The Identity Problem in Description Logic Ontologies and Its Application to View-Based Information Hiding

Adrian Nuradiansyah

Franz Baader, Daniel Borchmann Technische Universität Dresden

November 12, 2017

Identity Problem: Motivation

Ontology

$\xrightarrow{\text { combined }}$

Employee Database (known individuals)

Anonymized Survey Data
(anonymous individuals)

Background Knowledge

Identity Problem: Motivation

Ontology

Employee Database (known individuals)

Anonymized Survey Data (anonymous individuals)

Background Knowledge
known a identical to anonymous x ?

Identity Problem: Example

[+ \{Female $\}$
$\mathcal{A}: \quad$ logic $\stackrel{\text { expert }}{\longleftrightarrow} \xrightarrow{\text { expert }}$ privacy
$\{$ Female\} linda\{Female\} pattie \{Male\} john \{Male\} jim

Identity Problem: Example

\mathcal{T} :

Female $\sqsubseteq \neg$ Male
ヨexpert. $\{$ logic $\} \sqsubseteq$ VerTeam \exists expert. $\{$ privacy $\} \sqsubseteq$ SecTeam
VerTeam $\equiv\{$ linda, john, pattie $\} \quad$ SecTeam $\equiv\{$ linda, john, jim $\}$

Identity Problem: Example

\mathcal{T} :

Female $\sqsubseteq \neg$ Male
\exists expert. $\{$ logic $\} \sqsubseteq$ VerTeam $\quad \exists$ expert. $\{$ privacy $\} \sqsubseteq$ SecTeam
VerTeam $\equiv\{$ linda, john, pattie $\} \quad$ SecTeam $\equiv\{$ linda, john,jim $\}$
consequence: $x \doteq$ linda w.r.t. \mathcal{A} and \mathcal{T}

Description Logics

- Decidable fragments of First Order Logics

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A : Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{l} : individual names a: logic, privacy, linda, john, x,...

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A: Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{I} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A} \mathcal{L}$ - concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r . C$

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A : Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{l} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A L C}$-concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r . C$
- The formal semantics is introduced by means of an interpretation $\left(\mathcal{I}=\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right)$
- $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} ; r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} ; a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A : Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{l} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A L C}$-concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r$.C
- The formal semantics is introduced by means of an interpretation $\left(\mathcal{I}=\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$
- $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} ; r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} ; a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of TBox \mathcal{T} and ABox \mathcal{A}.

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A : Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{l} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A L C}$-concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r . C$
- The formal semantics is introduced by means of an interpretation $\left(\mathcal{I}=\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$
- $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} ; r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} ; a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of TBox \mathcal{T} and ABox \mathcal{A}.
- A TBox \mathcal{T} is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A : Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{l} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A L C}$-concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r . C$
- The formal semantics is introduced by means of an interpretation $\left(\mathcal{I}=\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$
- $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} ; r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} ; a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of TBox \mathcal{T} and ABox \mathcal{A}.
- A TBox \mathcal{T} is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$
- An ABox \mathcal{A} is a set of concept assertions $C(a)$ and role assertions $r(a, b)$

Description Logics

- Decidable fragments of First Order Logics
- The basic signatures are:
- N_{C} : concept names A: Male, Female, VerTeam, SecTeam, ...
- N_{R} : role names r : expert, study, ...
- N_{1} : individual names a: logic, privacy, linda, john, x, \ldots
- $\mathcal{A} \mathcal{L C}$-concepts $C, D \rightarrow A|C \sqcap D| C \sqcup D|\neg C| \exists r . C \mid \forall r . C$
- The formal semantics is introduced by means of an interpretation $\left(\mathcal{I}=\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$
- $\Delta^{\mathcal{I}}$: a non-empty set of domain elements
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} ; r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} ; a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- An ontology \mathfrak{O} consists of TBox \mathcal{T} and ABox \mathcal{A}.
- A TBox \mathcal{T} is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$
- An ABox \mathcal{A} is a set of concept assertions $C(a)$ and role assertions $r(a, b)$
- An interpretation \mathcal{I} is a model of \mathfrak{O} iff
- For all GCIs in $\mathcal{T}, C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- For all assertions in $\mathcal{A}, a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in r^{\mathcal{I}}$

Identity Problem: Formal Definition

Identity Problem

Given $a, b \in N_{\text {l }}$ and a consistent ontology \mathfrak{O}. Check whether $a^{\mathcal{I}}=b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}. It is denoted by $(\mathfrak{O} \models a \doteq b)$.

Identity Problem: Formal Definition

Identity Problem

Given $a, b \in N_{l}$ and a consistent ontology \mathfrak{O}. Check whether $a^{\mathcal{I}}=b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}. It is denoted by $(\mathfrak{O} \models a \doteq b)$.

Not all DLs are able to derive equalities between two individuals :(

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there is no consistent ontology \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there is no consistent ontology \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

Theorem

If a DL can be translated to first-order logic without equality predicate, then it is a $D L$ without equality power.

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there is no consistent ontology \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

Theorem

If a DL can be translated to first-order logic without equality predicate, then it is a DL without equality power.

Examples:

- $\mathcal{A L C}$ and its fragments: $\mathcal{E} \mathcal{L}, \mathcal{F} \mathcal{L}_{0}, \mathcal{F} \mathcal{L E}, \ldots$
- $\mathcal{S R} \mathcal{I}$: extending $\mathcal{A L C}$ with inverse roles, role axioms, role compositions, and transitive roles.

DLs with Equality Power

- $\mathcal{A L C O}$: individual as a singleton concept

DLs with Equality Power

- $\mathcal{A L C O}$: individual as a singleton concept Example:

\{Female\}
$\mathcal{A}: \quad$ logic $\xrightarrow{\text { expert }} \underset{\longrightarrow}{\text { expert }}$ privacy $\{$ Female $\}$ linda $\{$ Female $\}$ pattie $\{$ Male $\}$ john $\{$ Male $\}$ jim
T
T
Female }\sqsubseteq\neg\mathrm{ Male
Female }\sqsubseteq\neg\mathrm{ Male
\existsexpert.{logic}\sqsubseteqVerTeam \existsexpert.{privacy}\sqsubseteqSecTeam
\existsexpert.{logic}\sqsubseteqVerTeam \existsexpert.{privacy}\sqsubseteqSecTeam
VerTeam \equiv {linda,john,pattie} SecTeam \equiv{linda,john,jim}
VerTeam \equiv {linda,john,pattie} SecTeam \equiv{linda,john,jim}
consequence: $x \doteq$ linda w.r.t. \mathcal{A} and \mathcal{T}

DLs with Equality Power

- $\mathcal{A L C Q}$: restricting the number of successors of a domain element Example: $\mathfrak{O}=(\{$ PhDstudent $\sqsubseteq \leq 1$ supervised.$\top\}$, $\{$ supervised(adrian, y), supervised (adrian, franz) $\}$)

DLs with Equality Power

- $\mathcal{A L C Q}$: restricting the number of successors of a domain element Example: $\mathfrak{O}=(\{$ PhDstudent $\sqsubseteq \leq 1$ supervised. $\top\}$, $\{\operatorname{supervised}(a d r i a n, ~ y), \operatorname{supervised}($ adrian, franz) $)$
- $\mathcal{C F} \mathcal{D}_{n c}$: featuring functional dependencies

Functional Dependencies: if two individuals agree on some attributes, then they are unique.
Example: $\mathfrak{O}=(\{A \sqsubseteq A: f \rightarrow i d\}$,

$$
\{A(b), A(x), f(b)=c, f(x)=c\})
$$

How to solve the identity problem?

Rely on the existing instance checking algorithm

Problem Reduction 1 (Upper Bound)

Identity Problem $\xrightarrow{\text { reduced }}$ Instance Problem for all DLs with equality power.

$$
\mathfrak{O}_{1} \models a \doteq b \text { iff }\left(\mathfrak{O}_{1} \cup A(a)\right) \models A(b), \text { where } A \in N_{C} \text { is fresh }
$$

How to solve the identity problem?

Rely on the existing instance checking algorithm

Problem Reduction 1 (Upper Bound)

Identity Problem $\xrightarrow{\text { reduced }}$ Instance Problem for all DLs with equality power.

$$
\mathfrak{O}_{1} \models a \doteq b \text { iff }\left(\mathfrak{O}_{1} \cup A(a)\right) \mid=A(b), \text { where } A \in N_{C} \text { is fresh }
$$

Problem Reduction 2 (Lower Bound)

Instance Problem reduced Identity Problem in $\mathcal{A L C O}$ and $\mathcal{A L C Q}$
HornSAT reduced Identity Problem in $\mathcal{C F D} \mathcal{D}_{n c}$

How to solve the identity problem?

Complexity Results

The identity problem is

- ExpTime-complete in $\mathcal{A L C O}$ and $\mathcal{A L C Q}$
- coNExpTime-complete in $\mathcal{A L C O} \mathcal{I} \mathcal{Q}$
- PTime-complete in $\mathcal{C} \mathcal{F} \mathcal{D}_{n c}$

Complexities of identity and instance problem are not the same in $\mathcal{A L C}=$ allowing $\left\{a \doteq b \mid a, b \in N_{l}\right\} \subseteq \mathcal{A} \rightarrow$ PTime vs ExpTime-hard

View-based Identity Problem

View and Queries

- A view V is a finite collection of queries together with their answers
- Only consider subsumption, instance, and role relationship queries

View-based Identity Problem

Given a partially visible ontology $\mathfrak{O}_{\text {I }}$

At rôle $\hat{r}_{1} \quad$ At rôle \hat{r}_{k}

- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{1}}} \subseteq \mathfrak{O}_{I} \xrightarrow{\text { switch }} \cdots$ switch - queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$ - obtains View $V_{\hat{r}_{1}}$
- obtains View $V_{\hat{r}_{k}}$

At rôle \hat{r}_{k+1}, is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$?

Hidden Identity

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.

Hidden Identity

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{\text {Al }}$. The identity of x w.r.t. an ontology \mathfrak{O} is $\operatorname{idn}(x, \mathfrak{O})=\left\{a \in N_{K I} \mid \mathfrak{O} \models x \dot{\doteq} a\right\}$.

Hidden Identity

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{A I}$. The identity of x w.r.t. an ontology \mathfrak{D} is $i d n(x, \mathfrak{O})=\left\{a \in N_{K I} \mid \mathfrak{O} \models x \doteq a\right\}$.
- The identity of $x \in N_{A \prime}$ is hidden w.r.t. \mathfrak{O} iff $\operatorname{idn}(x, \mathfrak{O})=\emptyset$.

Hidden Identity

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{A I}$. The identity of x w.r.t. an ontology \mathfrak{D} is $i d n(x, \mathfrak{O})=\left\{a \in N_{K I}|\mathfrak{O}|=x \doteq a\right\}$.
- The identity of $x \in N_{A \prime}$ is hidden w.r.t. \mathfrak{O} iff $\operatorname{idn}(x, \mathfrak{O})=\emptyset$.
- The identity of $x \in N_{A I}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff

$$
\bigcap_{\mathfrak{P} \in \operatorname{Poss}\left(V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}\right)} i d n(x, \mathfrak{P})=\emptyset
$$

How to solve the View-based Identity Problem?

Canonical Ontology

The canonical ontology \mathcal{C}_{V} of $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ is defined as $\mathcal{C}_{V}:=\left(\mathcal{T}_{V}, \mathcal{A}_{V}\right)$ where

$$
\begin{aligned}
\mathcal{T}_{V}:= & \left\{C \sqsubseteq D \mid V_{\hat{r}_{i}}(C \sqsubseteq D)=\{\text { true }\} \text { for some } i, 1 \leq i \leq k\right\} \\
\mathcal{A}_{V}:= & \left\{C(a) \mid a \in V_{\hat{r}_{i}}(C) \text { for some } i, 1 \leq i \leq k\right\} \cup \\
& \left\{r(a, b) \mid(a, b) \in V_{\hat{r}_{i}}(r) \text { for some } i, 1 \leq i \leq k\right\} .
\end{aligned}
$$

How to solve the View-based Identity Problem?

Canonical Ontology

The canonical ontology \mathcal{C}_{V} of $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ is defined as $\mathcal{C}_{V}:=\left(\mathcal{T}_{V}, \mathcal{A}_{V}\right)$ where

$$
\begin{aligned}
\mathcal{T}_{V}:= & \left\{C \sqsubseteq D \mid V_{\hat{r}_{i}}(C \sqsubseteq D)=\{\text { true }\} \text { for some } i, 1 \leq i \leq k\right\} \\
\mathcal{A}_{V}:= & \left\{C(a) \mid a \in V_{\hat{r}_{i}}(C) \text { for some } i, 1 \leq i \leq k\right\} \cup \\
& \left\{r(a, b) \mid(a, b) \in V_{\hat{r}_{i}}(r) \text { for some } i, 1 \leq i \leq k\right\} .
\end{aligned}
$$

Theorem

The identity of $x \in N_{A I}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff $i d n\left(x, \mathcal{C}_{V}\right)=\emptyset$.

How to solve the View-based Identity Problem?

Canonical Ontology

The canonical ontology \mathcal{C}_{V} of $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ is defined as $\mathcal{C}_{V}:=\left(\mathcal{T}_{V}, \mathcal{A}_{V}\right)$ where

$$
\begin{aligned}
\mathcal{T}_{V}:= & \left\{C \sqsubseteq D \mid V_{\hat{r}_{i}}(C \sqsubseteq D)=\{\text { true }\} \text { for some } i, 1 \leq i \leq k\right\} \\
\mathcal{A}_{V}:= & \left\{C(a) \mid a \in V_{\hat{r}_{i}}(C) \text { for some } i, 1 \leq i \leq k\right\} \cup \\
& \left\{r(a, b) \mid(a, b) \in V_{\hat{r}_{i}}(r) \text { for some } i, 1 \leq i \leq k\right\} .
\end{aligned}
$$

Theorem

The identity of $x \in N_{A I}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff $i d n\left(x, \mathcal{C}_{V}\right)=\emptyset$.

Complexity

- For $\mathcal{L} \in\{\mathcal{A} \mathcal{L C O}, \mathcal{A} \mathcal{L C Q}\}$, we can check in exponential time whether an anonymous individual x is hidden w.r.t. views $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- For $\mathcal{L} \in\{\mathcal{A} \mathcal{L C O} \mathcal{I} \mathcal{Q}\}$, this problem can be solved in NExpTime.

Future Work

- Considering the problem of \mathbf{k}-anonymity The identity of anonymous individuals cannot be distinguished from at least k known individuals.

Future Work

- Considering the problem of k-anonymity The identity of anonymous individuals cannot be distinguished from at least k known individuals.
- Anonymizing Description Logic Ontologies Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible

Future Work

- Considering the problem of \mathbf{k}-anonymity The identity of anonymous individuals cannot be distinguished from at least k known individuals.
- Anonymizing Description Logic Ontologies Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible
- Rôle-based Pseudonymity Implementation on Smarthome Ontologies

Future Work

- Considering the problem of \mathbf{k}-anonymity

The identity of anonymous individuals cannot be distinguished from at least k known individuals.

- Anonymizing Description Logic Ontologies Idea from Ontology Repair: Weakening the axioms while keeping as much information as possible
- Rôle-based Pseudonymity Implementation on Smarthome Ontologies
- Probabilistic-based Reasoning

Two individuals are equal with certain probability.
Subjective probabilistic in DLs with equality power is more suitable

Thank You

