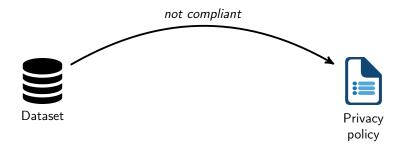
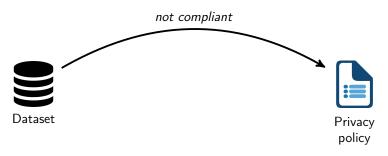
Computing Compliant Anonymisations of Quantified ABoxes w.r.t. \mathcal{EL} Policies

Franz Baader¹ Francesco Kriegel¹ **Adrian Nuradiansyah**¹ Rafael Peñaloza²

¹Technische Universität Dresden ²University of Milano-Bicocca

November 4th, 2020





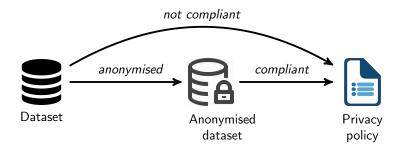
Dataset:

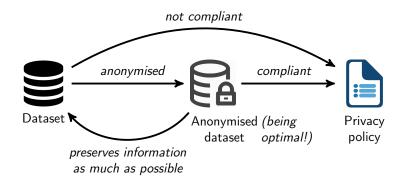
 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$

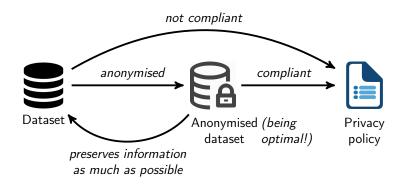
Policy:

 $\{Politician \sqcap Businessman, \exists r.(Politician \sqcap Businessman)\}$

The individual d is an instance of both concepts w.r.t. the dataset \Rightarrow not compliant!

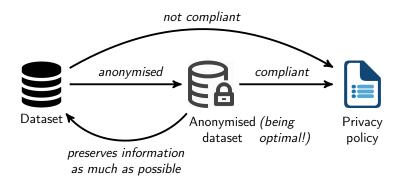






Question:

How to **anonymise** a dataset **in a minimal way** s.t. all the published information **follows from the original one**, but **privacy** constraints **are satisfied**?



Question:

How to **anonymise** a dataset **in a minimal way** s.t. all the published information **follows from the original one**, but **privacy** constraints **are satisfied**?

Assumption: Our problem will be considered in the context of Description Logic (DL) ontologies

How Our Dataset Looks Like

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$ is built over

- a set X of variables, e.g., x, x_1, x_2, \ldots
- a set of individual names, e.g., d, d_1, d_2, \ldots
- a set of **concept names**, e.g., *Politician*, *Businessman*, *P*, *B*, . . .
- a set of **role names**, e.g., *related*, *r*, *s*

How Our Dataset Looks Like

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$ is built over

- a set X of variables, e.g., x, x_1, x_2, \dots
- a set of **individual** names, e.g., d, d_1, d_2, \ldots
- a set of **concept names**, e.g., *Politician*, *Businessman*, *P*, *B*, . . .
- a set of **role names**, e.g., *related*, *r*, *s*

and A, in general, consists of:

- concept assertions, e.g., Politician(d), Businessman(x), . . .
- role assertions, e.g., related(d, x), ...

Note: A traditional DL ABox is a quantified ABox where X is empty.

How Our Dataset Looks Like

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$

Entailment between Quantified ABoxes

- $\exists X. A \models \exists Y. B$ denotes that $\exists X. A$ entails $\exists Y. B$
- The entailment problem between quantified ABoxes is NP-complete

How the Policy Looks Like

A policy P is a finite set of EL concepts

```
\{Politician \sqcap Businessman, \exists r.(Politician \sqcap Businessman)\}
```

It has the following components:

- Atoms(\mathcal{P}) = { $Politician, Businessman, \exists r.(Politician \sqcap Businessman)$ }
- Let P_1 be the first concept in $\mathcal P$

```
Conj(P_1) = \{Politician, Businessman\} occurs in the top-level conjunction of P_1
```

How the Policy Looks Like

A policy \mathcal{P} is a finite set of \mathcal{EL} concepts

 $\{Politician \sqcap Businessman, \exists r. (Politician \sqcap Businessman)\}$

It has the following components:

- Atoms(\mathcal{P}) = {Politician, Businessman, $\exists r. (Politician \sqcap Businessman)$ }
- ullet Let P_1 be the first concept in ${\mathcal P}$

 $Conj(P_1) = \{Politician, Businessman\}$ occurs in the **top-level conjunction** of P_1

Reasoning Problems in \mathcal{EL}

- $C \sqsubseteq_{\emptyset} D$ means that the \mathcal{EL} concept C is subsumed by the \mathcal{EL} concept D
- $\exists X. A \models C(a)$ means that the individual a is an **instance** of the \mathcal{EL} concept C w.r.t. $\exists X. A$
- ullet Both subsumption and instance relationships can be checked in polynomial time for \mathcal{EL}

Optimal Compliant Anonymisations

A quantified ABox $\exists Y.\mathcal{B}$ is an optimal \mathcal{P} -compliant anonymisation of $\exists X.\mathcal{A}$ iff

- $\exists Y.\mathcal{B} \not\models P(a)$ for all $P \in \mathcal{P}$ and all individuals a (compliance)
- $\exists X. A \models \exists Y. B$ (anonymisation)
- there is no \mathcal{P} -compliant anonymisation $\exists Z.\mathcal{C}$ of $\exists X.\mathcal{A}$ that stricly entails $\exists Y.\mathcal{B}$ (optimal)

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X. A$.

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X. A$.

 \Rightarrow To make the ABox compliant, choose one atom C from Conj(P) such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X. A$.

 \Rightarrow To make the ABox compliant, choose one atom C from Conj(P) such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function

A compliance seed function (csf) s on $\exists X. A$ for P maps each individual name a to a subset of Atoms(P) such that

for each $P \in \mathcal{P}$, there is $C \in s(a)$ such that $C \in \mathsf{Conj}(P)$

$$\exists X. A = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\}$$

$$\mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

Mapping d to $s(d) = \{B, \exists r.(P \sqcap B)\}$ yields a csf

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. A = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad P = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select d and make the copy y_d)

$$\exists \{x, y_d\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x)\}$$

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. A = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select x and make the copy y_x)

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

Note: It suffices to create at most exponentially many copies of each object!

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

 Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

2. **Deletion operation**: The given csf *s* will guide which assertions should be removed from the current anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

 Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

2. **Deletion operation**: The given csf *s* will guide which assertions should be removed from the current anonymisation

Since $s(d) = \{B, \exists r. (P \sqcap B)\} \Rightarrow d$ is not allowed to be an instance of B

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. A = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad P = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

2. **Deletion operation**: The given csf s will guide which assertions should be removed from the current anonymisation

Since $s(d) = \{B, \exists r. (P \sqcap B)\} \Rightarrow r$ -successors of d are not allowed to be an instance of $P \sqcap B$

$$\exists \{x, y_d, y_x\}. \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_d), B(y_x)\}$$

From a given csf s, we can compute a compliant anonymisation with the following idea:

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

The following resulting anonymisation

$$ca(\exists X. A, s) = \exists Y. B$$

is a \mathcal{P} -compliant anonymisation of $\exists X. \mathcal{A}$, where \mathcal{B} is

$$\{P(d), r(d, x), P(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), B(y_x)\}$$

and
$$Y = \{x, y_d, y_x\}$$

Soundness, Completeness, Complexity

In general,

• For every csf s, the induced ABox

$$ca(\exists X. A, s) = \exists Y. B$$

is entailed by $\exists X. A$ and complies with P

Soundness, Completeness, Complexity

In general,

• For every csf s, the induced ABox

$$ca(\exists X. A, s) = \exists Y. B$$

is **entailed by** $\exists X. A$ and **complies with** P

The set

$$CA(\exists X. A, P) = \{ ca(\exists X. A, s) \mid s \text{ is a csf on } \exists X. A \text{ for } P \}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

Soundness, Completeness, Complexity

In general,

• For every csf s, the induced ABox

$$ca(\exists X. A, s) = \exists Y. B$$

is entailed by $\exists X.A$ and complies with \mathcal{P}

The set

$$CA(\exists X. A, P) = \{ ca(\exists X. A, s) \mid s \text{ is a csf on } \exists X. A \text{ for } P \}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

 To remove the ones that are not optimal, we use an NP-oracle to check entailment between compliant anonymisations

Soundness, Complexity

In general,

• For every csf s, the induced ABox

$$ca(\exists X. A, s) = \exists Y. B$$

is entailed by $\exists X.A$ and complies with \mathcal{P}

The set

$$CA(\exists X. A, P) = \{ ca(\exists X. A, s) \mid s \text{ is a csf on } \exists X. A \text{ for } P \}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

 To remove the ones that are not optimal, we use an NP-oracle to check entailment between compliant anonymisations

Is it possible to get rid of the NP oracle?

Improving Complexity

1. Using a partial order \leq on csfs

We take only the \leq -minimal csfs for computing optimal compliant anonymisations

Improving Complexity

1. Using a partial order \leq on csfs

We take only the \leq -minimal csfs for computing optimal compliant anonymisations

- 2. Introducing IQ-entailment
 - $-\mathcal{EL}$ concepts are instance queries (IQ)
 - Only compare ABoxes based on which instance queries entailed by them

Deciding if $\exists X. A$ IQ-entails $\exists Y. B$ can be done in polynomial time

Table of Complexity Results

Settings	Completeness	
standard entailment	all optimal	
	compliant anonymisations	
standard entailment	only optimal compliant	
and \leq on csfs	anonymisations, not all of them	
IQ-entailment	all optimal	
	compliant IQ-anonymisations	

Table of Complexity Results

Settings	Completeness	
standard entailment	all optimal	
	compliant anonymisations	
standard entailment	only optimal compliant	
and \leq on csfs	anonymisations, not all of them	
IQ-entailment	all optimal	
	compliant IQ-anonymisations	

Settings	Combined Complexity	Data Complexity
standard entailment	exponential time	polynomial time
	with an NP-oracle	with an NP-oracle
standard entailment	exponential time	polynomial time
and \leq on csfs	exponential time	
IQ-entailment	exponential time	polynomial time

Future Work and References

Future Work

- Safety for \mathcal{EL} policies A quantified ABox is **safe** for \mathcal{P} if its combination with other \mathcal{P} -compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Future Work and References

Future Work

- Safety for \mathcal{EL} policies A quantified ABox is **safe** for \mathcal{P} if its combination with other \mathcal{P} -compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Our work is based on the following related work:

- F. Baader, F. Kriegel, A. Nuradiansyah, *Privacy-Preserving Ontology Publishing for EL Instance Stores*, JELIA 2019
- B. Cuenca Grau and E. Kostylev, Logical Foundations of Linked Data Anonymizations, JAIR, 2019