Mixing Description Logics in Privacy-Preserving Ontology Publishing Franz Baader Adrian Nuradiansyah Technische Universität Dresden September 25, 2019 **Assumption:** Ontologies are formulated in Description Logics (DLs). What are DLs? ## Description Logics - The logical underpinning of Web Ontology Language (OWL) - Commonly used in medical ontologies - Decidable fragments of First Order Logics ## Description Logics - The logical underpinning of Web Ontology Language (OWL) - Commonly used in medical ontologies - Decidable fragments of First Order Logics - The basic building blocks are: - N_C: set of concept names A: Female, Doctor, Patient, . . . - N_R : set of role names r: seenBy, suffer, hasSymptom, . . . - N_I: set of individual names a: LINDA, CANCER . . . ## Description Logics - The logical underpinning of Web Ontology Language (OWL) - Commonly used in medical ontologies - Decidable fragments of First Order Logics - The basic building blocks are: - N_C : set of concept names A: Female, Doctor, Patient, ... - *N_R*: set of role names *r*: seenBy, suffer, hasSymptom, . . . - N_I: set of individual names a: LINDA, CANCER ... - The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ - $\Delta^{\mathcal{I}}$: Non-empty domain elements - $A^{\mathcal{I}} \subset \Delta^{\mathcal{I}}$ - $r^{\mathcal{I}} \subset \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ - $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ - Using N_C, N_R, and N_I as well as necessary constructors, the notion of DL concepts C, D, E are built. # Description Logic Ontologies - ullet A DL ontology ${\mathfrak O}$ consists of a TBox ${\mathcal T}$ and an ABox ${\mathcal A}$ - An ABox A is a set of concept assertions C(a) and role assertions r(a, b) → knowledge about individuals # Description Logic Ontologies - ullet A DL ontology ${\mathfrak O}$ consists of a **TBox** ${\mathcal T}$ and an **ABox** ${\mathcal A}$ - An ABox A is a set of concept assertions C(a) and role assertions r(a, b) → knowledge about individuals - A DL Instance Store \mathfrak{D}' is a DL ontology without role assertions # Description Logic Ontologies - ullet A DL ontology ${\mathfrak O}$ consists of a TBox ${\mathcal T}$ and an ABox ${\mathcal A}$ - A TBox T is a set of General Concept Inclusions (GCIs) C ⊆ D → hierarchical relationship between concepts - An ABox A is a set of concept assertions C(a) and role assertions r(a, b) → knowledge about individuals - ullet A DL Instance Store \mathfrak{D}' is a DL ontology without role assertions - ullet A main reasoning task in DLs \Rightarrow Deciding subsumption between concepts - A concept C is subsumed by a concept D, denoted by $C \sqsubseteq D$, iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all interpretations \mathcal{I} . # Description Logic \mathcal{FLE} and Its Fragments - \mathcal{FLE} concepts $C := \top$ (top) $|A| C \sqcap C$ (conjunction) $|\exists r.C$ (existential restriction) $|\forall r.C$ (universal restriction) - Semantics of some \mathcal{FLE} concepts: - $(\exists r.C)^{\mathcal{I}} = \{d \mid \text{there is } e \in \Delta^{\mathcal{I}} \text{ such that } (d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$ - $(\forall r.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}} \text{ if } (d,e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}}\}$ - Fragments of \mathcal{FLE} : - the DL \mathcal{EL} (excluding value restrictions) - the DL \mathcal{FL}_0 (excluding existential restrictions) # Problem Setting: PPOP for \mathcal{EL} Instance Stores ${\cal EL}$ Instance Stores without TBox # Problem Setting: PPOP for \mathcal{EL} Instance Stores \mathcal{EL} Instance Stores without TBox $$C_1(a), C_2(a)$$ implies $(C_1 \sqcap C_2)(a)$ only one concept assertion speaking about one individual # Problem Setting: PPOP for \mathcal{EL} Instance Stores $$C_1(a), C_2(a)$$ implies $(C_1 \sqcap C_2)(a)$ only one concept assertion speaking about one individual Published Information (an \mathcal{EL} Concept \mathcal{C}) Attacker's Knowledge an \mathcal{EL} / \mathcal{FL}_0 / \mathcal{F} (an \mathcal{EL} / \mathcal{FL}_0 / \mathcal{FLE} Concept E) Privacy Policy (a finite set of \mathcal{EL} concepts) $\{D_1, \ldots, D_p\}$ - Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P} - Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$ - Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$ - Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$ ### Compliance, Safety, Optimality 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$, - Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$ - Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$ ## Compliance, Safety, Optimality - 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$, - 2. the \mathcal{EL} concept C' is - Q-safe for \mathcal{P} if for all \mathcal{L}_Q concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} , - Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$ - Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$ ## Compliance, Safety, Optimality - 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$, - 2. the \mathcal{EL} concept C' is - Q-safe for \mathcal{P} if for all \mathcal{L}_Q concepts E (attackers' knowledge) that are compliant with \mathcal{P} , $C' \sqcap E$ is also compliant with \mathcal{P} , - a Q-safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is Q-safe for \mathcal{P} , - Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy $\mathcal P$ - Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$ ## Compliance, Safety, Optimality - 1. the \mathcal{L}_Q concept C' is **compliant with** \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$, - 2. the \mathcal{EL} concept C' is - Q-safe for $\mathcal P$ if for all $\mathcal L_Q$ concepts E (attackers' knowledge) that are compliant with $\mathcal P$, $C' \sqcap E$ is also compliant with $\mathcal P$, - a Q-safe generalization of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is Q-safe for \mathcal{P} , - an **optimal** Q-safe generalization of C for P if - C' is a Q-safe generalization of C for $\mathcal P$ and - there is no *Q*-safe generalization C'' of C for \mathcal{P} s.t. $C'' \sqsubset C'$. #### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original Published Information C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Modification $\textit{C}_1 = \textit{Female} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male} \, \sqcap \, \exists \textit{worksIn}. \textit{Oncology})$ Note $C \sqsubseteq C_1$ and C_1 complies with D ### Privacy Policy $P = \{D\}$ about LINDA $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$ #### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ ### ∃-Attacker is Coming! $C_1 = Female \sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ He knows Patient(LINDA) #### Privacy Policy $P = \{D\}$ about LINDA $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\ \sqcap \ \exists seenBy. (\textit{Doctor} \sqcap \textit{Male} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Linked and Revealed! $\textit{C}_1 = \textit{Female} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male} \, \sqcap \, \exists \textit{worksIn}. \textit{Oncology})$ □ Patient Note D(LINDA) is **revealed** ### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Modification $C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top)$ $\sqcap \exists seenBy. (Male \sqcap worksIn. Oncology)$ C_2 is the (unique) **optimal** \exists -safe generalization for D ### Privacy Policy $P = \{D\}$ about LINDA $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$ #### Original **Published Information** C about LINDA $$C = Patient \sqcap Female$$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### **∀-Attacker is Coming!** $$C_2 = Female \sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn. \top)$$ $\sqcap \exists seenBy.(Male \sqcap worksIn.Oncology)$ He knows ($Patient \sqcap \forall seenBy. \forall worksIn. Oncology$)(LINDA) #### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$ #### Original **Published Information** C about LINDA $$C = Patient \sqcap Female$$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Linked and Revealed! ``` C_2 = Female \sqcap \exists seenBy. (Doctor \sqcap Male \sqcap \exists worksIn. \top) \sqcap \exists seenBy. (Male \sqcap worksIn. Oncology) \sqcap Patient \sqcap \forall seenBy. \forall worksIn. Oncology ``` D(LINDA) is revealed again ### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Modification $C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$ Note C_3 is an **optimal** \forall -safe generalization for D ### Privacy Policy $P = \{D\}$ about LINDA $D = Patient \sqcap \exists seenBy.(Doctor \sqcap \exists worksIn.Oncology)$ #### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ ### $\forall \exists$ -Attacker is Coming! $C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$ He knows $(\forall seenBy. \exists worksIn. Oncology)(LINDA)$ #### Privacy Policy $P = \{D\}$ about LINDA $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $C = Patient \sqcap Female$ $\ \sqcap \ \exists seenBy. (Doctor \sqcap \ Male \sqcap \exists worksIn. Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Linked and Revealed! $C_3 = \textit{Female} \, \sqcap \, \textit{Patient} \, \sqcap \, \exists \textit{seenBy}. (\textit{Doctor} \, \sqcap \, \textit{Male})$ $\sqcap \forall seenBy. \exists worksIn. Oncology$ D(LINDA) is **revealed again** ### **Privacy Policy** $P = \{D\}$ about *LINDA* $D = \textit{Patient} \sqcap \exists \textit{seenBy}. (\textit{Doctor} \sqcap \exists \textit{worksIn}. \textit{Oncology})$ ### Original **Published Information** C about LINDA $$C = Patient \sqcap Female$$ $\sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn.Oncology)$ Note *C* is not **compliant with** and *Q*-safe for *D* for $Q \in \{\exists, \forall, \forall \exists\}$ #### Modification $$C_4 = Female$$ Note C_4 is the **optimal** $\forall \exists$ -safe generalization for D! # Our Decision and Computational Problems Given $Q \in \{\forall, \forall \exists\}$, a published information (\mathcal{EL} concept) \mathcal{C} , an \mathcal{EL} policy \mathcal{P} . #### **Decision Problems** - Q-Safety: Is an \mathcal{EL} concept C_1 Q-safe for a policy \mathcal{P} ? - Q-Optimality: Is an \mathcal{EL} concept C_1 an optimal Q-safe generalization of C for \mathcal{P} ? ### Computational Problem Find an \mathcal{EL} concept C_1 s.t C_1 is an optimal Q-safe generalization of C for \mathcal{P} ! **compliance**, ∃-**safety** and ∃-**optimality** have been investigated by (Baader, Kriegel, Nuradiansyah in JELIA 2019) | Decision
Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |----------------------|-------------------------|------------------------|---------------| | Q-safety | PTime* | PTime | PTime | | Q-optimality | coNP* and
Dual-hard* | coNP and
Dual-hard | PTime | Table: Complexity results of decision problems on PPOP for \mathcal{EL} instance stores | Computational Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |----------------------------------|--------------|------------------------|---------------| | Optimal Q-safe Generalization(s) | ExpTime* | ExpTime | PTime | Table: Complexity of computing one/all optimal Q-safe generalizations for ${\mathcal P}$ * investigated by (Baader, Kriegel, and Nuradiansyah in JELIA 2019) | Decision
Problems | $\mathbf{Q} = \forall$ | $\mathbf{Q} = \forall$ | $\mathbf{Q} = \forall \exists$ | |----------------------|-------------------------|------------------------|--------------------------------| | Q-safety | PTime* | PTime | PTime | | Q-optimality | coNP* and
Dual-hard* | coNP and
Dual-hard | PTime | | Computational Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |------------------------|--------------|------------------------|---------------| | Optimal Q-safe | ExpTime* | ExpTime | PTime | | Generalization(s) | LxpTille | Ехртіпіс | 1 Tille | #### Reasons: - Given an \mathcal{EL} concept D, con(D) is the set of all atoms (A or $\exists r.D'$) in the top-level conjunction of D. - Computing all minimal hitting sets of $con(D_1), \ldots, con(D_p)$, where $\mathcal{P} = \{D_1, \ldots, D_p\}$. - The computation is performed recursively on the role depth of the published information C | Decision
Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |----------------------|-------------------------|------------------------|---------------| | Q-safety | PTime* | PTime | PTime | | Q-optimality | coNP* and
Dual-hard* | coNP and
Dual-hard | PTime | | Computational Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |------------------------|--------------|------------------------|---------------| | Optimal Q-safe | ExpTime* | ExpTime | PTime | | Generalization(s) | LxpTille | LxpTille | Fillie | #### Reasons: - ullet Check if C_1 is an orall-safe generalization of C for $\mathcal P$ - Check if there is C_2 s.t. $C \sqsubseteq C_2 \sqsubset C_1$, where C_2 is a not \forall -safe generalization of C for \mathcal{P} - There is an NP algorithm to guess such concept C_2 (Baader, Kriegel, Nuradiansyah in JELIA 2019) | Decision
Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |----------------------|-------------------------|---------------------------|---------------| | Q-safety | PTime* | PTime | PTime | | Q-optimality | coNP* and
Dual-hard* | coNP and Dual-hard | PTime | | Computational Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |------------------------|--------------|------------------------|---------------| | Optimal Q-safe | ExpTime* | EvnTimo | PTime | | Generalization(s) | Exprime | Exprime | Fillie | #### Reasons: - ∀-Optimality is coNP-hard? Don't know yet - There is a polynomial reduction of Dual problem to \forall -optimality Given two families of inclusion-comparable sets $\mathcal G$ and $\mathcal H$, Dual asks whether $\mathcal H$ consists exactly of the minimal hitting sets of $\mathcal G$. | Decision
Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |----------------------|-------------------------|------------------------|---------------| | Q-safety | PTime* | PTime | PTime | | Q-optimality | coNP* and
Dual-hard* | coNP and
Dual-hard | PTime | | Computational Problems | Q = ∃ | $\mathbf{Q} = \forall$ | Q = ∀∃ | |------------------------|--------------|------------------------|---------------| | Optimal Q-safe | ExpTime* | EvnTimo | PTime | | Generalization(s) | Exprime | Exprime | Fillie | #### Reasons: ## $\forall \exists$ -Safety and $\forall \exists$ -Optimality C is $\forall \exists$ -safe for \mathcal{P} iff - 1. $A \notin con(C)$ for all concept names $A \in con(D_1) \cup ... \cup con(D_p)$, and - 2. for all existential restrictions $\exists r.D' \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$, there is no concept of the form $\exists r.E \in \text{con}(C)$ ### Conclusions and Future Work #### **Conclusions:** - Investigate PPOP for \mathcal{EL} Instance Stores - ullet Considering **attacker's knowledge** to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept - Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$. - ullet Computing **optimal** Q-safe generalizations of \mathcal{EL} concepts for $\mathcal P$ **Note:** the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe ### Conclusions and Future Work #### **Conclusions:** - Investigate PPOP for \mathcal{EL} Instance Stores - ullet Considering **attacker's knowledge** to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept - Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$. - ullet Computing **optimal** Q-safe generalizations of \mathcal{EL} concepts for $\mathcal P$ **Note:** the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe #### Future Work: - ullet PPOP in \mathcal{EL} ABoxes, including role assertions (Ongoing!) - ullet PPOP in \mathcal{EL} Instance Stores w.r.t. (General) TBoxes - Playing with more different or expressive DLs # Thank You