objectives for space launcher during the atmospheric flight phase can be found
in, e.g., [21, 22]. First, the controller must robustly stabilize the launcher along the ascent trajectory.
However, considering the launcher as a finite horizon LTV problem nullifies classic stability arguments
as linear systems have no finite escape time [23]. Hence, input-output norm analyses are more suitable
for launch vehicle, see, e.g., [24]. Given a finite time horizon, the launcher dynamics at a frozen point
along the trajectory can have poles in the right half-plane as long as no signal grows out of specified
bounds, i.e. a specified norm gets too large. In principle, this characteristic can be exploited in the
control design. An example is the so-called, load-minimum condition [25] for which, at a frozen point in
time, the translational pole is in the right-half plane. The second important control objective is tracking
performance under external disturbances such as atmospheric turbulence. The launcher must accurately
follow the reference trajectory, i.e. θref, ideally with zero error. The response time to commanded
θ changes must be adequately fast, which requires sufficient controller bandwidth. Additionally, the
transient response shall be constrained regarding maximum overshoot and maximum θ̇ . At the same
time, the aerodynamic loads on the launcher resulting from wind disturbances must be minimized to
avoid structural failure. Thus, the induced aerodynamic angle of attack must be compatible with a
general load specification, e.g., Qα < 150kPaDeg. Note that Qα is simply the product of dynamic
pressure Q and angle of attack α . It presents a common measure for the static aerodynamic load on
launch vehicles. For the given launcher, this boundary corresponds to a maximum angle of attack of
4.56deg for the maximum dynamic pressure q̄max of 32920Pa at 50s. Fig. 4 depicts the course of the
dynamic pressure as well as the αmax bound along the trajectory. The later is limited to a maximum
of 10deg. The second last requirement is the demanded gimbal actuation, which shall neither reach its
deflection nor exceed the actuator bandwidth limit. The last requirement concerns the fuel consumption,
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Fig. 4 Dynamic pressure Q along the trajectory and corresponding structural αmax bound.

and therefore directly the cost-critical lift-off mass of the launcher. In order to minimize the required
fuel consumption, the launcher shall not exceed a given cumulated commanded thrust deflection (the
so-called consumption). A typical value for this type of launcher and trajectory segment is 20deg · s.

However, the tracking and load relief objectives contradict each other, as tracking a given pitch
angle under wind disturbance results in a significant load building up. Extremely tight control can result
in a loss of the launch vehicle. Vice versa, minimizing Qα potentially results in a deviation from the
trajectory too large to correct and, thus, likewise in mission failure. It is thus clear, that control objectives
for launch vehicle, require noticeable trade-offs which also change over time during the ascent. Hence,
time-varying control presents is beneficial to not only account for the time-varying dynamics, but also
the time-dependent control objectives of launch vehicles.

3.3 Weighting Scheme and Control Synthesis
Based on the control objectives and the expected disturbances, the dynamic weights We and Wu, as

well as static weights Ve, Vu, and Vd are selected. Following the formulation and recommendations in
[13], the weighting filter We affects the disturbance sensitivity. Therefore, it describes the requirements
on sensitivity. As a θ tracker shall be designed, integral behavior in the θ channel up to 12.5rad/s and
a magnitude of 0.5 beyond is selected. To account for the increasing dynamic pressure and slow down
the tracking, the desired bandwidth ωbw is gradually reduced to as low as 6rad/s in the area of maximum
dynamic pressure (40s-60s). The design aims for a closed-loop bandwidth, which is at least five-times
faster than the most unstable pole (1.14rad/s at 50s into the ascent). It also separates the controller
bandwidth by a factor of at least four from the gimbal’s bandwidth. However, the gimbal dynamics
remain a crucial part of the synthesis model to increase robustness towards phase delays. A frequency-
independent constant weighting of 0.5 is chosen for the remaining feedback signals, namely α and q.
The weighting filter Wu determines the control sensitivity and represents the actuator limitations as well
as robustness requirements. It is selected with unit gain up to 25rad/s, i.e., half the gimbal bandwidth.
Beyond 25rad/s, differentiating behavior is selected to enforce controller roll-off.

Afterwards, the tuning knobs are selected, which are based on the control objectives in Section 3.2.
The static weight Ve represents the maximum command value for tracked outputs and balances the three
output errors. It is chosen time-varying, given the changing requirements along the trajectory. At the
beginning and end of the trajectory pitch tracking is prioritized over load relief. Hence, a small value
for Ve in the θ channel (Veθ

) and larger values in the α (Veα
) and q (Veq) channels are chosen. The latter

influences the transient behavior, which is allowed to be faster in the low dynamic pressure regions. Tab.
1 presents the numerical values chosen for the elements of Ve. Cubic Hermite interpolating polynomials
are used to interpolate the points in-between the grid points, to assure smoothness. Fig. 5 depicts the
course of the weights along the trajectory. The Veα

values are selected based on the αmax bound in Fig. 4
with a safety margin. For the other two channels, values corresponding to the allowed errors in [21, 22]
are selected. To assign the available control action relative to the previously specified maximum errors,
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Table 1 Values of the weights along the trajectory

15s 30s 40s 50s 60s 80s 100s

ωbw [rad/s] 12 10 8 6 8 10 12

Veα
[deg] 10 6 4.5 4.5 6 10 10

Veθ
[deg] 0.25 0.5 1 1 0.5 0.25 0.25

Veq [deg/s] 1 0.75 0.5 0.4 0.5 0.75 1

Vu [deg] 10 8.5 7.5 6.0 7.5 8.5 10

Vd [deg/s] 2.5 2 0.5 0.1 0.5 2.0 2.5
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Fig. 5 Tuning parameter along the trajectory: Selected Value ( ), Control Objective ( )

the weight Vu is used. Its values are based on the gimbal dynamics, typical deflection limits of thrust
vector control system, and to reduce the consumption. For the considered launcher, a value of 6deg in
the high pressure region is chosen and 10deg elsewhere (see Tab. 1 for details). The selection also aims
for a reduction of the control effort in the high pressure region for load relief purposes. The ratio Ve/Vd
determines the trade-off between tracking performance and disturbance rejection. Hence, disturbance
rejection is favored in the range of maximum dynamic pressure. The selected values for Vd are shown in
Tab. 1.

Using these weights, the observer synthesis and calculation of the output injection gain L can be
performed. It requires solving a scaled version of the RDE (9), which can be readily derived following
the explanations in [12]. The RDE is solved using the Matlab solver ODE15s [26], suitable for stiff dif-
ferential equations, a typical property of RDEs, see e.g. [27]. The solution takes 0.09s on a standard
desktop PC. Next, the state feedback synthesis is conducted, using L from the previous step. The calcu-
lated feedback gain minimizes the L2[0,T ] of the output feedback problem. Again, ODE15s in Matlab is
used to solve the RDE. A bisection calculates the minimal feasible γ as γ = 3.75 and takes 3.51s. Thus,
the complete controller synthesis requires approximately 4.2s. Finally, the finite horizon LTV controller
is formed from the feasible solutions of the RDEs, the plant state space matrices and the weighting filters
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following Fig. 2. The low amount of time for synthesis allows for a fast tuning process. Compared
to the LPV approaches, see e.g. [8], LTV synthesis facilitates significantly higher grid densities. Thus,
significantly more accurate representation of the launcher dynamics are possible in the synthesis.

4 Results
First, an LTV simulation of the resulting closed-loop model is conducted in Matlab. The closed loop

is exited by an external wind disturbance. The wind disturbance consists of a Gaussian white noise signal
with a sampling time of 0.5s and variance 1, and a static mean value of zero. It induces an α disturbance
on the launcher shown in Fig. 6. The control signal counteracts the disturbance and keeps the deviation
θ close to zero for the whole ascent. The required gimbal deflection remains below the saturation
limit. Thus, the controller displays excellent disturbance rejection. It is particularly noteworthy that
no variation in performance is visible, although the unstable dynamics of the launcher vary significantly
over time (see Fig. 3). In conclusion, the proposed control design approach proofs suitable for a highly
time-varying problem.
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−10

0

10

Time t [s]

A
ng

le
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Fig. 6 Nominal performance results of the LTV simulation: α disturbance ( ), θ deviation ( ), con-
trol signal ( )

After confirming the nominal performance of the controller, a Monte Carlo simulation over a large
set of realistic wind disturbances is conducted. The analyzed wind disturbance w shall resemble Dry-
den turbulence profiles, which are frequently used in aerospace certification [28]. In the Monte Carlo
simulation the Dryden filter Gw for vertical turbulence

ẋw(t) =

 0 1

−
(

vref(t)
Lw(t)

)2
−2 vref(t)

Lw(t)

xw(t)+

 0(
vref(t)
L(t)

)2

nw(t)

w(t) =
[
σ(t)

√
Lw(t)

πvref(t)
σ(t) Lw(t)

vref(t)

√
3Lw(t)
πvref(t)

]
xw(t),

(12)

with white noise input nw is implemented to generate w. The filter Gw shapes signals with constant power
spectral density (PSD) into turbulence profiles statistically matching real turbulence. In (12), vref is the
velocity of the launcher, σ is the turbulence intensity and Lw is the turbulence scale length. Note that
σ ’s as well as Lw’s altitude dependence convert to a strict time dependency along the design trajectory.
A moderate turbulence intensity according to MIL-F-8785C is chosen.

Using this type of explicit wind disturbance requires a slight change of the Launcher LTV model’s
input channel from α̇ to a wind velocity disturbance w of unit [m/s]. Here the wind disturbance is
approximated as αw ≈ vw

vd
. Hence, in (11) the second column of the B and D matrices changes to[

Zα (t)
m(t)vref(t)

2 0 Mα (t)
Jyy(t)vref(t)

]T
and

[
1

vref
0 0
]T , respectively.
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A total of 10000 unique wind signals w are evaluated, whose PSDs compare to real turbulence. Fig. 7
depicts the wind signals as well as the resulting values of α , θ , and the commanded gimbal deflection
ucmd. Focusing first on the induced angle of attack, the limit value αmax is never violated. A maximum
absolute value of 8.27deg at 21.45s was identified, which is a factor of 1.2 lower than the local αmax. In
the high pressure region, α never exceeds an absolute value of 3.3deg and thus remains well below the
threshold. During the whole atmospheric ascent the tracking error θ remains small with the maximum
absolute deviation of 0.19deg occurring in the high dynamic pressure region at 49.22s. In the low
pressure region, θ never exceeds 0.17deg. The commanded control effort remains small over the whole
trajectory, with a maximum absolute gimbal deflection of 0.83deg at 30.91s. It remains well below the
saturation limit of 10deg Fig. 8 shows a distribution of the calculated consumptions, i.e., the cumulative
control effort along the trajectory. The maximum consumption is 7.39deg, which is almost three times
lower than the threshold of 20deg. The behavior of the θ , α , and control effort signals clearly reflect the
influence of the time-varying control design. At the beginning of the ascent where dynamic pressure is
low, tracking is favored over load relief. In the middle of the ascent, load relief is favored resulting in
less stringent tracking and, thus, reduced control effort and smaller induced angles of attack. At the end
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of the trajectory the tracking becomes tighter again. However, the wind disturbance significantly starts
to decay in the corresponding altitude band. Hence, the induced angles of attack reduce as well.

5 Conclusion
A finite horizon LTV design for a space launcher in atmospheric ascent is presented. The synthesis

explicitly includes the launcher’s time-varying dynamics as well as the variation of the control objectives
along the ascent trajectory. The applied time-varying weighting scheme results in a particularly traceable
tuning procedure strictly based on the control objectives and expected disturbances. A novel synthesis
procedure for finite horizon LTV systems is applied, which yields a highly structured controller. The
concluding Monte Carlo simulation over a large set of realistic wind disturbances demonstrated the
suitability of LTV control for the ascent problem.
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