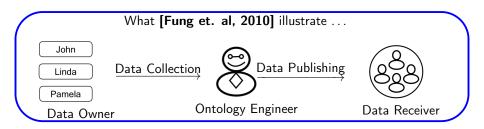
Reasoning in Description Logic Ontologies for Privacy Management

Adrian Nuradiansyah

Technische Universität Dresden

September 27, 2019

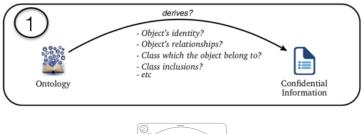
Data Collection and Data Publishing for Ontologies

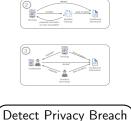


In the context of Description Logic Ontologies, [Grau, 2010] concerns ...

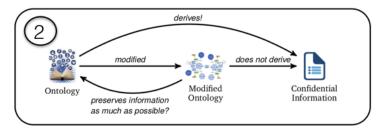
- A rise in the number of ontologies integrated in mainstream applications, e.g., medical systems
- Possible unauthorized disclosures of medical information may occur
- Designing privacy-preserving systems is being a critical requirement

What Should the Engineer Do Before Publishing?



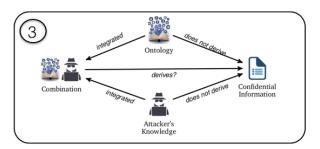


What Should the Engineer Do Before Publishing?



Detect Privacy Breach Ontology Repair

What Should the Engineer Do Before Publishing?



- Confidential information ⇒ property of individuals
- Membership of individuals (tuple of individuals) in the answers to certain queries (e.g., [Calvanesse et. al., 2008], [Stouppa & Studer, 2009], [Tao et.al., 2010])

- Confidential information ⇒ property of individuals
- Membership of individuals (tuple of individuals) in the answers to certain queries (e.g., [Calvanesse et. al., 2008], [Stouppa & Studer, 2009], [Tao et.al., 2010])

Focus on Identity? What is "identity"?

- Finding justifications why the (unwanted) consequences can be derived (e.g., [Schlobach, 2003], [Parsia et. al., 2007], [Baader et. al., 2008])
- Remove axioms that are responsible for the entailment (e.g., [Kalyanpur et. al., 2006])

- Finding justifications why the (unwanted) consequences can be derived (e.g., [Schlobach, 2003], [Parsia et. al., 2007], [Baader et. al., 2008])
- Remove axioms that are responsible for the entailment (e.g., [Kalyanpur et. al., 2006])

Do these approaches also remove useful consequences?

Can we do it more "gentle"?

- Learning type of attackers' background knowledge
- Investigating attribute linkage, table linkage, etc thoroughly in e.g., [Fung et. al., 2010]
- Introducing the notion of policy-compliance and policy-safety in the context of RDF graphs/Linked Data in e.g., [Grau & Kostylev, 2016]

- Learning type of attackers' background knowledge
- Investigating attribute linkage, table linkage, etc thoroughly in e.g., [Fung et. al., 2010]
- Introducing the notion of policy-compliance and policy-safety in the context of RDF graphs/Linked Data in e.g., [Grau & Kostylev, 2016]

[Is such setting already considered in DL ontologies?]

Problem Descriptions

Detecting Privacy Breach

The Identity Problem and its Variants in Description Logic Ontologies

Ontology Repair

Repairing Description Logic Ontologies via Axiom Weakening

Avoiding Linkage Attacks

Privacy-Preserving Ontology Publishing

Description Logics (DLs)

The logical underpinning of Web Ontology Language (OWL)

Decidable fragments of First Order Logics

Representing the conceptual knowledge of an application domain in a well-understood way.

Description Logics (DLs)

The logical underpinning of Web Ontology Language (OWL)

Decidable fragments of First Order Logics

Representing the conceptual knowledge of an application domain in a well-understood way.

Non-German people who work at an IT Department whose all locations are either in Germany or in Austria

 \neg German $\sqcap \exists$ worksAt.(ITDept $\sqcap \forall$ located.(Germany \sqcup Austria))

Name	Syntax	Example
Тор	Т	tautology
Concept Name	А	Germany
Conjunction	$C \sqcap D$	German □ Female
Disjunction	$C \sqcup D$	Germany ⊔ Austria
Existential Restriction	∃r.C	German □ ∃worksAt.ITDept
Universal Restriction	∀r.C	$ITDept \sqcap \forall located. Germany$
Negation	$\neg C$	¬German
(One of) Nominal	$\{a_1,\ldots,a_n\}$	{LINDA, JOHN, JIM}

Name	Syntax	Example
Тор	Т	tautology
Concept Name	Α	Germany
Conjunction	$C \sqcap D$	German □ Female
Disjunction	$C \sqcup D$	Germany ⊔ Austria
Existential Restriction	∃r.C	German □ ∃worksAt.ITDept
Universal Restriction	∀r.C	$ITDept \sqcap \forall located. Germany$
Negation	$\neg C$	¬German
(One of) Nominal	$\{a_1,\ldots,a_n\}$	{LINDA, JOHN, JIM}

ALC

- Closed under Boolean operators - Intractable

Name	Syntax	Example
Тор	Т	tautology
Concept Name	Α	Germany
Conjunction	$C \sqcap D$	German □ Female
Disjunction	$C \sqcup D$	Germany ⊔ Austria
Existential Restriction	∃ <i>r</i> . <i>C</i>	German □ ∃worksAt.ITDept
Universal Restriction	∀r.C	$ITDept \sqcap \forall located. Germany$
Negation	$\neg C$	¬German
(One of) Nominal	$\{a_1,\ldots,a_n\}$	{LINDA, JOHN, JIM}

 \mathcal{EL}

inexpressive, but reasoning is in PTime

Name	Syntax	Example
Тор	Т	tautology
Concept Name	Α	Germany
Conjunction	$C \sqcap D$	German □ Female
Disjunction	$C \sqcup D$	Germany ⊔ Austria
Existential Restriction	∃r.C	German □ ∃worksAt.ITDept
Universal Restriction	∀r.C	$ITDept \sqcap \forall located. Germany$
Negation	$\neg C$	¬German
(One of) Nominal	$\{a_1,\ldots,a_n\}$	{LINDA, JOHN, JIM}

 \mathcal{FL}_0

The dual of \mathcal{EL}

Name	Syntax	Example
Тор	Т	tautology
Concept Name	Α	Germany
Conjunction	$C \sqcap D$	German □ Patient
Disjunction	$C \sqcup D$	Germany ⊔ Austria
Existential	∃r.C	German □ ∃worksAt.ITDept
Restriction		,
Universal Restriction	∀r.C	$ITDept \sqcap \forall located.Germany$
Negation	$\neg C$	¬German
(One of) Nominal	$\{a_1,\ldots,a_n\}$	{LINDA, JOHN, JIM}

 \mathcal{FLE}

Combination of \mathcal{EL} and \mathcal{FL}_0

DL Ontologies

A DL ontology $\mathfrak O$ consists of an ABox $\mathcal A$ and a TBox $\mathcal T \Longleftrightarrow \mathfrak O = (\mathcal A, \mathcal T)$

DL Ontologies

A **DL** ontology $\mathfrak O$ consists of an **ABox** $\mathcal A$ and a **TBox** $\mathcal T \Longleftrightarrow \mathfrak O = (\mathcal A, \mathcal T)$

An ABox A: **knowledge about individuals** (instance relationships C(a) and individual relationships r(a,b))

DL Ontologies

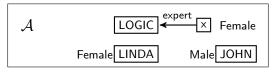
A **DL** ontology $\mathfrak O$ consists of an **ABox** $\mathcal A$ and a **TBox** $\mathcal T \Longleftrightarrow \mathfrak O = (\mathcal A, \mathcal T)$

An ABox A: **knowledge about individuals** (instance relationships C(a) and individual relationships r(a,b))

A TBox \mathcal{T} : inclusion relationships/constraints between concepts $C \sqsubseteq D$ (General Concept Inclusions (GCIs))

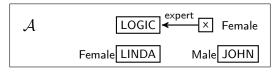
 \mathcal{T} \exists expert. $\{LOGIC\} \sqsubseteq VerTeam$ $Female \sqsubseteq \neg Male$

What can I Infer from an Ontology?



```
\mathcal{T} \exists expert.\{LOGIC\} \sqsubseteq VerTeam Female \sqsubseteq \neg Male VerTeam \equiv \{LINDA, JOHN\}
```

What can I Infer from an Ontology?

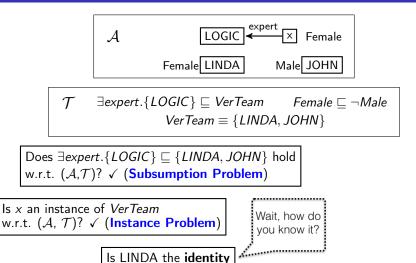


```
\mathcal{T} \exists expert.\{LOGIC\} \sqsubseteq VerTeam Female \sqsubseteq \neg Male VerTeam \equiv \{LINDA, JOHN\}
```

```
Does \exists expert.\{LOGIC\} \sqsubseteq \{LINDA, JOHN\} \text{ hold } w.r.t. (A,T)? \checkmark (Subsumption Problem)
```

```
Is x an instance of VerTeam w.r.t. (A, T)? \checkmark (Instance Problem)
```

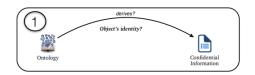
What can I Infer from an Ontology?



how do we call this

of anonymous x? \checkmark

Problem 1: Is My Identity Safe?



Identity Problem ($\mathfrak{O} \models x = a$) [DL 2017], [JIST 2017]

Problem 1: Is My Identity Safe?

Identity Problem ($\mathfrak{O} \models x = a$) [DL 2017], [JIST 2017]

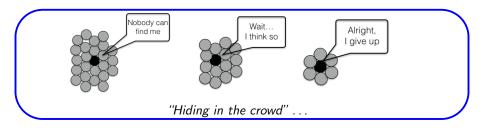
- ullet Not all DLs are able to derive equalities between individuals, e.g. \mathcal{ALC} .
- DLs with equality power: nominals, number restrictions, and functional dependencies.

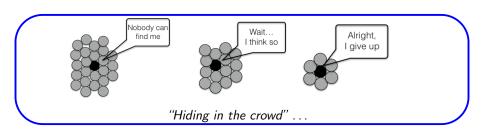
Problem 1: Is My Identity Safe?

Identity Problem ($\mathfrak{O} \models x \dot{=} a$) [DL 2017], [JIST 2017]

- ullet Not all DLs are able to derive equalities between individuals, e.g. \mathcal{ALC} .
- DLs with equality power: nominals, number restrictions, and functional dependencies.
- **Identity to Instance**: Given two individuals x, a, and an ontology $\mathfrak O$ formulated in a DL with equality power, it holds

 $\mathfrak{O} \models x \doteq a \text{ iff } (\mathfrak{O} \cup \{Q(x)\}) \models Q(a), \text{ where } Q \text{ is a fresh concept name}$

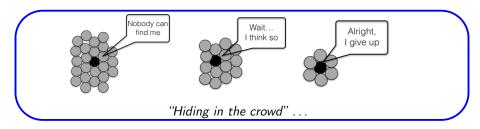




k-Hiding

The anonymous individual x is **not** k**-hidden** w.r.t. $\mathfrak O$ iff there are known individuals a_1, \ldots, a_{k-1} such that

x belongs to $\{a_1,\ldots,a_{k-1}\}$ w.r.t. $\mathfrak O$



k-Hiding

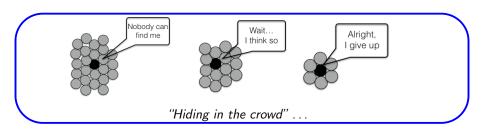
The anonymous individual x is **not** k-**hidden** w.r.t. $\mathfrak O$ iff there are known individuals a_1, \ldots, a_{k-1} such that

x belongs to $\{a_1,\ldots,a_{k-1}\}$ w.r.t. $\mathfrak O$

How to solve it

- Reduce it to the instance problem for all DLs with equality power
- Reduce it to the identity problem for some convex DLs with equality power

11/32



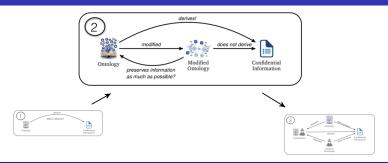
k-Hiding

The anonymous individual x is **not** k-**hidden** w.r.t. $\mathfrak O$ iff there are known individuals a_1, \ldots, a_{k-1} such that

x belongs to $\{a_1,\ldots,a_{k-1}\}$ w.r.t. $\mathfrak O$

If (variants) of the identity problem can be reduced to classical reasoning problems in DLs, then now let's consider **more general types of confidential axioms** (e.g., instance relationships, subsumptions, CQs, etc).

Problem 2: How to Protect the Confidential Information?

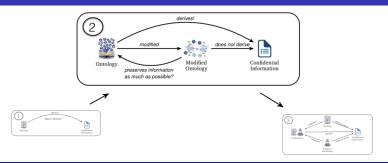


Ontology Repair ([KR 2018], [DL 2018])

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .

Adrian Nuradiansyah PhD Defense September 27, 2019 12 / 32

Problem 2: How to Protect the Confidential Information?



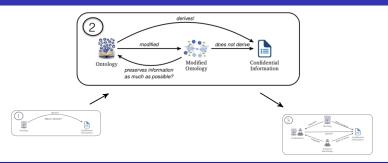
Ontology Repair ([KR 2018], [DL 2018])

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a **repair** of \mathfrak{O} w.r.t. α if

$$Con(\mathfrak{O}_s \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$$

Adrian Nuradiansyah PhD Defense September 27, 2019 12 / 32

Problem 2: How to Protect the Confidential Information?



Ontology Repair ([KR 2018], [DL 2018])

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{D} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a **repair** of \mathfrak{O} w.r.t. α if

$$Con(\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$$

• Optimal repair \mathfrak{D}' of \mathfrak{D} w.r.t. α : No Repair \mathfrak{D}'' of \mathfrak{D} w.r.t. α such that $Con(\mathfrak{D}' \cup \mathfrak{D}_s) \subset Con(\mathfrak{D}'' \cup \mathfrak{D}_s)$.

Adrian Nuradiansyah PhD Defense September 27, 2019 12 / 32

Optimal Classical Repairs

Optimal Repairs need not exist in general!

Optimal Classical Repair

A maximum subset \mathfrak{O}' of \mathfrak{O}_r such that $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$

Optimal Classical Repairs

Optimal Repairs need not exist in general!

Optimal Classical Repair

A maximum subset \mathfrak{O}' of \mathfrak{O}_r such that $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$

- Optimal classical repairs always exist → Justification and Hitting Set (Reiter, 1987)
- Let $\mathfrak{D}\models\alpha$. A justification J of \mathfrak{D} w.r.t. α is a minimal subset of \mathfrak{D}_r s.t. $\mathfrak{D}_s\cup J\models\alpha$.
- Let J_1, \ldots, J_k be the justifications of $\mathfrak O$ w.r.t. α . A **hitting set** $\mathcal H$ of these justifications is a set of axioms such that $\mathcal H \cap J_i \neq \emptyset$
- A hitting set \mathcal{H}_{min} is minimal if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{min}$.
- $\mathfrak{D}' := \mathfrak{D}_r \setminus \mathcal{H}_{min}$ is an optimal classical repair of \mathfrak{D} w.r.t. α such that

$$\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}' \not\models \alpha$$

Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .

Instead, we want to weaken axioms in $\mathcal{H} \Rightarrow$ Gentle Repair!

Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

Illustration

```
\mathfrak{O}_s := \{\exists receives.(Gift \sqcap Deluxe) \sqsubseteq \exists gets.Bribe\}
\mathfrak{O}_r := \{IndonesianPolitician \sqsubseteq \exists receives.(Gift \sqcap Deluxe)\}
```

• Every Indonesian politician is bribed w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.


```
\mathfrak{O}_s := \{\exists receives.(Gift \sqcap Deluxe) \sqsubseteq \exists gets.Bribe\}
\mathfrak{O}_r := \{IndonesianPolitician \sqsubseteq \exists receives.(Gift \sqcap Deluxe)\}
```

- Every Indonesian politician is bribed w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes a "common knowledge":

 IndonesianPolitician

 ∃receives.(Gift □ Deluxe)

- $\mathfrak{O}_s := \{\exists receives.(Gift \sqcap Deluxe) \sqsubseteq \exists gets.Bribe\}$ $\mathfrak{O}_r := \{IndonesianPolitician \sqsubseteq \exists receives.(Gift \sqcap Deluxe)\}$
- Every Indonesian politician is bribed w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes a "common knowledge": IndonesianPolitician

 ∃receives.(Gift □ Deluxe)
- **Gentle**: Weaken $\beta \in \mathfrak{O}_r$ to *IndonesianPolitician* $\sqsubseteq \exists receives. \textit{Gift}$ But, this consequence *IndonesianPolitician* $\sqsubseteq \exists receives. \textit{Deluxe}$ is also gone.

- $\mathfrak{O}_s := \{\exists receives.(Gift \sqcap Deluxe) \sqsubseteq \exists gets.Bribe\}$ $\mathfrak{O}_r := \{IndonesianPolitician \sqsubseteq \exists receives.(Gift \sqcap Deluxe)\}$
- Every Indonesian politician is bribed w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes a "common knowledge": IndonesianPolitician

 ∃receives.(Gift □ Deluxe)
- **Gentle**: Weaken $\beta \in \mathfrak{O}_r$ to *IndonesianPolitician* $\sqsubseteq \exists receives. \textit{Gift}$ But, this consequence *IndonesianPolitician* $\sqsubseteq \exists receives. \textit{Deluxe}$ is also gone.
- More gentle: Weaken β to IndonesianPolitician
 □ ∃receives. Gift □ ∃receives. Deluxe

How to Make it Gentle?

Gentle Repair Algorithm: [BaKrNuPe, KR 2018]

- ullet Take all justifications and one minimal hitting set ${\cal H}_{\it min}$
- For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β , replace β with exactly one γ , where γ is weaker than β such that

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$
 (1)

 γ always exists.

- Construct \mathfrak{O}' obtained from \mathfrak{O}_r by replacing each $\beta \in \mathcal{H}_{min}$ with an appropriate weaker γ satisfying (1).
- Check if α is a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

How to Make it Gentle?

Gentle Repair Algorithm: [BaKrNuPe, KR 2018]

- ullet Take all justifications and one minimal hitting set ${\cal H}_{\it min}$
- For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β , replace β with exactly one γ , where γ is weaker than β such that

$$\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$
 (1)

 γ always exists.

- Construct \mathfrak{O}' obtained from \mathfrak{O}_r by replacing each $\beta \in \mathcal{H}_{min}$ with an appropriate weaker γ satisfying (1).
- Check if α is a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Obtaining Gentle Repairs needs Iterations

- Using the algorithm above, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.
- Solution: Just iterate Gentle Repair Algorithm until $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$.
- The iterative algorithm yields an exponential upper bound on the number of iterations.

Weakening Relations

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

Weakening Relations

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation ≻ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ ...$;
- complete if for any β that is not a tautology, there is a tautology γ s.t. $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β , the length of the longest chain \succ -generated from β is linearly (polynomially) bounded by the size of β ;

Weakening Relations

Weakening Relation

The binary relation > on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ ...$;
- **complete** if for any β that is not a tautology, there is a tautology γ s.t. $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β , the length of the longest chain \succ generated from β is linearly (polynomially) bounded by the size of β ;

Weakening relations making larger steps may decrease the number of iterations

Weakening relations making smaller steps may make the repair more gentle

Maximally Strong Weakening Axioms

Replace β with exactly one weaker γ s.t.

$$\mathfrak{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k$$

If γ is a tautology, then it is the same as classical repair.

To make this repair as gentle as possible, γ should be maximally strong

$$\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$$
 but for all δ such that $\beta \succ \delta \succ \gamma$, we have
$$\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha$$

Maximally Strong Weakening Axioms

Replace β with exactly one weaker γ s.t.

$$\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k$$

If γ is a tautology, then it is the same as classical repair.

To make this repair as gentle as possible, γ should be maximally strong

$$\mathfrak{D}_{\mathfrak{s}} \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$$
 but for all δ such that $\beta \succ \delta \succ \gamma$, we have
$$\mathfrak{D}_{\mathfrak{s}} \cup (J_i \setminus \{\beta\}) \cup \{\delta\} \models \alpha$$

Do they always exists?

How to compute them?

Weakening Relations in \mathcal{EL}

Focus on GCIs and generalize the right-hand side of GCIs.

A Weakening Relation ≻^{sub}

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D'$$
 if $C' = C$, $D \sqsubset D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

 $D \sqsubseteq^{\mathit{syn}} D' \Rightarrow \mathsf{removing} \ \mathsf{occurrences} \ \mathsf{of} \ \mathsf{subconcepts} \ \mathsf{of} \ D.$

A Weakening Relation ≻^{syn}

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

Weakening Relations in \mathcal{EL}

Focus on GCIs and generalize the right-hand side of GCIs.

A Weakening Relation ≻^{sub}

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C, \ D \sqsubset D', \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D.$$

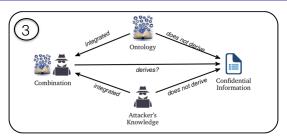
Employing both, maximally strong weakenings can be effectively computed

 $D \sqsubset^{syn} D' \Rightarrow$ removing occurrences of subconcepts of D.

A Weakening Relation ≻^{syn}

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

Problem 3: Privacy-Preserving Ontology Publishing (PPOP)



PPOP for \mathcal{EL} Ontologies ([DL 2018], [JELIA 2019], [KI 2019])

Restricting the ontology:

- ullet \mathcal{EL} Instance Stores & \mathcal{EL} ABoxes (No TBoxes)
- Instance Stores: Ontologies without individual relationships

PPOP for \mathcal{EL} Instance Stores

 \mathcal{EL} Instance Stores without TBox

 $C_1(a), C_2(a)$ implies $(C_1 \sqcap C_2)(a)$

only one concept assertion speaking about one individual

Published Information (an \mathcal{EL} Concept C)

Attacker's Knowledge

(an \mathcal{EL} / \mathcal{FL}_0 / \mathcal{FLE} Concept E)

Confidential Information (a finite set of \mathcal{EL} concepts) $\{D_1, \ldots, D_p\}$

Confidential Information $P = \{D\}$ about LINDA

 $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** *D*

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** *D*

Modification

 $\textit{C}_1 = \textit{Female} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male} \, \sqcap \, \exists \textit{worksIn}. \textit{Oncology})$

Note $C \sqsubseteq C_1$ and C_1 complies with D

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note C is not **compliant with** D

\mathcal{EL} -Attacker is Coming!

 $\textit{C}_1 = \textit{Female} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \textit{Male} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

He knows Patient(LINDA)

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$

 $\ \sqcap \ \exists seenBy. (\textit{Doctor} \sqcap \textit{Male} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Note C is not **compliant with** D

Linked and Revealed!

 $C_1' = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. Oncology)$ $\sqcap Patient$

Note D(LINDA) is **revealed** and C_1 is not \mathcal{EL} -safe for D

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** *D*

Modification

 $C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)$ $\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)$

 C_2 is \mathcal{EL} -safe for D

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}.(\textit{Doctor} \sqcap \exists \textit{worksIn}.\textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** *D*

\mathcal{FL}_0 -Attacker is Coming!

 $C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)$ $\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)$

He knows ($Patient \sqcap \forall seenBy. \forall worksIn. Oncology$)(LINDA)

Confidential Information $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}.(\textit{Doctor} \sqcap \exists \textit{worksIn}.\textit{Oncology})$

Original **Published Information** C about LINDA


```
C = Patient \sqcap Female

\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)
```

Note C is not **compliant with** D

Linked and Revealed!


```
C_2' = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)

\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)

\sqcap Patient \sqcap \forall seenBy. \forall worksIn. Oncology
```

D(LINDA) is revealed again and C_2 is not \mathcal{FL}_0 -safe for D

Confidential Information $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** *D*

Modification

 $C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$

 C_3 is \mathcal{FL}_0 -safe for D

Decision & Computational Problems for Instance Stores

Given $\mathcal{L} \in \{\mathcal{EL}, \mathcal{FL}_0, \mathcal{FLE}\}$, a published information (\mathcal{EL} concept) \mathcal{C} , an \mathcal{EL} confidential information \mathcal{P} .

Decision Problems

- Compliance:
 - Is an \mathcal{EL} concept C compliant with \mathcal{P} ?
- L-Safety:

Is an \mathcal{EL} concept C \mathcal{L} -safe for \mathcal{P} ?

OptCom:

Is an \mathcal{EL} concept C_1 an optimal compliant generalization of C w.r.t. \mathcal{P} ?

• *L*-Optimality:

Is an \mathcal{EL} concept C_1 an optimal \mathcal{L} -safe generalization of C for \mathcal{P} ?

Note

Optimal: For all C_2 , if $C_2 \sqsubset C_1$, then C_2 is not (compliant) \mathcal{L} -safe w.r.t. \mathcal{P} .

Decision & Computational Problems for Instance Stores

Given $\mathcal{L} \in \{\mathcal{EL}, \mathcal{FL}_0, \mathcal{FLE}\}$, a published information (\mathcal{EL} concept) \mathcal{C} , an \mathcal{EL} confidential information \mathcal{P} .

Decision Problems

- Compliance: Is an \mathcal{EL} concept C compliant with \mathcal{P} ?
- L-Safety: Is an EL concept C L-safe for P?
- OptCom: Is an \mathcal{EL} concept C_1 an optimal compliant generalization of C w.r.t. \mathcal{P} ?
- \mathcal{L} -Optimality: Is an \mathcal{EL} concept C_1 an optimal \mathcal{L} -safe generalization of C for \mathcal{P} ?

Computational Problem

Find an \mathcal{EL} concept C_1 s.t C_1 is an optimal (compliant) \mathcal{L} -safe generalization of C for \mathcal{P} !

Complexity Results on PPOP for \mathcal{EL} Instance Stores

Compliance is in PTime, whereas OptCom is in coNP, but Dual-hard.

Decision Problems	$\mathcal{L} = \mathcal{E}\mathcal{L}$	$\mathcal{L} = \mathcal{F}\mathcal{L}_0$	$\mathcal{L} = \mathcal{F} \mathcal{L} \mathcal{E}$
\mathcal{L} -safety	PTime	PTime	PTime
\mathcal{L} -optimality	coNP and Dual-hard	coNP and Dual-hard	PTime

Table: Complexity results of \mathcal{L} -safety and \mathcal{L} -optimality on PPOP for \mathcal{EL} instance stores

Optimal Compliance Generalization(s) can be computed in ExpTime.

Computational Problems	$\mathcal{L} = \mathcal{E}\mathcal{L}$	$\mathcal{L} = \mathcal{F}\mathcal{L}_0$	$\mathcal{L} = \mathcal{FLE}$
Optimal \mathcal{L} -safe Generalization(s)	ExpTime	ExpTime	PTime

Table: Complexity of computing one/all optimal Q -safe generalizations for \mathcal{P}

PPOP for \mathcal{EL} ABoxes

Including relationships between individuals in \mathcal{EL} ABoxes.

Published Information (an \mathcal{EL} ABox)

Attacker's

Knowledge (an \mathcal{EL} ABox)

Confidential Information (an \mathcal{EL} concept or a conjunctive query)

PPOP for \mathcal{EL} ABoxes

Including relationships between individuals in \mathcal{EL} ABoxes.

Published Information (an \mathcal{EL} ABox)

Attacker's Knowledge (an \mathcal{EL} ABox)

Confidential Information (an \mathcal{EL} concept or a conjunctive query)

Given an \mathcal{EL} ABox \mathcal{A} , and a confidential information \mathcal{P} that is either an **instance** query $(\mathcal{EL}$ concept) \mathcal{D} or a **conjunctive query** q.

- A is **compliant** with D iff $A \not\models D(a)$ for all individuals a.
- \mathcal{A} is **compliant** with q iff $\mathcal{A} \not\models q(\vec{a})$ for all tuples \vec{a} of individuals.
- \mathcal{A} is **safe** for \mathcal{P} iff for all (attackers' knowledge) \mathcal{A}' complying with \mathcal{P} , $\mathcal{A} \cup \mathcal{A}'$ complies with \mathcal{P}

24 / 32

How to modify \mathcal{EL} ABoxes?

A-anonymizer f

 ${\mathcal A}$

- 1. Replace individuals with new anonymous individuals
- 2. Two different individuals cannot be replaced by the same anonymous individual
- 3. Generalizing concepts

A-anonymizer f

- 1. Replace individuals with new anonymous individuals
- 2. Two different individuals cannot be replaced by the same anonymous individual
- 3. Generalizing concepts

ABox Anonymization

```
\mathcal{A}_0 := \{ \ Doctor \ \sqcap \ \exists worksIn.Oncology(LINDA), \ seenBy(BOB, LINDA) \} \ \downarrow f_1 \checkmark \ \mathcal{A}_1 := \{ \ Doctor \ \sqcap \ \exists worksIn.Oncology(y), \ seenBy(x, LINDA) \}
```


A-anonymizer f

- 1. Replace individuals with new anonymous individuals
- 2. Two different individuals cannot be replaced by the same anonymous individual
- 3. Generalizing concepts

ABox Anonymization

A-anonymizer f

- 1. Replace individuals with new anonymous individuals
- 2. Two different individuals cannot be replaced by the same anonymous individual
- 3. Generalizing concepts

ABox Anonymization

Optimality in Anonymizations

A-anonymizer f

- 1. Replace individuals with new anonymous individuals
- 2. Two different individuals cannot be replaced by the same anonymous individual
- 3. Generalizing concepts

Measuring Optimality

An A-anonymizer f_2 is **more informative than** an A-anonymizer f_1 $(f_2 > f_1)$ if f_2 can be obtained from f_1 by:

- keeping more known individuals
- identifying more distinct anonymous individuals
- ullet specializing more \mathcal{EL} concepts

Decision Problems on PPOP for \mathcal{EL} ABoxes

Given an \mathcal{EL} ABox \mathcal{A} , an \mathcal{EL} concept D, and an \mathcal{A} -anonymizer f,

- Compliance_{IQ}, Safety_{IQ}, and
- Optimal-Compliance_{IQ} (Optimal-Safety_{IQ}) asks
 - if f(A) is compliant with (safe for) D and
 - for all \mathcal{A} -anonymizers f', if f' > f, then $f'(\mathcal{A})$ is not compliant with (safe for) D

Analogous for Compliance_{CQ}, Safety_{CQ}, Optimal-Compliance_{CQ}, and Optimal-Safety_{CQ}, where the policy is a CQ

Decision Problems on PPOP for \mathcal{EL} ABoxes

Given an \mathcal{EL} ABox \mathcal{A} , an \mathcal{EL} concept D, and an \mathcal{A} -anonymizer f,

- Compliance_{IQ}, Safety_{IQ}, and
- ullet Optimal-Compliance_{IQ} (Optimal-Safety_{IQ}) asks
 - if f(A) is compliant with (safe for) D and
 - for all \mathcal{A} -anonymizers f', if f' > f, then $f'(\mathcal{A})$ is not compliant with (safe for) D

Analogous for Compliance_{CQ}, Safety_{CQ}, Optimal-Compliance_{CQ}, and Optimal-Safety_{CQ}, where the policy is a CQ

Decision Problems	X = IQ	X = CQ
$Compliance_X$	PTime	coNP-complete
$Safety_X$	PTime	Π_2^p and DP-hard
Optimal-Compliance $_X$	coNP and Dual-hard	Π_2^p and DP-hard
Optimal-Safety $_X$	coNP and Dual-hard	Π_3^p and DP-hard

Table: Complexity Results on PPOP in \mathcal{EL} ABoxes

Conclusions

The Identity Problem:

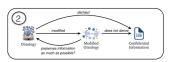
- Non trivial for DLs with equality power
- Introducing variants of the identity problem
- Reduction to classical reasoning in DLs

Gentle Repair:

- Introducing a framework for repair via axiom weakening
- Weakening relations
- ullet Weakening axioms in \mathcal{EL}

Privacy-Preserving Ontology Publishing:

- ullet PPOP for \mathcal{EL} Instance Stores
- PPOP for EL ABoxes
- Applying the concepts of compliance, safety, and optimality in both settings



Future Work

The Identity Problem:

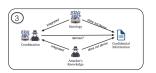
- Formalizing the "real" definition of k-Anonymity
- Adding probability to the setting

Gentle Repair:

- Choosing which axioms to be repaired
- Which maximally strong weakening is the best?
- Weakening relations for other DLs

Privacy-Preserving Ontology Publishing:

- Computing the optimal compliant (safe) anonymization
- Finding a more gentle weakening relation for ABox anonymization
- Including TBox/attackers' meta knowledge? (Bonatti et. al., 2013)



Publications

- Franz Baader, Daniel Borchmann, and Adrian Nuradiansyah, Preliminary Results on the Identity Problem in Description Logic Ontologies, DL 2017, Montpellier, 2017.
- Franz Baader, Daniel Borchmann, and Adrian Nuradiansyah, The Identity
 Problem in Description Logic Ontologies and Its Applications to View-Based
 Information Hiding, JIST 2017, Gold Coast, 2017.
- Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza, Making Repairs in Description Logics More Gentle, KR 2018, Tempe, 2018.
- Franz Baader and Adrian Nuradiansyah, Towards Privacy-Preserving Ontology Publishing, DL 2018, Tempe, 2018.
- Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah, Privacy-Preserving Ontology Publishing for && Instance Stores, JELIA 2019, Rende, 2019.
- Franz Baader and Adrian Nuradiansyah, Mixing Description Logics in Privacy-Preserving Ontology Publishing, KI 2019, Kassel, 2019.

Adrian Nuradiansyah PhD Defense September 27, 2019 30 / 32

Research Visits and Awards

Research Visits:

- Visiting Prof. Rafael Peñaloza at Free University of Bozen-Bolzano, March 1-May 16, 2018.
- Visiting Prof. Bernardo Cuenca Grau at the University of Oxford, UK, April 1 - June 30, 2019.

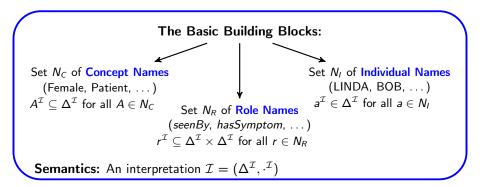
Awards:

- The Best Student Paper Award at the 7th Joint International Semantic Technology Conference (JIST 2017) at Gold Coast, Australia.
- Shortlisted for The Best Paper Award at the Künstliche Intelligenz Conference (KI 2019) at Kassel, Germany.

Thank You

Backup Slides

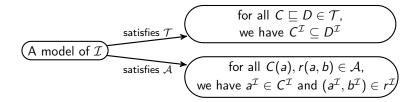
Semantics of DLs



Semantics of DL Concepts

Name	Syntax	Example
Тор	Т	$\Delta^{\mathcal{I}}$
Concept Name	Α	$A^{\mathcal{I}}$
Conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
Disjunction	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
Existential Restriction	∃r.C	$\{d \in \Delta^{\mathcal{I}} \mid \exists e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$
Universal Restriction	∀r.C	$\{d \in \Delta^{\mathcal{I}} \mid \forall e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}}\}$
Negation	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
(One of) Nominal	$\{a_1,\ldots,a_n\}$	$\{a_1^{\mathcal{I}},\ldots,a_n^{\mathcal{I}}\}$

Semantics of DL Ontologies



The Identity Problem in Rôle-Based Access Control

Given an ontology \mathfrak{O}_I

At rôle \hat{r}_1 - queries through $\mathfrak{O}_{\hat{r}_1} \subseteq \mathfrak{O}_I$ switch . . . switch - obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k - queries through $\mathfrak{O}_{\hat{r}_k} \subseteq \mathfrak{O}_I$

- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

(The View-Based Identity (VBI) Problem)

The Identity Problem in Rôle-Based Access Control

Given an ontology \mathfrak{O}_I


```
At rôle \hat{r}_1 - queries through \mathfrak{O}_{\hat{r}_1} \subseteq \mathfrak{O}_I switch - switch - queries through \mathfrak{O}_{\hat{r}_k} \subseteq \mathfrak{O}_I - obtains View V_{\hat{r}_k}
```

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{t}_1}, \dots, V_{\hat{t}_k}$? (The View-Based Identity (VBI) Problem)

Similar scenarios studied in (Stouppa et al., 2009) or (Calvanese et. al., 2008).

- Only consider instance and subsumption queries
- View is a finite set of pairs of gueries and the answers

Here, we

- Consider subsumption queries: $C \sqsubseteq D$, conjunctive queries: $\exists \vec{y}.conj(\vec{x},\vec{y})$, and
- $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively.
- Concentrate on hiding the identity of anonymous individuals $(idn(x, \mathfrak{O}) := \{a \in N_{KI} \mid \mathfrak{O} \models x = a\})$

The Identity Problem in Rôle-Based Access Control

Given an ontology \mathfrak{O}_I

- At rôle \hat{r}_1 At rôle \hat{r}_k
- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{i}}}\subseteq \mathfrak{O}_{I}$ switch . . . switch queries through $\mathfrak{O}_{\hat{r}_{k}}\subseteq \mathfrak{O}_{I}$
- obtains View $V_{\hat{r}_{\! 1}}$ obtains View $V_{\hat{r}_{\! k}}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \dots, V_{\hat{r}_k}$? (The View-Based Identity (VBI) Problem)

Reduction

The VBI problem can be reduced to the identity problem for *some* DLs with equality power

Maximally Strong Weakening Axioms

Replace β with exactly one weaker γ s.t.

$$\mathfrak{D}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k$$

If γ is a tautology, then it is the same as classical repair.

To make this repair as gentle as possible, γ should be maximally strong

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$$
but for all δ such that $\beta \succ \delta \succ \gamma$, we have
$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\delta\} \models \alpha$$

Maximally Strong Weakening Axioms

Replace β with exactly one weaker γ s.t.

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k$$

If γ is a tautology, then it is the same as classical repair.

To make this repair as gentle as possible, γ should be maximally strong

$$\mathfrak{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$$
 but for all δ such that $\beta \succ \delta \succ \gamma$, we have
$$\mathfrak{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha$$

Proposition

If \succ is well-founded, **one-step generated**, and **finitely branching**, then maximally strong weakenings can be effectively computed

Maximally Strong Weakening Axioms

To make this repair as gentle as possible, γ should be maximally strong

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$$
 but for all δ such that $\beta \succ \delta \succ \gamma$, we have
$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\delta\} \models \alpha$$

Proposition

If \succ is well-founded, one-step generated, and finitely branching, then maximally strong weakenings can be effectively computed

One-Step Generated:

if $\beta \succ \gamma$, then we cannot refine all weakening chains between β and γ

Finitely branching: The set $\{\gamma \mid \beta \succ_1 \gamma\}$ is

A Weakening Relation ≻^{sub} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D'$$
 if $C' = C$, $D \sqsubset D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

A Weakening Relation ≻^{syn} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

A Weakening Relation ≻^{sub} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D'$$
 if $C' = C, \ D \sqsubset D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

- Employing both, maximally strong weakenings can be effectively computed
- Both weakening relations are well-founded, complete, one-step generated, and finitely branching

A Weakening Relation \succ^{syn} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

A Weakening Relation ≻^{sub} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C, \ D \sqsubset D', \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D.$$

- $\bullet \succ^{sub}$ is not polynomial
- ullet | D' | can be exponentially bounded by | D |
- IndonesianPolitician $\sqsubseteq \exists receives. (Parcel \sqcap Deluxe)$ weaken IndonesianPolitician $\sqsubseteq \exists receives. Parcel \sqcap \exists receives. Deluxe$

A Weakening Relation ≻^{syn} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

A Weakening Relation \succ^{sub} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C, \ D \sqsubset D', \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D.$$

- \succ^{syn} is linear (|D| > |D'|)
- IndonesianPolitician
 □ ∃receives.(Parcel □ Deluxe) weaken
 IndonesianPolitician □ ∃receives.Parcel or
 IndonesianPolitician □ ∃receives.Deluxe

A Weakening Relation \succ^{syn} [BaKrNuPe, CoRR 2018]

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubseteq^{syn} D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$.

Formalizing Sensitive Information in \mathcal{EL} Instance Stores

Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P} Given a DL $\mathcal{L} \in \{\mathcal{EL}, FLO, FLE\}$.

Compliance and Safety

- 1. an \mathcal{L} concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all i = 1, ..., p,
- 2. an \mathcal{EL} concept C' is
 - \mathcal{L} -safe for \mathcal{P} if for all \mathcal{L} concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} ,

Formalizing Sensitive Information in \mathcal{EL} Instance Stores

Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P} Given a DL $\mathcal{L} \in \{\mathcal{EL}, FLO, FLE\}$.

Compliance and Safety

- 1. an \mathcal{L} concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. an \mathcal{EL} concept C' is
 - \mathcal{L} -safe for \mathcal{P} if for all \mathcal{L} concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} ,
 - a \mathcal{L} -safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is \mathcal{L} -safe for \mathcal{P}

Formalizing Sensitive Information in \mathcal{EL} Instance Stores

Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P} Given a DL $\mathcal{L} \in \{\mathcal{EL}, FLO, FLE\}$.

Compliance and Safety

- 1. an \mathcal{L} concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all i = 1, ..., p,
- 2. an \mathcal{EL} concept C' is
 - \mathcal{L} -safe for \mathcal{P} if for all \mathcal{L} concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} ,
 - a \mathcal{L} -safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is \mathcal{L} -safe for \mathcal{P}
 - ullet an **optimal** \mathcal{L} -safe generalization of C for \mathcal{P} if
 - C' is a \mathcal{L} -safe generalization of C for \mathcal{P} and
 - there is no \mathcal{L} -safe generalization C'' of C for \mathcal{P} s.t. $C'' \sqsubseteq C'$.

Adrian Nuradiansyah PhD Defense September 27, 2019 8/10

Optimal Compliance Generalization(s) can be computed in **ExpTime**.

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe Generalization(s)	ExpTime	ExpTime	PTime

Reasons:

- Given an \mathcal{EL} concept D, con(D) is the set of all atoms $(A \text{ or } \exists r.D')$ in the top-level conjunction of D.
- Computing all minimal hitting sets of $con(D_1), \ldots, con(D_p)$, where $\mathcal{P} = \{D_1, \ldots, D_p\}$ recursively on the role depth of the published information C

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime	PTime	PTime
Q-optimality	coNP and Dual -hard	coNP and Dual-hard	PTime

Reasons:

- Check if C_1 is an \forall -safe generalization of C for $\mathcal P$
- Check if there is C_2 s.t. $C \sqsubseteq C_2 \sqsubset C_1$, where C_2 is a not \forall -safe generalization of C for \mathcal{P}
- There is an NP algorithm to guess such concept C_2 (Baader, Kriegel, Nuradiansyah in JELIA 2019)

Decision Problems	$\mathcal{L} = \mathcal{E}\mathcal{L}$	$\mathcal{L} = \mathcal{F}\mathcal{L}_0$	$\mathcal{L} = \mathcal{FLE}$
\mathcal{L} -safety	PTime	PTime	PTime
\mathcal{L} -optimality	coNP and Dual-hard	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal <i>Q</i> -safe Generalization(s)	ExpTime	ExpTime	PTime

Reasons:

- \mathcal{EL} (\mathcal{FL}_0)-Optimality is coNP-hard? Don't know yet
- ullet There is a polynomial reduction of **Dual problem** to \mathcal{EL} (\mathcal{FL}_0)-Optimality

Given two **families of inclusion-comparable sets** \mathcal{G} and \mathcal{H} , Dual asks whether \mathcal{H} consists exactly of the minimal hitting sets of \mathcal{G} .

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime	PTime	PTime
Q-optimality	coNP* and Dual-hard	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe	EvnTimo	ExpTime	PTime
Generalization(s)	Exprime	Exprime	Fillie

Reasons:

$\forall \exists$ -Safety and $\forall \exists$ -Optimality

C is $\forall \exists$ -safe for \mathcal{P} iff

- 1. $A \notin con(C)$ for all concept names $A \in con(D_1) \cup ... \cup con(D_p)$, and
- 2. for all existential restrictions $\exists r.D' \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$, there is no concept of the form $\exists r.E \in \text{con}(C)$

Complexity Results on PPOP for \mathcal{EL} ABoxes

Decision Problems	X = IQ	X = CQ
$Compliance_X$	PTime	coNP-complete
$Safety_X$	PTime	Π_2^p and DP-hard
Optimal-Compliance $_X$	coNP and Dual-hard	Π_2^p and DP-hard
Optimal-Safety $_X$	coNP and Dual-hard	Π_3^p and DP-hard

Reasons:

Characterizing Safety_{IQ}

A is safe for D iff for all $a \in N_{KI}$,

- if $C(a) \in A$ and E is a subconcept of D, then C is \exists -safe for $\{E\}$ and
- if $r(a, u) \in \mathcal{A}$ and $\exists r.D'$ is a subconcept of D, then $u \notin N_{KI}$ and \mathcal{A} is safe for D' and u.

Checking this can also be done in PTime

Complexity Results on PPOP for \mathcal{EL} ABoxes

Decision Problems	X = IQ	X = CQ
$Compliance_X$	PTime	coNP-complete
Safety _X	PTime	Π_2^p and DP-hard
Optimal-Compliance $_X$	coNP and Dual-hard	Π_2^p and DP-hard
Optimal-Safety $_X$	coNP and Dual-hard	Π_3^p and DP-hard

Reasons:

1. Safety $_{CQ}$:

- Considering all \mathcal{EL} ABoxes \mathcal{A}' (attacker's knowledge) whose size is linearly bounded in the size of the CQ q, and
- Call an NP oracle to check if \mathcal{A}' complies with q or $\mathcal{A} \cup \mathcal{A}'$ does not comply with q.

2. Optimal-Compliance_{CQ} and Optimal-Safety_{CQ}:

- Considering all A-anonymizers f' that are "adjacent" to f
 (no A-anonymizers f" in between f and f' w.r.t. informativeness order).
- Call an coNP (Π_2^p) oracle to check if f'(A) is compliant with (safe for) q.

Complexity Results on PPOP for \mathcal{EL} ABoxes

Decision Problems	X = IQ	X = CQ
$Compliance_X$	PTime	coNP-complete
$Safety_X$	PTime	Π_2^p and DP-hard
Optimal-Compliance $_X$	coNP and Dual-hard	Π_2^p and DP-hard
Optimal-Safety $_X$	coNP and Dual-hard	Π_3^p and DP-hard

Reasons:

- No tight complexity found yet for them
- There is a polynomial reduction from Homomorphism-NoHomomorphism problem to each of them
 - Given connected directed graphs G_1 , G_2 , G_1' , and G_2' , check whether there is a homomorphism from G_1 to G_2 and no homomorphism from G_1' to G_2'
- Homomorphism-NoHomomorphism is DP-complete and

$$\mathsf{DP} = \{ L \mid \exists L_1 \in \mathsf{NP} \land \exists L_2 \in \mathsf{coNP} \text{ s.t. } L = L_1 \cap L_2 \}$$