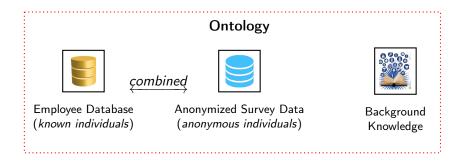
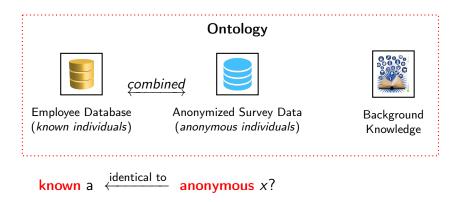
The Identity Problem in Description Logic Ontologies and Its Application to View-Based Information Hiding

Adrian Nuradiansyah

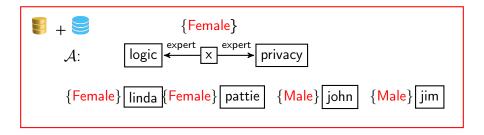
Franz Baader, Daniel Borchmann Technische Universität Dresden

November 12, 2017



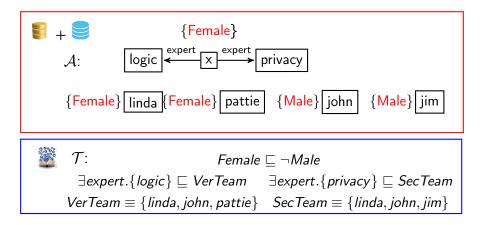


Identity Problem: Example

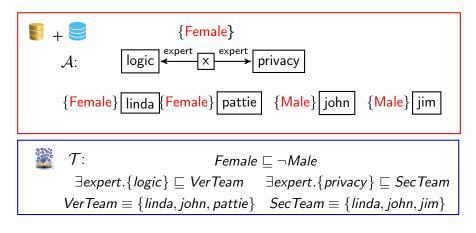


э

Identity Problem: Example



Identity Problem: Example



consequence:
$$x \doteq$$
 linda w.r.t. \mathcal{A} and \mathcal{T}

• Decidable fragments of First Order Logics

3

- Decidable fragments of First Order Logics
- The **basic signatures** are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...

- Decidable fragments of First Order Logics
- The **basic signatures** are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$

- Decidable fragments of First Order Logics
- The basic signatures are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- Decidable fragments of First Order Logics
- The basic signatures are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .

- Decidable fragments of First Order Logics
- The basic signatures are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .
- A TBox T is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$

- Decidable fragments of First Order Logics
- The basic signatures are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .
- A TBox T is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b)

- Decidable fragments of First Order Logics
- The basic signatures are:
 - N_C: concept names A: Male, Female, VerTeam, SecTeam, ...
 - N_R: role names r: expert, study, ...
 - N₁: individual names a: logic, privacy, linda, john, x, ...
- \mathcal{ALC} -concepts $C, D \to A \mid C \sqcap D \mid C \sqcup D \mid \neg C \mid \exists r.C \mid \forall r.C$
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$; $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$; $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .
- A TBox T is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b)
- $\bullet~$ An interpretation ${\mathcal I}$ is a model of ${\mathfrak O}$ iff
 - For all GCIs in \mathcal{T} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - For all assertions in \mathcal{A} , $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

Identity Problem

Given $a, b \in N_I$ and a consistent ontology \mathfrak{O} . Check whether $a^{\mathcal{I}} = b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O} . It is denoted by $(\mathfrak{O} \models a \doteq b)$.

Identity Problem

Given $a, b \in N_I$ and a consistent ontology \mathfrak{O} . Check whether $a^{\mathcal{I}} = b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O} . It is denoted by $(\mathfrak{O} \models a \doteq b)$.

Not all DLs are able to derive equalities between two individuals :(

Definition

 \mathcal{L} is a **DL** without equality power if there is no consistent ontology \mathcal{D} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_I$ s.t. $\mathcal{D} \models a \doteq b$.

Definition

 \mathcal{L} is a **DL** without equality power if there is no consistent ontology \mathcal{D} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_I$ s.t. $\mathcal{D} \models a \doteq b$.

Theorem

If a DL can be translated to **first-order logic without equality predicate**, then it is a DL without equality power.

Definition

 \mathcal{L} is a **DL without equality power** if there is no consistent ontology \mathcal{D} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_I$ s.t. $\mathcal{D} \models a \doteq b$.

Theorem

If a DL can be translated to **first-order logic without equality predicate**, then it is a DL without equality power.

Examples:

- ALC and its fragments: EL, FL_0, FLE, \ldots
- *SRI*: extending *ALC* with inverse roles, role axioms, role compositions, and transitive roles.

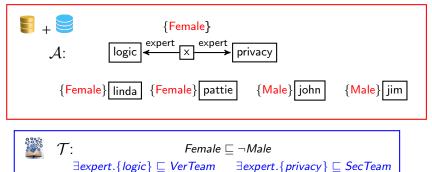
DLs with Equality Power

• *ALCO*: individual as a singleton concept

э

DLs with Equality Power

• *ALCO*: individual as a singleton concept **Example**:



 $VerTeam \equiv \{linda, john, pattie\}$ $SecTeam \equiv \{linda, john, jim\}$

consequence: $x \doteq$ linda w.r.t. \mathcal{A} and \mathcal{T}

Δd	rian	N	hur	adi	iar	161	/2	h
~~u	nan		u	au	-ui	133	/ui	

7/16

• \mathcal{ALCQ} : restricting the number of successors of a domain element **Example:** $\mathfrak{O} = (\{PhDstudent \sqsubseteq \leq 1 supervised. \top\}, \{supervised(adrian, y), supervised(adrian, franz)\})$

- ALCQ: restricting the number of successors of a domain element Example: D = ({PhDstudent ⊑ ≤ 1supervised.⊤}, {supervised(adrian, y), supervised(adrian, franz)})
- CFD_{nc} : featuring functional dependencies Functional Dependencies: if two individuals agree on some attributes, then they are unique.

Example:
$$\mathfrak{O} = (\{A \sqsubseteq A : f \rightarrow id\}, \{A(b), A(x), f(b) = c, f(x) = c\})$$

Rely on the existing instance checking algorithm

Problem Reduction 1 (Upper Bound)

Identity Problem <u>reduced</u> Instance Problem for all DLs with equality power.

 $\mathfrak{O}_1 \models a \doteq b$ iff $(\mathfrak{O}_1 \cup A(a)) \models A(b)$, where $A \in N_C$ is fresh

Rely on the existing instance checking algorithm

Problem Reduction 1 (Upper Bound)

Identity Problem <u>reduced</u> Instance Problem for all DLs with equality power.

 $\mathfrak{O}_1 \models a \doteq b$ iff $(\mathfrak{O}_1 \cup A(a)) \models A(b)$, where $A \in N_C$ is fresh

Problem Reduction 2 (Lower Bound)

Instance Problem <u>reduced</u> Identity Problem in \mathcal{ALCO} and \mathcal{ALCQ} HornSAT <u>reduced</u> Identity Problem in \mathcal{CFD}_{nc}

Complexity Results

The identity problem is

- ExpTime-complete in \mathcal{ALCO} and \mathcal{ALCQ}
- coNExpTime-complete in *ALCOIQ*
- PTime-complete in \mathcal{CFD}_{nc}

Complexities of identity and instance problem are not the same in $ALC^{=}$ allowing $\{a \doteq b \mid a, b \in N_I\} \subseteq A \rightarrow \mathsf{PTime}$ vs ExpTime-hard

View-based Identity Problem

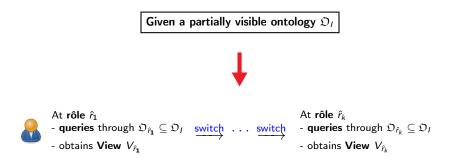


View and Queries

- A view V is a finite collection of queries together with their answers
- Only consider subsumption, instance, and role relationship queries

Ac	rian	N	lura	ad	ia	ns	va	h

11/16



At rôle \hat{r}_{k+1} , is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

• Let $N_I = N_{KI} \cup N_{AI}$, where N_{KI} and N_{AI} are the sets of known and anonymous individuals, respectively.

Image: Image:

3

- Let $N_I = N_{KI} \cup N_{AI}$, where N_{KI} and N_{AI} are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{AI}$. The identity of x w.r.t. an ontology \mathfrak{O} is $idn(x, \mathfrak{O}) = \{a \in N_{KI} \mid \mathfrak{O} \models x \doteq a\}.$

э

- Let $N_I = N_{KI} \cup N_{AI}$, where N_{KI} and N_{AI} are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{AI}$. The identity of x w.r.t. an ontology \mathfrak{O} is $idn(x, \mathfrak{O}) = \{a \in N_{KI} \mid \mathfrak{O} \models x \doteq a\}.$
- The identity of $x \in N_{AI}$ is hidden w.r.t. \mathfrak{O} iff $idn(x, \mathfrak{O}) = \emptyset$.

- Let $N_I = N_{KI} \cup N_{AI}$, where N_{KI} and N_{AI} are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{AI}$. The identity of x w.r.t. an ontology \mathfrak{O} is $idn(x, \mathfrak{O}) = \{a \in N_{KI} \mid \mathfrak{O} \models x \doteq a\}.$
- The identity of $x \in N_{AI}$ is hidden w.r.t. \mathfrak{O} iff $idn(x, \mathfrak{O}) = \emptyset$.
- The identity of $x \in N_{AI}$ is hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ iff

$$\bigcap_{\mathfrak{P}\in \mathsf{Poss}(V_{\hat{r}_{1}},\ldots,V_{\hat{r}_{k}})} idn(x,\mathfrak{P}) = \emptyset$$

Canonical Ontology

The canonical ontology C_V of $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ is defined as $C_V := (\mathcal{T}_V, \mathcal{A}_V)$ where

$$\begin{aligned} \mathcal{T}_V &:= \{ C \sqsubseteq D \mid V_{\hat{r}_i}(C \sqsubseteq D) = \{ \texttt{true} \} \text{ for some } i, 1 \leq i \leq k \} \\ \mathcal{A}_V &:= \{ C(a) \mid a \in V_{\hat{r}_i}(C) \text{ for some } i, 1 \leq i \leq k \} \cup \\ \{ r(a, b) \mid (a, b) \in V_{\hat{r}_i}(r) \text{ for some } i, 1 \leq i \leq k \}. \end{aligned}$$

Canonical Ontology

The canonical ontology C_V of $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ is defined as $C_V := (\mathcal{T}_V, \mathcal{A}_V)$ where

$$\begin{aligned} \mathcal{T}_V &:= \{ C \sqsubseteq D \mid V_{\hat{r}_i}(C \sqsubseteq D) = \{ \texttt{true} \} \text{ for some } i, 1 \le i \le k \} \\ \mathcal{A}_V &:= \{ C(a) \mid a \in V_{\hat{r}_i}(C) \text{ for some } i, 1 \le i \le k \} \cup \\ \{ r(a, b) \mid (a, b) \in V_{\hat{r}_i}(r) \text{ for some } i, 1 \le i \le k \}. \end{aligned}$$

Theorem

The identity of $x \in N_{AI}$ is hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ iff $idn(x, C_V) = \emptyset$.

Canonical Ontology

The canonical ontology C_V of $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ is defined as $C_V := (\mathcal{T}_V, \mathcal{A}_V)$ where

$$\begin{aligned} \mathcal{T}_V &:= \{ C \sqsubseteq D \mid V_{\hat{r}_i}(C \sqsubseteq D) = \{ \texttt{true} \} \text{ for some } i, 1 \le i \le k \} \\ \mathcal{A}_V &:= \{ C(a) \mid a \in V_{\hat{r}_i}(C) \text{ for some } i, 1 \le i \le k \} \cup \\ \{ r(a, b) \mid (a, b) \in V_{\hat{r}_i}(r) \text{ for some } i, 1 \le i \le k \}. \end{aligned}$$

Theorem

The identity of $x \in N_{AI}$ is hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ iff $idn(x, C_V) = \emptyset$.

Complexity

- For L ∈ {ALCO, ALCQ}, we can check in exponential time whether an anonymous individual x is hidden w.r.t. views V_{i₁},..., V_{i_k}.
- For $\mathcal{L} \in { \mathcal{ALCOIQ} }$, this problem can be solved in NExpTime.

3

• Anonymizing Description Logic Ontologies Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible

- Anonymizing Description Logic Ontologies Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible
- Rôle-based Pseudonymity Implementation on Smarthome Ontologies

 Anonymizing Description Logic Ontologies
 Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible

- Rôle-based Pseudonymity Implementation on Smarthome Ontologies
- Probabilistic-based Reasoning
 Two individuals are equal with certain probability.
 Subjective probabilistic in DLs with equality power is more suitable

Thank You

Adrian Nuradiansyah

 → November 12, 2017 16/16

3

< <p>Image: A (1) < (2) </p>