Safety of Quantified ABoxes w.r.t. Singleton \mathcal{EL} Policies

Franz Baader¹ Francesco Kriegel¹ **Adrian Nuradiansyah**¹ Rafael Peñaloza²

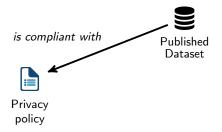
¹Technische Universität Dresden & ²University of Milano-Bicocca

In the 36th ACM/SIGAPP Symposium On Applied Computing

March 23rd, 2021

March 23rd, 2021

An Illustration of Non-Safety



Dataset:

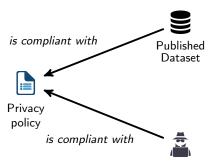
 $\exists \{x\}. \{father(BEN, x), Comedian(x)\}$

Policy:

Comedian $\sqcap \exists father. Comedian$

BEN is not an instance of the policy concept w.r.t. the dataset

An Illustration of Non-Safety



Attacker's knowledge

Dataset:

 $\exists \{x\}. \{father(BEN, x), Comedian(x)\}$

Policy:

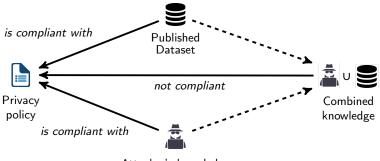
Comedian □ ∃father. Comedian

Attacker knows

 $\exists \{x\}. \{Comedian(BEN)\}$

BEN is not an instance of the policy concept w.r.t. the attacker's knowledge

An Illustration of Non-Safety



Attacker's knowledge

Dataset:

 $\exists \{x\}. \{father(BEN, x), Comedian(x)\}$

Policy:

Comedian □ ∃father.Comedian

Attacker knows

 $\exists \{x\}. \{Comedian(BEN)\}$

BEN is an instance of the policy concept w.r.t. the dataset and the attacker's knowledge \Rightarrow the dataset is **compliant with**, but **not safe** for the policy!

What We Want To Do

Our Research Questions

- 1. How to decide if a dataset is safe for a policy i.e.,
 - none of the secret information is revealed, even if the attacker has additional compliant knowledge ?
- 2. How to anonymise a dataset such that
 - the anonymised dataset is safe for a policy,
 - all the anonymized information follows from the original dataset, and
 - the amount of lost entailments due to the anonymisation is minimal?

Assumption: Our problems are considered in the context of Description Logics

How our Dataset Looks Like

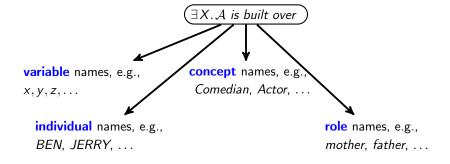
Our dataset is a **quantified ABox** $\exists X.A$

Example: $\exists \{x\}. \{Comedian(BEN), father(BEN, x), Comedian(x)\}$

How our Dataset Looks Like

Our dataset is a **quantified ABox** $\exists X. A$

Example: $\exists \{x\}. \{Comedian(BEN), father(BEN, x), Comedian(x)\}$



and the $matrix \ \mathcal{A}$ of the quantified ABox consists of:

- **concept assertions**, e.g., *Comedian(BEN)*, *Actor(x)*...
- role assertions, e.g., mother(BEN, x), father(BEN, y)...

How our Dataset Looks Like

```
Our dataset is a quantified ABox \exists X.A
```

Example: $\exists \{x\}. \{Comedian(BEN), father(BEN, x), Comedian(x)\}$

Note:

- Every variable or individual occurring in $\exists X.A$ is called an **object**
- $\exists X. A \models \exists Y. B$ denotes that $\exists X. A$ entails $\exists Y. B$
- A quantified ABox without variables is a traditional DL ABox

How our Policies Look Like

A policy P is a concept of the description logic \mathcal{EL} Example: $P = Comedian \sqcap \exists father.(Comedian \sqcap Actor)$

Atoms(P) = {Comedian, \exists father.(Comedian \sqcap Actor)} (concept names or existential restrictions occurring in P)

Instance Relationships in \mathcal{EL}

- $\exists X. A \models D(u)$ means that the object u is an **instance of** the \mathcal{EL} concept D w.r.t. $\exists X. A$
- Instance relationships in \mathcal{EL} can be checked in polynomial time

A Formal Definition of Safety

In (Baader, Kriegel, Nuradiansyah, Penaloza, ISWC 2020), the notion of policy-compliance for quantified ABoxes was introduced

Compliance and Safety

A quantified ABox $\exists X.A$ is

• compliant with a policy concept P iff $\exists X. A \not\models P(a)$ for all individuals a

A Formal Definition of Safety

In (Baader, Kriegel, Nuradiansyah, Penaloza, ISWC 2020), the notion of policy-compliance for quantified ABoxes was introduced

Compliance and Safety

A quantified ABox $\exists X. A$ is

- compliant with a policy concept P iff $\exists X. A \not\models P(a)$ for all individuals a
- safe for P iff for each quantified ABox $\exists Y.B$ that is compliant with P,

the union $\exists X. A \cup \exists Y. B$ is also compliant with P

What Makes a Quantified ABox Not Safe for a Policy

Observation 1

There exist an individual a and $B \in Atoms(P)$ such that B(a) is in A, e.g.,

$$\exists X. A := \exists \emptyset. \{C(BEN), f(BEN, JERRY)\} \qquad P := C \sqcap \exists f. C$$
$$\exists X'. A' := \exists \emptyset. \{C(JERRY)\} \text{ (an attacker's knowledge)}$$

Observation 2

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that u is an individual, e.g.,

$$\exists X. A = \exists \emptyset. \{f(BEN, JERRY)\}$$
 $P = C \sqcap \exists f. C$
 $A' := \exists \emptyset. \{C(BEN), C(JERRY)\}$ (an attacker's knowledge)

Observation 3

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that "a part of D can be homomorphically mapped to \mathcal{A} at u", e.g.,

$$\exists X'. A' := \exists \emptyset. \{C(BEN)\} \text{ (an attacker's knowledge)}$$

What Makes a Quantified ABox Not Safe for a Policy

Observation 1

There exist an individual a and $B \in Atoms(P)$ such that B(a) is in A, e.g.

$$\exists X. A := \exists \emptyset. \{C(BEN), f(BEN, JERRY)\}$$
 $P := C \sqcap \exists f. C$
 $\exists X'. A' := \exists \emptyset. \{C(JERRY)\} (an attacker's knowledge)$

Observation 2

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that u is an individual, e.g.,

$$\exists X. \mathcal{A} = \exists \emptyset. \{ f(BEN, JERRY) \} \qquad P = C \sqcap \exists f. C$$
$$\exists X'. \mathcal{A}' := \exists \emptyset. \{ C(BEN), C(JERRY) \} \text{ (an attacker's knowledge)}$$

Observation 3

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that "a part of D can be homomorphically mapped to \mathcal{A} at u", e.g.,

$$\exists X . A = \exists \{x\}. \{f(BEN, x), C(x)\} \qquad P = C \sqcap \exists f. C$$
$$\exists X' . A' := \exists \emptyset. \{C(BEN)\} \text{ (an attacker's knowledge)}$$

What Makes a Quantified ABox Not Safe for a Policy

Observation 1

There exist an individual a and $B \in Atoms(P)$ such that B(a) is in A, e.g.

$$\exists X. A := \exists \emptyset. \{C(BEN), f(BEN, JERRY)\}$$
 $P := C \sqcap \exists f. C$
 $\exists X'. A' := \exists \emptyset. \{C(JERRY)\} (an attacker's knowledge)$

Observation 2

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that u is an individual, e.g.,

$$\exists X. A = \exists \emptyset. \{f(BEN, JERRY)\}$$
 $P = C \sqcap \exists f. C$
 $A' := \exists \emptyset. \{C(BEN), C(JERRY)\}$ (an attacker's knowledge)

Observation 3

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that "a part of D can be homomorphically mapped to \mathcal{A} at u", e.g.,

$$\exists X. A = \exists \{x\}. \{f(BEN, x), C(x)\} \qquad P = C \sqcap \exists f. C$$
$$\exists X'. A' := \exists \emptyset. \{C(BEN)\} \text{ (an attacker's knowledge)}$$

Partial Homomorphism

Observation 2

There exist an individual a, an atom $\exists r.D \in Atoms(P)$, and $r(a, u) \in A$ such that u is an individual e.g.,

Observation 3

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that "a part of D can be homomorphically mapped to \mathcal{A} at u"

The two conditions above formally are called the existence of a partial homomorphism from D to $\exists X. A$ at u

Partial Homomorphism

Observation 2

There exist an individual a, an atom $\exists r.D \in Atoms(P)$, and $r(a, u) \in A$ such that u is an individual e.g.,

Observation 3

There exist an individual a, an atom $\exists r.D \in \mathsf{Atoms}(P)$, and $r(a,u) \in \mathcal{A}$ such that "a part of D can be homomorphically mapped to \mathcal{A} at u"

The two conditions above formally are called the existence of a partial homomorphism from D to $\exists X. A$ at u

The Existence of a Partial Homomorphism

Checking the existence of a partial homomorphism can be done in polynomial time

Deciding if an ABox is safe for a policy

Characterizing Safety

 $\exists X.A$ is safe for a policy P iff for each individual name a

- 1. if $B \in Atoms(P)$, then the assertion B(a) is not in A
- 2. if role assertion $r(a, u) \in A$ and $\exists r.D \in Atoms(P)$, then there is **no partial** homomorphism from D to $\exists X.A$ at u.

Complexity of the Safety Problem

Checking if a quantified ABox is safe for a policy concept can be done in **polynomial time**

Optimal Safe Anonymisations

The ABox

$$\exists \{x\}. \{father(BEN, x)\}$$

is safe for the policy $Comedian \sqcap \exists father.Comedian$. However, the following ABox

$$\exists \{x, y\}. \{father(BEN, x), Comedian(y), father(y, x)\}$$

is also safe for the policy and entails the first ABox.

Optimal Safe Anonymisations

The ABox

$$\exists \{x\}. \{father(BEN, x)\}$$

is safe for the policy $Comedian \sqcap \exists father. Comedian$. However, the following ABox

$$\exists \{x, y\}. \{father(BEN, x), Comedian(y), father(y, x)\}$$

is also safe for the policy and entails the first ABox.

A quantified ABox $\exists Y.B$ is an optimal safe anonymisation of $\exists X.A$ for a policy P iff

- $\exists Y.B$ is safe for P (safety)
- $\exists X. A \models \exists Y. B$ (anonymisation)
- there is no safe anonymisation $\exists Z.C$ of $\exists X.A$ for P that strictly entails $\exists Y.B$ (optimality)

 $\exists X. A := \exists \emptyset. \{Comedian(BEN), father(BEN, JERRY), Comedian(JERRY)\}\$ $P := Comedian \sqcap \exists father. Comedian$

$$\exists X. A := \exists \emptyset. \{ Comedian(BEN), father(BEN, JERRY), Comedian(JERRY) \}$$

$$P := Comedian \sqcap \exists father. Comedian$$

The main idea of the approach:

1.) For each object u in $\exists X. A$, **introduce copies** $y_{u,K}$ **of them** as a variable in $\exists Y. B$, where $K \subseteq \text{Atoms}(P)$

it is sufficient to create at most exponentially many such copies

 $\exists X. A := \exists \emptyset. \{ Comedian(BEN), father(BEN, JERRY), Comedian(JERRY) \}$ $P := Comedian \sqcap \exists father. Comedian$

$$(y_{b,\{C\}})$$

$$(y_{b,\{\exists f.C\}})$$

$$y_{b,\{C,\exists f.C\}}$$

 $(y_{j,\{C\}})$

 $(y_{j,\{\exists f.C\}})$

 $(y_{j,\{C,\exists f.C\}})$

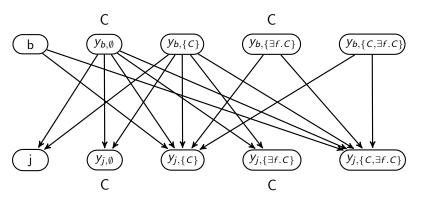
 $\exists X. A := \exists \emptyset. \{ Comedian(BEN), father(BEN, JERRY), Comedian(JERRY) \}$ $P := Comedian \sqcap \exists father. Comedian$

The main idea of the approach:

- 2.) For each individual a, b and each variable $y_{u,K}$ in $\exists Y.B$, ensure that they satisfy less assertions, in particular
 - if B(a) in $\exists X. A$ and $B \in Atoms(P)$, then don't add B(a) in $\exists Y. B$
 - if r(a,b) in $\exists X.A$ and $\exists r.D \in Atoms(P)$, then don't add r(a,b) in $\exists Y.B$ and
 - if $D \in \mathcal{K}$, then no partial homomorphism from D to $\exists Y . \mathcal{B}$ at $y_{u,\mathcal{K}}$

 $\exists X. A := \exists \emptyset. \{Comedian(BEN), father(BEN, JERRY), Comedian(JERRY)\}\$ $P := Comedian \sqcap \exists father. Comedian$

The Optimal Safe Anonymisation $\exists Y.\mathcal{B}$ of $\exists X.\mathcal{A}$ for P



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

A. Initialization step

For the optimal safe anonymisation $\exists Y.\mathcal{B}$, construct the set Y of all variables $y_{\mu,\mathcal{K}}$, where

• u is an object in $\exists X. A$

- $\mathcal{K} \subseteq \mathsf{Atoms}(P)$
- ullet each atom in ${\mathcal K}$ is incomparable w.r.t. \sqsubseteq_\emptyset

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

A. Initialization step

For the optimal safe anonymisation $\exists Y.\mathcal{B}$, construct the set Y of all variables $y_{u,\mathcal{K}}$, where

• u is an object in $\exists X. A$

- $\mathcal{K} \subseteq \mathsf{Atoms}(P)$
- each atom in \mathcal{K} is incomparable w.r.t. \sqsubseteq_{\emptyset}

There are at most **exponentially many such variables**

each $y_{u,K}$ is used later to **prevent the existence of a partial homomorphism** from each atom in K to $\exists Y.B$ at $y_{u,K}$

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\}$$
 $P := C \sqcap \exists f. C$

A. Initialization step

For the optimal safe anonymisation $\exists Y.\mathcal{B}$, construct the set Y of all variables $y_{u,\mathcal{K}}$, where

• u is an object in $\exists X.A$

- $\mathcal{K} \subseteq \mathsf{Atoms}(P)$
- each atom in \mathcal{K} is incomparable w.r.t. \sqsubseteq_{\emptyset}
- (b

 $(y_{b,\emptyset})$

 $(y_{b,\{C\}})$

(Yb,{∃f.C})

 $(y_{b,\{C,\exists f.C\}})$

(j)

 $(y_{j,\emptyset})$

 $(y_{j,\{C\}})$

(*Yj*,{∃f.C}

 $y_{j,\{C,\exists f.C\}}$

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

- B. Matrix construction step
 - 1.) Add A(a) to \mathcal{B} if $A(a) \in \mathcal{A}$ and $A \notin \mathsf{Atoms}(P)$

no A(a) in $\mathcal B$ if a is an individual and $A\in\mathsf{Atoms}(P)$

b

- $(y_{b,\emptyset})$
- $(y_{b,\{C\}})$
- $(y_{b,\{\exists f.C\}})$

 $(y_{b,\{C,\exists f.C\}})$

(j

 $(y_{j,\emptyset})$

 $(y_{j,\{C\}})$

- $(y_{j,\{\exists f.C\}})$
- $(y_{j,\{C,\exists f.C\}})$

$$\exists X. \mathcal{A} := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

- B. Matrix construction step
 - 2.) Add $A(y_{u,\mathcal{K}})$ to \mathcal{B} if $A(a) \in \mathcal{A}$ and $A \notin \mathcal{K}$

no partial homomorphism from $A \in \mathcal{K}$ to $\exists Y.\mathcal{B}$ at $y_{u,\mathcal{K}}$

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

3.) Add r(a,b) to \mathcal{B} if $r(a,b) \in \mathcal{A}$ and no $\exists r.D \in \mathsf{Atoms}(P)$

no r(a,b) in \mathcal{B} if a and b are individuals and there is $\exists r.D \in \mathsf{Atoms}(P)$

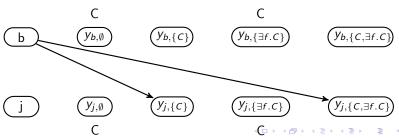
$$\begin{array}{c}
C \\
\hline
b \\
\hline
\end{array}
\qquad
\begin{array}{c}
V_{b,\{C\}} \\
\hline
\end{array}
\qquad
\begin{array}{c}
V_{b,\{\exists f.C\}} \\
\hline
\end{array}
\qquad
\begin{array}{c}
V_{b,\{C,\exists f.C\}} \\
\hline
\end{array}$$

$$\underbrace{j} \qquad \underbrace{y_{j,\emptyset}} \qquad \underbrace{y_{j,\{C\}}} \qquad \underbrace{y_{j,\{\exists f.C\}}}$$

$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

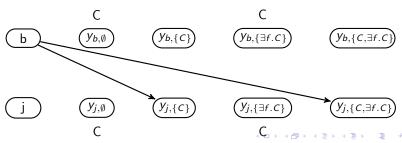
4.) Add $r(a, y_{v, \mathcal{L}})$ to \mathcal{B} if $r(a, v) \in \mathcal{A}$ and for each $\exists r.D \in \mathsf{Atoms}(P)$, there is $E \in \mathcal{L}$ with $D \sqsubseteq_{\emptyset} E$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

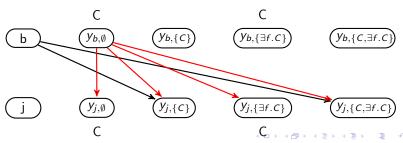
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

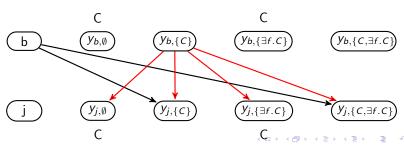
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

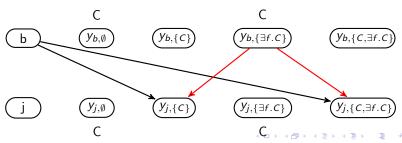
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

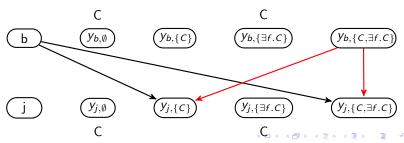
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

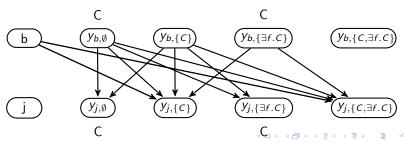
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

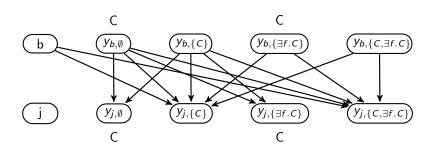
5.) Add $r(y_{u,\mathcal{K}}, y_{v,\mathcal{L}})$ to \mathcal{B} if $r(u,v) \in \mathcal{A}$ and or each $\exists r.D \in \mathcal{K}$, there is $D \in \mathcal{L}$ with $C \sqsubseteq_{\emptyset} D$



$$\exists X. \mathcal{A} := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

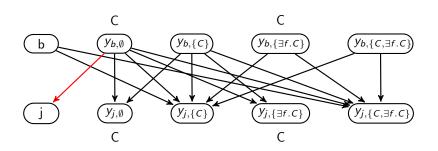
6.) Add $r(y_{u,\mathcal{K}}, a)$ to \mathcal{B} if $r(u, a) \in \mathcal{A}$ and no $\exists r.D \in \mathcal{K}$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

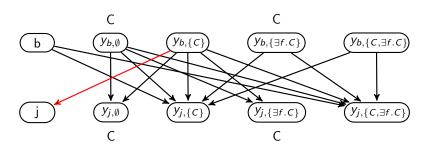
6.) Add $r(y_{u,\mathcal{K}}, a)$ to \mathcal{B} if $r(u, a) \in \mathcal{A}$ and no $\exists r.D \in \mathcal{K}$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

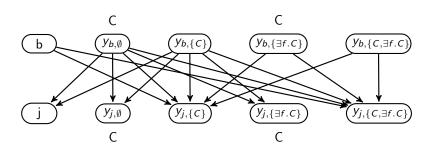
6.) Add $r(y_{u,\mathcal{K}}, a)$ to \mathcal{B} if $r(u, a) \in \mathcal{A}$ and no $\exists r.D \in \mathcal{K}$



$$\exists X. A := \exists \emptyset. \{C(b), f(b,j), C(j)\} \qquad P := C \sqcap \exists f. C$$

B. Matrix construction step

6.) Add $r(y_{u,\mathcal{K}}, a)$ to \mathcal{B} if $r(u, a) \in \mathcal{A}$ and no $\exists r.D \in \mathcal{K}$



Complexity of Computing The Optimal Safe Anonymisation

Results for the Computational Problem

- 1. For a quantified ABox $\exists X. A$ and a policy concept P, the optimal safe anonymisation of $\exists X. A$ for P is **unique** (up to equivalence)
- 2. The optimal safe anonymisation can be computed in
 - exponential time for combined complexity
 - polynomial time for data complexity i.e., the size of P is fixed

Future Work and References

Future Work:

- Extending the expressiveness of the policies e.g., $\mathcal{EL} \to \mathcal{ELI}$, i.e., \mathcal{EL} with inverse roles
- Extending our results to non-singleton policies, i.e., policies that have more than one concept
- Adding static background knowledge (TBoxes) to both published quantified ABox and the attackers' knowledge

Future Work and References

Future Work:

- Extending the expressiveness of the policies e.g., $\mathcal{EL} \to \mathcal{ELI}$, i.e., \mathcal{EL} with inverse roles
- Extending our results to non-singleton policies, i.e., policies that have more than one concept
- Adding static background knowledge (TBoxes) to both published quantified ABox and the attackers' knowledge

Our work is based on the following **related work**:

- F. Baader, F. Kriegel, A. Nuradiansyah, R. Peñaloza, Computing Compliant Anonymisations of Quantified ABoxes w.r.t. & Policies, ISWC 2020
- B. Cuenca Grau and E. Kostylev, Logical Foundations of Linked Data Anonymizations, JAIR, 2019