Mixing Description Logics in Privacy-Preserving Ontology Publishing

Franz Baader Adrian Nuradiansyah

Technische Universität Dresden

September 25, 2019

Assumption: Ontologies are formulated in Description Logics (DLs).

What are DLs?

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics
- The basic building blocks are:
 - N_C: set of concept names A: Female, Doctor, Patient, . . .
 - N_R : set of role names r: seenBy, suffer, hasSymptom, . . .
 - N_I: set of individual names a: LINDA, CANCER . . .

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics
- The basic building blocks are:
 - N_C : set of concept names A: Female, Doctor, Patient, ...
 - *N_R*: set of role names *r*: seenBy, suffer, hasSymptom, . . .
 - N_I: set of individual names a: LINDA, CANCER ...
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: Non-empty domain elements
 - $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$
 - $r^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- Using N_C, N_R, and N_I as well as necessary constructors, the notion of DL concepts C, D, E are built.

Description Logic Ontologies

- ullet A DL ontology ${\mathfrak O}$ consists of a TBox ${\mathcal T}$ and an ABox ${\mathcal A}$
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b)
 → knowledge about individuals

Description Logic Ontologies

- ullet A DL ontology ${\mathfrak O}$ consists of a **TBox** ${\mathcal T}$ and an **ABox** ${\mathcal A}$
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b)
 → knowledge about individuals
- A DL Instance Store \mathfrak{D}' is a DL ontology without role assertions

Description Logic Ontologies

- ullet A DL ontology ${\mathfrak O}$ consists of a TBox ${\mathcal T}$ and an ABox ${\mathcal A}$
- A TBox T is a set of General Concept Inclusions (GCIs) C ⊆ D
 → hierarchical relationship between concepts
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b)
 → knowledge about individuals
- ullet A DL Instance Store \mathfrak{D}' is a DL ontology without role assertions
- ullet A main reasoning task in DLs \Rightarrow Deciding subsumption between concepts
- A concept C is subsumed by a concept D, denoted by $C \sqsubseteq D$, iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all interpretations \mathcal{I} .

Description Logic \mathcal{FLE} and Its Fragments

- \mathcal{FLE} concepts $C := \top$ (top) $|A| C \sqcap C$ (conjunction) $|\exists r.C$ (existential restriction) $|\forall r.C$ (universal restriction)
- Semantics of some \mathcal{FLE} concepts:
 - $(\exists r.C)^{\mathcal{I}} = \{d \mid \text{there is } e \in \Delta^{\mathcal{I}} \text{ such that } (d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$
 - $(\forall r.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}} \text{ if } (d,e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}}\}$
- Fragments of \mathcal{FLE} :
 - the DL \mathcal{EL} (excluding value restrictions)
 - the DL \mathcal{FL}_0 (excluding existential restrictions)

Problem Setting: PPOP for \mathcal{EL} Instance Stores

 ${\cal EL}$ Instance Stores without TBox

Problem Setting: PPOP for \mathcal{EL} Instance Stores

 \mathcal{EL} Instance Stores without TBox

$$C_1(a), C_2(a)$$
 implies $(C_1 \sqcap C_2)(a)$

only one concept assertion speaking about one individual

Problem Setting: PPOP for \mathcal{EL} Instance Stores

$$C_1(a), C_2(a)$$
 implies $(C_1 \sqcap C_2)(a)$

only one concept assertion speaking about one individual

Published Information (an \mathcal{EL} Concept \mathcal{C})

Attacker's Knowledge an \mathcal{EL} / \mathcal{FL}_0 / \mathcal{F}

(an \mathcal{EL} / \mathcal{FL}_0 / \mathcal{FLE} Concept E)

Privacy Policy (a finite set of \mathcal{EL} concepts) $\{D_1, \ldots, D_p\}$

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

- 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for \mathcal{P} if for all \mathcal{L}_Q concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} ,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

- 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for \mathcal{P} if for all \mathcal{L}_Q concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} ,
 - a Q-safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is Q-safe for \mathcal{P} ,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

- 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for $\mathcal P$ if for all $\mathcal L_Q$ concepts E (attackers' knowledge) that are compliant with $\mathcal P$, $C' \sqcap E$ is also compliant with $\mathcal P$,
 - a Q-safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is Q-safe for \mathcal{P} ,
 - an **optimal** Q-safe generalization of C for P if
 - C' is a Q-safe generalization of C for $\mathcal P$ and
 - there is no *Q*-safe generalization C'' of C for \mathcal{P} s.t. $C'' \sqsubset C'$.

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original Published Information C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Modification

 $\textit{C}_1 = \textit{Female} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male} \, \sqcap \, \exists \textit{worksIn}. \textit{Oncology})$

Note $C \sqsubseteq C_1$ and C_1 complies with D

Privacy Policy $P = \{D\}$ about LINDA

 $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

∃-Attacker is Coming!

 $C_1 = Female \sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

He knows Patient(LINDA)

Privacy Policy $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$

 $\ \sqcap \ \exists seenBy. (\textit{Doctor} \sqcap \textit{Male} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Linked and Revealed!

 $\textit{C}_1 = \textit{Female} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male} \, \sqcap \, \exists \textit{worksIn}. \textit{Oncology})$

□ Patient

Note D(LINDA) is **revealed**

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Modification

 $C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)$ $\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)$

 C_2 is the (unique) **optimal** \exists -safe generalization for D

Privacy Policy $P = \{D\}$ about LINDA

 $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$

Original **Published Information** C about LINDA

$$C = Patient \sqcap Female$$

 $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

∀-Attacker is Coming!

$$C_2 = Female \sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn. \top)$$

 $\sqcap \exists seenBy.(Male \sqcap worksIn.Oncology)$

He knows ($Patient \sqcap \forall seenBy. \forall worksIn. Oncology$)(LINDA)

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$

Original **Published Information** C about LINDA

$$C = Patient \sqcap Female$$

 $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Linked and Revealed!


```
C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)

\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)

\sqcap Patient \sqcap \forall seenBy. \forall worksIn. Oncology
```

D(LINDA) is revealed again

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Modification

 $C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$

Note C_3 is an **optimal** \forall -safe generalization for D

Privacy Policy $P = \{D\}$ about LINDA

 $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

$\forall \exists$ -Attacker is Coming!

 $C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$

He knows $(\forall seenBy. \exists worksIn. Oncology)(LINDA)$

Privacy Policy $P = \{D\}$ about LINDA

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

 $C = Patient \sqcap Female$

 $\ \sqcap \ \exists seenBy. (Doctor \sqcap \ Male \sqcap \exists worksIn. Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Linked and Revealed!

 $C_3 = \textit{Female} \, \sqcap \, \textit{Patient} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male})$

 $\sqcap \forall seenBy. \exists worksIn. Oncology$

D(LINDA) is **revealed again**

Privacy Policy $P = \{D\}$ about *LINDA*

 $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$

Original **Published Information** C about LINDA

$$C = Patient \sqcap Female$$

 $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$

Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$

Modification

$$C_4 = Female$$

Note C_4 is the **optimal** $\forall \exists$ -safe generalization for D!

Our Decision and Computational Problems

Given $Q \in \{\forall, \forall \exists\}$, a published information (\mathcal{EL} concept) \mathcal{C} , an \mathcal{EL} policy \mathcal{P} .

Decision Problems

- Q-Safety: Is an \mathcal{EL} concept C_1 Q-safe for a policy \mathcal{P} ?
- Q-Optimality: Is an \mathcal{EL} concept C_1 an optimal Q-safe generalization of C for \mathcal{P} ?

Computational Problem

Find an \mathcal{EL} concept C_1 s.t C_1 is an optimal Q-safe generalization of C for \mathcal{P} !

compliance, ∃-**safety** and ∃-**optimality** have been investigated by (Baader, Kriegel, Nuradiansyah in JELIA 2019)

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Table: Complexity results of decision problems on PPOP for \mathcal{EL} instance stores

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe Generalization(s)	ExpTime*	ExpTime	PTime

Table: Complexity of computing one/all optimal Q-safe generalizations for ${\mathcal P}$

* investigated by (Baader, Kriegel, and Nuradiansyah in JELIA 2019)

Decision Problems	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe	ExpTime*	ExpTime	PTime
Generalization(s)	LxpTille	Ехртіпіс	1 Tille

Reasons:

- Given an \mathcal{EL} concept D, con(D) is the set of all atoms (A or $\exists r.D'$) in the top-level conjunction of D.
- Computing all minimal hitting sets of $con(D_1), \ldots, con(D_p)$, where $\mathcal{P} = \{D_1, \ldots, D_p\}$.
- The computation is performed recursively on the role depth of the published information C

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe	ExpTime*	ExpTime	PTime
Generalization(s)	LxpTille	LxpTille	Fillie

Reasons:

- ullet Check if C_1 is an orall-safe generalization of C for $\mathcal P$
- Check if there is C_2 s.t. $C \sqsubseteq C_2 \sqsubset C_1$, where C_2 is a not \forall -safe generalization of C for \mathcal{P}
- There is an NP algorithm to guess such concept C_2 (Baader, Kriegel, Nuradiansyah in JELIA 2019)

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe	ExpTime*	EvnTimo	PTime
Generalization(s)	Exprime	Exprime	Fillie

Reasons:

- ∀-Optimality is coNP-hard? Don't know yet
- There is a polynomial reduction of Dual problem to \forall -optimality Given two families of inclusion-comparable sets $\mathcal G$ and $\mathcal H$, Dual asks whether $\mathcal H$ consists exactly of the minimal hitting sets of $\mathcal G$.

Decision Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q} = \forall$	Q = ∀∃
Optimal Q-safe	ExpTime*	EvnTimo	PTime
Generalization(s)	Exprime	Exprime	Fillie

Reasons:

$\forall \exists$ -Safety and $\forall \exists$ -Optimality

C is $\forall \exists$ -safe for \mathcal{P} iff

- 1. $A \notin con(C)$ for all concept names $A \in con(D_1) \cup ... \cup con(D_p)$, and
- 2. for all existential restrictions $\exists r.D' \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$, there is no concept of the form $\exists r.E \in \text{con}(C)$

Conclusions and Future Work

Conclusions:

- Investigate PPOP for \mathcal{EL} Instance Stores
- ullet Considering **attacker's knowledge** to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept
- Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$.
- ullet Computing **optimal** Q-safe generalizations of \mathcal{EL} concepts for $\mathcal P$

Note: the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe

Conclusions and Future Work

Conclusions:

- Investigate PPOP for \mathcal{EL} Instance Stores
- ullet Considering **attacker's knowledge** to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept
- Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$.
- ullet Computing **optimal** Q-safe generalizations of \mathcal{EL} concepts for $\mathcal P$

Note: the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe

Future Work:

- ullet PPOP in \mathcal{EL} ABoxes, including role assertions (Ongoing!)
- ullet PPOP in \mathcal{EL} Instance Stores w.r.t. (General) TBoxes
- Playing with more different or expressive DLs

Thank You

