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Abstract: This contribution presents a backstepping-based state feedback design for the tracking
control of a two-phase Stefan problem which is encountered in the Vertical Gradient Freeze crystal
growth process. A two-phase Stefan problem consists of two coupled free boundary problems
and is a vital part of many crystal growth processes due to the time-varying extent of crystal
and melt during growth. In addition, a different approach for the numerical approximation of
the backstepping transformations kernel is presented.
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1. INTRODUCTION

The Vertical Gradient Freeze (VGF) crystal growth process
is used for the production of high efficiency bulk compound
semiconductor single crystals like Gallium-Arsenide (GaAs)
or Indium-Phosphide (Jurisch et al., 2005). The process
basically works as follows: A seed crystal is placed at
the bottom of a rotationally symmetric crucible which
is later filled with solid semiconductor chunks. After all
material (up to the seed) in the crucible is molten, a vertical
temperature gradient is moved through the plant such that
a single crystal grows from the bottom to the top in a
desired manner. This is done by manipulating the power
of the heaters which surround the crucible. Modelling of
the system yields two coupled free boundary problems
(FBPs) for crystal and melt that form the so called two-
phase Stefan problem (TPSP) e.g. (Crank, 1984) which is
inherently nonlinear.

Due to the spatial extent of the system it is broadly dis-
cussed in the framework of distributed parameter systems.
Making the assumption that the temperature distribution
in one phase is constant (which is often justified due to
its dominant spatial extent) yields the so called one-phase
Stefan problem (OPSP). Regarding this special case, results
are lately available for the feedforward design by Dunbar
et al. (2003), as well as for feedback designs using enthalpy-
(Petrus et al., 2012, 2014), geometry- (Maidi and Corriou,
2016) or backstepping- (Koga et al., 2019) based approaches.
Regarding the full problem, (Rudolph et al., 2003, 2004)
extend the flatness-based motion planning to the two-
phase case, while (Kang and Zabaras, 1995) and (Hinze
et al., 2009) address the problem from the side of optimal
control. Concerning feedback, a direct extension of the
approaches for the one-phase variant is not feasible since the
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coupling between the two FBPs has to be taken into account
here. In this context it is noteworthy that (Petrus et al.,
2010) already states a Lyapunov-based control law for the
TPSP with actuation at one boundary and that (Koga and
Krstic, 2019) does the same via an energy-shaping approach.
However, a gap to the tracking control of the complete
TPSP using both inputs remained. In (Ecklebe et al.,
2019) the authors present different output feedback designs
using energy- and flatness-based approaches, rendering
backstepping-based designs the last remaining problem.

1.1 Objective and Structure

The main objective of this contribution is to present a
tracking control for the TPSP by backstepping-based state
feedback. Furthermore, a different approach for the numeric
approximation of the resulting time-variant backstepping
kernels is presented. Due to the limited space, this is done
in a rather brief fashion and more detailed results will be
given in a forthcoming publication.

In Section 2 a simplified one-dimensional distributed
parameter model of the process is introduced, before
Section 3 briefly recites the feedforward control design and
states some properties of the derived trajectories which
are required for the tracking control later on. Based on
these, Section 4 derives a suitable error system as well as
the corresponding target dynamics for it and states the
resulting tracking control law. In Section 5, the existence
of solutions for the kernel equations as well as a new
computation scheme to solve them is discussed, before
Section 6 briefly presents simulation results. Finally, a
summary and an outlook to further work is given.
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Fig. 1. Schematics of the cylindrical coordinates (r, ϕ, z)
and the moving coordinate frame z̃ = z − γ(t).

2. MODELLING

As the foundation for model based control, this section
introduces a one dimensional distributed parameter model
of the VGF process plant.

2.1 Plant Model

The quantity under consideration is given by the spatial
and temporal distribution of the system temperature T in
the crucible, denoted in cylindrical coordinates with radius
r, angle ϕ as well as height z, and depending on the time t.
Within this contribution, we assume that the lateral heaters
are used as active isolation, avoiding any heat loss in radial
direction and therefore yielding a temperature distribution
which is independent of r. Since the plant is also rotationally
symmetric, this justifies averaging over the longitudinal
cross-sectional area, reducing the spatial domain to a line
whose boundaries are represented by the bottom and top of
the crucible at z = Γs and z = Γl, respectively. This yields
two areas given by the crystal and the melt, separated by
the moving phase boundary γ(t) (cf. Figure 1). In contrast
to the temperature distribution in the crystal, which can
be modelled via diffusion, the liquid melt also enables
convective heat transport. However, since the considered
semi-conductors posses small Prandtl numbers (e.g. 0.068
for GaAs), the dominating heat transport mechanism is
diffusion. Therefore, convective effects in the melt are
neglected.

Summarising, the temperature distribution in the system
is given by the distributed variable T (z, t) and governed by
a one dimensional nonlinear heat equation (Cannon, 1984)

∂

∂t

(
ρ(T (z, t))cp(T (z, t))T (z, t)

)
=

∂

∂z

(
λ(T (z, t))

∂

∂z
T (z, t)

)
, z ∈ (Γs, Γl) \ {γ(t)} (1)

with the density ρ, the specific heat capacity cp, and λ
the thermal conductivity being temperature-dependent.
Note, that while the temperature at the interface T (γ(t), t)
is fixed at the melting point temperature Tm due to the
ongoing phase transition, the heat flow in this description is
not continuous at the phase boundary due to the release of
latent heat within the solidification process and the abrupt

change of the physical parameters between crystal and
melt.

2.2 Decomposition

Assuming piecewise constant parameters for the solid
and the liquid phase it is possible to decompose the
tempearature distribution via

T (z, t) =

{
Ts(z, t), z ∈ Ωs = (Γs, γ(t))

Tl(z, t), z ∈ Ωl = (γ(t), Γl)
(2)

with the temperatures Ts(z, t) and Tl(z, t) in the solid and
liquid part, respectively. This yields the two FBPs

∂tTs(z, t) = αs∂
2
zTs(z, t) (3a)

∂zTs(Γs, t) =
δs
λs
us(t) (3b)

Ts(γ(t), t) = Tm (3c)
∂tTl(z, t) = αl∂

2
zTl(z, t) (3d)

∂zTl(Γl, t) =
δl
λl
ul(t) (3e)

Tl(γ(t), t) = Tm (3f)
where the indexes “s” and “l” denote the solid and liquid
phase, respectively. Furthermore, the heat flows us(t) and
ul(t) at the bottom and the top boundary are considered
as system inputs with the orientation factors δs = −1 and
δl = 1. For reasons of clarity, the partial derivative of
T (z, t) wrt. z and t are given by ∂zT (z, t) and ∂tT (z, t),
respectively. Finally, αs = λs/(ρscp,s) and αl = λl/(ρlcp,l)
denote the thermal diffusivities.

Next, examining the energy balance at the interface γ(t)
yields the Stefan condition (Stefan, 1891)

ρmLγ̇(t) = λs∂zTs(γ(t), t)− λl∂zTl(γ(t), t) (4)
which describes the evolution of the phase boundary. Herein,
ρm denotes the density of the melt at melting temperature
and L the specific latent heat.

Together, (3) and (4) form the TPSP whose state is given
by

x(·, t) =

(
T (·, t)
γ(t)

)
∈ X = L2([Γs, Γl])× (Γs, Γl) , (5)

where L2([Γs, Γl]) denotes the space of real-valued square-
integrable functions defined on [Γs, Γl]. Note that the PDE-
ODE-PDE system defined by (3) and (4) is inherently
nonlinear since the domains of (3a) and (3d) depend on
the state variable γ(t).

Since the systems (3a)–(3c) and (3d)–(3f) share the same
structure, the following sections will merely discuss generic
variables, denoted by the ◦ symbol if the results are
applicable to both phases. If terms from two different phases
are to appear in the same expression, the complementary
phase is marked by the • symbol.

2.3 Moving Coordinates

To simplify the notation of the controller error system later
on, the coordinate transformation

T̃ (z̃, t) = T (z, t) with z̃ := z − γ(t) (6)
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is introduced which maps the current interface position to
the origin of a moving frame as shown in Figure 1. This
yields the generic system in the new coordinates

∂tT̃◦(z̃, t) = α◦∂
2
z̃ T̃◦(z̃, t) + γ̇(t)∂z̃T̃◦(z̃, t) (7a)

∂z̃T̃◦(Γ̃◦, t) =
δ◦
λ◦
u◦(t) (7b)

T̃◦(0, t) = Tm (7c)
γ̇(t) = s◦∂z̃T̃◦(0, t) + s•∂z̃T̃•(0, t) (7d)

where Γ̃◦ = Γ◦ − γ(t), s◦ = −δ◦λ◦/(Lρm), and s• =
−δ•λ•/(Lρm). Note, that in these coordinates the interface
velocity γ̇(t) directly enters the PDE (7a) in form of a
convection coefficient.

3. FEEDFORWARD CONTROL

This section outlines a feedforward control that originates
from Dunbar et al. (2003) for the OPSP and was extended
by Rudolph et al. (2003) to the TPSP. Since the trajec-
tories for T (z, t) and γ(t), which are computed by this
feedforward scheme, will be used as a reference in following
sections, this recap is merely focussed on their properties.

Since the solution T̃◦(z̃, t) of (7) can be expressed in terms
of an infinite power series in z̃, given by

T̃◦(z̃, t) =

∞∑
i=0

c◦,i(t)
z̃i

i!
, (8)

substitution into (7a) and comparison of the coefficients of
like powers in z̃ yields the recursion formula

c◦,i+2(t) =
1

α◦

(
∂tc◦,i(t)−γ̇(t)c◦,i+1(t)

)
i = 0, . . . ,∞ . (9)

Examining (8) indicates that the initial coefficients of the
series are given by

c◦,0(t) = T̃◦(0, t) = Tm, c◦,1(t) = ∂z̃T̃◦(0, t) . (10)
Next, using (7d) as the defining equation for the melt-
gradient

∂z̃T̃l(0, t) =
1

λl

(
λs∂z̃T̃s(0, t)− ρmLγ̇(t)

)
, (11)

the solution for both phases can be expressed by the
gradient in the crystal ∂z̃T̃s(0, t) and the growth rate γ̇(t).
Thus, (7) via the parametrisation (8) is differentially flat
with a flat output

y(t) =

(
y1(t)
y2(t)

)
=

(
∂z̃T̃s(0, t)
γ(t)

)
. (12)

Furthermore, reference trajectories for the components
yr,i(t) of yr(t) are chosen as transitions between stationary
states y0r,i and yer,i for start and end, respectively, via

yr,i(t) = y0r,i + (yer,i − y0r,i)Φ (t) i = 1, 2 (13)
with Φ(t) sufficiently smooth.

Analysing the specific convergence conditions for (8),
(Rudolph et al., 2003, 2004) show that it is sufficient to
demand Φ(t) ∈ Gℵ≤2(R+) with the Gevrey class Gℵ(Ω)
from the definition below.
Definition 1. (Gevrey-class; Gevrey 1918). A smooth func-
tion t 7→ f(t) defined on the open set Ω ⊂ R is an element
of the Gevrey class Gℵ(Ω) of order ℵ over Ω if there exists
a positive constant D such that

sup
t∈Ω
|∂nt f(t)| ≤ Dn+1 (n!)

ℵ

holds for all n in N0.

Thus, given the definition of the flat output (12) the
reference interface trajectory γr(t) is from Gℵ≤2(R+).
Moreover, as the reference temperature distribution T̃r(z̃, t)
is computed via (9) and (8), by construction T̃r(z̃, t) belongs
to Kℵ≤2(Ω̃,R+) as defined below.
Definition 2. (Class Kℵ(Ωz, Ωt)). A function (z, t) 7→
f(z, t) is an element of the function class Kℵ(Ωz, Ωt) if
f(·, t) ∈ C∞(Ωz) and f(z, ·) ∈ Gℵ(Ωt).

4. STATE FEEDBACK

The following section states the main result of this contri-
bution concerning the backstepping-based state feedback.

4.1 Error System

For the system (7), let the error coordinates be given by
ẽ◦ (z̃, t) = T̃◦(z̃, t)− T̃◦,r(z̃, t) (14a)

∆γ(t) = γ(t)− γr(t), (14b)
yielding the nonlinear error dynamics
∂tẽ◦ (z̃, t) = α◦∂

2
z̃ ẽ◦ (z̃, t) +

(
∆γ̇(t)∂z̃ + γ̇r(t)∂z̃

)
ẽ◦ (z̃, t)

+ ∆γ̇(t)∂z̃T̃◦,r(z̃, t) (15)
as shown in Appendix A. Linearising (15) around the
reference (e◦(z̃, t) ≡ 0,∆γ(t) = 0) yields the linearised
error dynamics

∂tẽ◦ (z̃, t) = α◦∂
2
z̃ ẽ◦ (z̃, t) + γ̇r(t)∂z̃ ẽ◦ (z̃, t)

+ ∆γ̇(t)∂z̃T̃◦,r(z̃, t) (16)
as well as

∆γ̇(t) = s◦∂z̃ ẽ◦(0, t) + s•∂z̃ ẽ•(0, t). (17)
Hence, substituting (17) in (16) gives the linear time-
variant error system
∂tẽ◦ (z̃, t) = α◦∂

2
z̃ ẽ◦ (z̃, t) + γ̇r(t)∂z̃ ẽ◦ (z̃, t)

+ b◦(z̃, t)∂z̃ ẽ◦(0, t) + c◦(z̃, t)∂z̃ ẽ•(0, t) (18a)
∂z̃ ẽ◦(Γ̃◦, t) = ũ◦(t) (18b)

ẽ◦(0, t) = 0 (18c)
∆γ̇(t) = s◦∂z̃ ẽ◦(0, t) + s•∂z̃ ẽ•(0, t) (18d)

with b◦(z̃, t) = s◦∂z̃T̃◦,r(z̃, t), c◦(z̃, t) = s•∂z̃T̃◦,r(z̃, t), and
the new input ũ◦(t). Note that herein, the solid and liquid
temperature errors are coupled over the whole domain by
means of their fluxes through the phase boundary.

4.2 Hopf-Cole Transformation

Since the coefficient γ̇r(t) of the convection term cannot
be treated via the classic backstepping transform, it is
eliminated by a Hopf-Cole transformation (Hopf, 1950)

ẽ◦ (z̃, t) = Ψ◦ (z̃, t) ē◦(z̃, t) (19)

and choosing Ψ◦ (z̃, t) = exp
(
− γ̇r(t)2α◦

z̃
)
, which is a standard

procedure in these cases. This yields the system
∂tē◦(z̃, t) = α◦∂

2
z̃ ē◦(z̃, t) + r◦(z̃, t)ē◦(z̃, t)

+ b̄◦(z̃, t)∂z̃ ē◦(0, t) + c̄◦(z̃, t)∂z̃ ē•(0, t) (20a)

∂z̃ ē◦(Γ̃◦, t) =
γ̇r(t)

2α◦
ē◦(Γ̃◦, t) + Ψ−1◦ (Γ̃◦, t)ũ◦(t) (20b)

ē◦(0, t) = 0 (20c)
∆γ̇(t) = s◦∂z̃ ē◦(0, t) + s•∂z̃ ē•(0, t) (20d)
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where

r0(z̃, t) = − 1

4α◦

(
2γ̈r(t)z̃ + γ̇2r (t)

)
(21a)

b̄◦(z̃, t) = Ψ−1◦ (z̃, t) b◦(z̃, t) (21b)
c̄◦(z̃, t) = Ψ−1• (z̃, t) c◦(z̃, t). (21c)

Note, that the resulting system now exhibits reactive terms
that are driven by the reference interface velocity and
acceleration. Furthermore, the original Neumann boundary
condition now appears as a Robin boundary condition.

4.3 Backstepping Transformation

To enforce proper tracking of the reference, the errors in
temperature and boundary position should converge to
zero. This demand is formulated in the target system

∂tw◦(z̃, t) = α◦∂
2
z̃w◦(z̃, t) + µ◦(z̃, t)w◦(z̃, t) (22a)

∂z̃w◦(Γ̃◦, t) = δ◦ν◦w◦(Γ̃◦, t) (22b)
w◦(0, t) = 0 (22c)

with the reaction coefficient µ◦(z̃, t) and boundary gain ν◦
as design parameters. To map the system (20) into (22)
the transformation

w◦(z̃, t) = ē◦(z̃, t)−
∫ z̃

0

k̃◦(z̃, ζ, t)ē◦(ζ, t) dζ (23)

is used. Computing the requirements on the transforma-
tion kernel k̃◦(z̃, ζ, t) (cf. Appendix B) yields the kernel
equations

∂tk̃◦(z̃, ζ, t) = α◦

(
∂2z k̃◦(z̃, ζ, t)− ∂2ζ k̃◦(z̃, ζ, t)

)
+ a◦(ζ, t)k̃◦(z̃, ζ, t) (24a)

2α◦k̃◦(z̃, z̃, t) =

∫ z̃

0

a◦(ζ, t) dζ − 2b̄◦(z̃, t) (24b)

α◦k̃◦(z̃, 0, t) =

∫ z̃

0

b̄◦(ζ, t)k̃◦(z̃, ζ, t) dζ − b̄◦(z̃, t) (24c)

0 =

∫ z̃

0

c̄◦(ζ, t)k̃◦(z̃, ζ, t) dζ − c̄◦(z̃, t) (24d)

where a◦(z̃, t) = µ◦(z̃, t) − r◦(z̃, t). Examining the sys-
tem (24), one observes that the problem for k̃◦(z̃, ζ, t),
given by (24a)–(24c) is well-posed (cf. 5.2). Herein, the
integral boundary condition (24c) arises since the term
b̄◦(z̃, t)∂z̃ ē◦(0, t) is to be eliminated from (20a). However,
the demand for completely decoupled target systems and,
thus, the elimination of c̄◦(z̃, t)∂z̃ ē•(0, t) that results in
(24d) renders the problem overdetermined. Therefore, to
recover a well-posed formulation the convective coupling
at z̃ = 0 is reintroduced with the modified target system
dynamics

∂tw̄◦(z̃, t) = α◦∂
2
z̃ w̄◦(z̃, t)

+ µ◦(z̃, t)w̄◦(z̃, t) + d◦(z̃, t)∂z̃w̄•(0, t) (25)

where d◦(z̃, t) =
∫ z̃
c̄◦(ζ, t)k̃◦(z̃, ζ, t) dζ − c̄◦(z̃, t) replaces

(24d). Obviously, by choosing µ◦(z̃, t) ≤ 0 ∀(z̃, t) and
ν ≤ 0 this approach yields exponentially stable error
dynamics for the one-phase case where the gradient in
the adjacent phase vanishes from (17). For the two-phase
case, stability of the resulting error dynamics has to be
shown due to the bilateral coupling via d◦(z̃, t). This
will be addressed in a forthcoming publication due to
lack of space. However, simulation studies yield promising

results as Section 6 shows. Certainly, for both variants
the target systems properties can only be conveyed if
the inverse transformation of (23) exists. This can be
assumed since it is of Volterra-type and therefore always
invertible (cf. Heuser 1992) or shown by a simple fixed-point
argument 1 .

Finally, by examining (22b), eliminating the target terms
via (23) and substituting (20b), the control input for the
original system with the kernel in original coordinates
k◦(z, ζ, t) = k̃◦(z̃, ζ, t) is given by

u◦(t) =
λ◦
δ◦

[(
k◦(Γ◦, Γ◦, t) + δ◦ν◦ −

γ̇r(t)

2α◦

)
×(

T◦(Γ◦, t)− T◦,r(Γ◦, t)
)

+ ∂zT◦,r(Γ◦, t)

+

∫ Γ◦

γ(t)

(
∂zk◦(Γ◦, ζ, t) + δ◦νk◦(Γ◦, ζ, t)

)
×

(
T (ζ, t)− T◦,r(ζ, t)

)
exp

(
γ̇r(t)

2α◦
(ζ − Γ◦)

)
dζ

]
. (26)

5. WELL-POSEDNESS AND NUMERICAL SOLUTION
OF THE KERNEL EQUATIONS

In this section, a numerical solution scheme for the kernel
equations (24a)–(24c) is discussed 2 . To this end, the
integral form of the system is derived in a first step.
As stated in (Jadachowski et al., 2012), the method
of successive approximations as introduced in (Colton,
1977) and extended in (Meurer and Kugi, 2009) does not
show good convergence for time-varying kernels and is
therefore only employed to investigate the existence of a
solution. Thus, the presented solution will be based on a
spatial discretisation of the kernel. However, in contrast to
(Jadachowski et al., 2012) the Midpoint rule will be used
which eventually leads to an iterative solution scheme that
maintains the structural properties of the problem.

5.1 Integral Form

Introducing the normal form coordinates η = z̃ + ζ and
σ = z̃ − ζ yields the dynamics

∂tk̄(η, σ, t) = 4α∂ησk̄(η, σ, t) + a
(
η−σ
2 , t

)
k̄(η, σ, t) (27a)

4αk̄(η, 0, t) =

∫ η

0

a
(
r
2 , t
)

dr − 4b̄ (0, t) (27b)

αk̄(η, η, t) =

∫ η

0

b̄
(
η+s
2 , t

)
k̄(η, s, t) ds− b̄ (η, t) (27c)

of the transformed kernel k̄(η, σ, t) = k̃(z̃, ζ, t). Hence,
formal integration of (27a) wrt. σ and η as well as
substitution of (27b) (derived wrt. η) and (27c) yields

1 Note, that to rigorously proof the invertability, the transformation
has to be defined as a linear map on an appropriately chosen Banach
space in order to make the underlying fixed point theory applicable.
For lack of space, details are omitted within this contribution.
2 As only variables of one phase occur in the kernel equations, the
generic placeholder ◦ is dropped in favour of a more compact notation
from now on.
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k̄(η, σ, t) =
1

4α

{∫ η

σ

[
a
(
r
2 , t
)

+

∫ σ

0

(
∂tk̄(r, s, t)

− a
(
r−s
2 , t

)
k̄(r, s, t)

)
ds

]
dr

}
+

1

α

(∫ σ

0

b̄
(
σ+s
2 , t

)
k̄(σ, s, t) ds− b̄ (σ, t)

)
. (28)

5.2 Existence

As already presented in (Colton, 1977) a solution for (28)
by means of the method of successive approximations can
be established by considering the series

k̄(η, σ, t) =

∞∑
n=0

K̄n(η, σ, t) (29)

where the K̄n(η, σ, t) are given by K̄0(η, σ, t) = 0,

K̄1(η, σ, t) =

∫ η

σ

a
(
r
2 , t
)

dr − 1

α
b̄ (σ, t) (30a)

K̄n(η, σ, t) =
1

α

∫ σ

0

b̄
(
σ+s
2 , t

)
K̄n−1(σ, s, t) ds

+
1

4α

∫ η

σ

∫ σ

0

(
∂tk̄

n−1(r, s, t)

− a
(
r−s
2 , t

)
K̄n−1(r, s, t)

)
dsdr (30b)

Furthermore, Meurer and Kugi (2009) show that the
convergence conditions on the series (29) depend on
an upper bound for ∂ltK̄n(η, σ, t) due to the repetitive
differentiation in (30b). Although the detailed appearance
may differ from the systems discussed in (Meurer and Kugi,
2009) or (Izadi et al., 2015), the terms that are to be
examined are a(z̃, t) and b̄(z̃, t).

Consider the term a(z̃, t), which is composed by the
design parameter µ(z̃, t) and the reaction coefficient r(z̃, t)
of the error system. The latter coefficient, however, is
mostly characterised by the reference interface velocity and
acceleration which –as design parameters– are characterised
by γr(t) ∈ Gℵ≤2(R+), (cf. 21a). Thus, by demanding
µ(z̃, t) ∈ Kℵ≤2(Ξ) with Ξ = (0, Γ̃◦) × R+ it follows
that a(z̃, t) ∈ Kℵ≤2(Ξ). Next, b̄(z̃, t) from (21b) is given
by the product of the reference temperature gradient
∂z̃T̃◦,r(z̃, t) ∈ Kℵ≤2(Ξ) and Ψ−1◦ (z̃, t). The inverse of the
transformation (19) in turn is a simple composition of
γ̇r(t) and the exponential function which does not affect
the Gevrey order (Gevrey, 1918). Hence, b̄(z̃, t) is from
Kℵ≤2(Ξ).

Summarising, the method employed in (Meurer and Kugi,
2009) can be adapted to this case to show existence for
and uniqueness of the solution.

5.3 Approximation Scheme

For the spatial discretisation, values of the kernel are
computed at selected grid points, given by k̄i,j(t) =
k̄(i∆η, j∆σ, t) with the grid widths ∆η and ∆σ in η-
and σ-direction, respectively. Due to the varying extent
of the kernel domain, the computation grid is taken as
the maximum extent for each respective phase, given
by ∆Γ = Γl − Γs. This yields the number of nodes
Nη = 2∆Γ/∆η and Nσ = ∆Γ/∆σ in each direction.

d = 0

d = 1

d = 2

η

σ

σ = η

σ = 0

∆η∆σ

k̄i,j(t)

k̄0,0(t)

k̄Nσ,Nσ
(t)

k̄Nη,0(t)

Fig. 2. Discretised kernel domain with selected kernel
elements and required derivative orders for the com-
putation of ki,j(t) (shaded).

Next, the uniform step width ∆ = ∆η = ∆σ, motivated by
the similar dynamics in both directions, is chosen. Hence,
approximating the integrals in (28) by lower sums yields
the explicit computation scheme

k̄i,j(t) =
∆2

4α

i−1∑
n=j

j−1∑
m=0

(
∂tk̄n,m(t)− a

(
n−m

2 ∆, t
)
k̄n,m(t)

)

+
∆

4α

i−1∑
n=j

a
(
n
2 ∆, t

)
− 1

α
b̄ (j∆, t)

+
∆

α

j−1∑
m=0

b̄
(
j+m
2 ∆, t

)
k̄j,m(t) (31)

for the interior where 0 < j < Nσ and j < i < Nη−j while
the boundary expressions are given by

k̄i,0(t) =
∆

4α

(
i−1∑
m=0

a
(
m
2 ∆, t

)
− 4b̄ (0, t)

)
(32)

k̄j,j(t) =
1

α

(
∆

j−1∑
n=0

b̄
(
j+n
2 ∆, t

)
k̄j,n(t)− b̄ (j∆, t)

)
(33)

for 0 ≤ i ≤ Nη and 0 ≤ j ≤ Nσ, respectively. For the
computation of an arbitrary kernel element k̄i,j(t) via (31)
the temporal derivatives of the neighbouring elements still
pose a problem. However, all temporal derivatives of k̄i,j(t)
can be recursively substituted until only derivatives of
a(z̃, t) and b̄(z̃, t) remain. This gives the map

k̄i,j(t) = Θi,j

(
a(0), . . . , a(j), b̄(0), . . . , b̄(j)

)
(34)

which is further discussed in Appendix C.

Hence, given the structures of a(z̃, t) and b̄(z̃, t), the
complete kernel can be expressed as a function of the
reference trajectory for the flat output y(t) of (7), its
derivatives, and the design parameter µ(z̃, t). Note that
in (Jadachowski et al., 2012) this property is lost since an
initial value problem has to be solved for the inner kernel
elements, while the presented approach converges to the
solution via successive approximations (29) for sufficiently
small step sizes. However, the usage of the trapezoidal
rule as in (Jadachowski et al., 2012) drastically reduces
the approximation error for similar grid sizes due to the
implicit nature of the resulting approximation scheme.



68 pt
0.944 in
24 mm

40 pt
0.556 in
14.1 mm

40 pt
0.556 in
14.1 mm

68 pt
0.944 in
24 mm

Margin requirements for the other pages
Paper size this page A4

0 10 20 30 40 50

t / h

0

100

200

300

400

500

‖e
(z
,t

)‖
L
2
/

K

0

3

6

9

12

15

∆
γ

(t
)/

m
m

‖e(z, t)‖L2

∆γ(t)

Fig. 3. Trajectories of the temperature errors L2 norm
(solid) and the interface deviation ∆γ(t) (dashed).

6. SIMULATION SETUP AND RESULTS

This section briefly presents simulation results for the two-
phase case. The simulated process goal is the growth of
a GaAs single crystal in a 400 mm furnace. As simulation
model, a lumped, FE-based approximation with 41 nodes
per phase has been used. For further details on the physical
parameters of the simulation setup, please refer to (Ecklebe
et al., 2019, Sec. 7).

In this case, the growth process shall start at an initial
length of 200 mm and end at about 300 mm. To do so,
yr,2(t) is chosen as a smooth transition (cf. (13)) between
these values with the targeted solid phase gradient at the
interface held constant at yr,1(t) = 17 K m−1 during the
transition (t < 25 h). Thus, the recursion (9) from Section
3 yields the reference temperature trajectory t 7→ Tr(·, t)
which in turn enables the computation of the kernels for the
solid and liquid phases by means of (34). Herein, 81 discrete
points and the parameters µ(z̃, t) = −1× 10−2 s−1 as well
as ν = 0 m−1 have been used in the target systems of both
phases (cf. (22)). Finally, the control input is computed
via (26).

For demonstration purposes, an initial error for the phase
boundary of ∆γ(0) = 10 mm as well ∆γ̇(0) = −3 mm h−1

for the growth velocity have been introduced. As shown in
Figure 3, the controller ensures convergence for the error
system e(z, t) as well as the interface deviation ∆γ(t).

7. CONCLUSION AND OUTLOOK

In this contribution, a backstepping-based tracking control
has been presented for a two-phase Stefan problem, occur-
ring in the VGF process. By utilising both system inputs,
this approach enables the tracking of arbitrary 3 reference
trajectories. Although only a linear approximation of the
error system is used, the results are promising. However,
the stability proof of the modified target system for the two-
phase case remains open. Moreover, for output feedback
in practical applications, the proposed feedback has to be
complemented by an appropriate observer. While two early-
lumping observers are presented in (Ecklebe et al., 2019) by
the authors for the TPSP and a late-lumping design is given
3 The only hard restriction on the chosen references is given by the
Gevrey order condition which is rather easy to satisfy.

in (Koga et al., 2019) for the OPSP, the treatment of the
two-phase case with the backstepping method still remains
open. These issues are currently under investigation and
will be addressed in a more detailed article.
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Appendix A. ERROR SYSTEM DYNAMICS

Taking the temporal derivative of (14a) and substituting
(7a) for the original and reference temperature yields

∂tẽ◦ (z̃, t) = ∂tT̃◦(z̃, t)− ∂tT̃◦,r(z̃, t)
= α◦∂

2
z̃ T̃◦(z̃, t) + γ̇(t)∂z̃T̃◦(z̃, t)

− α◦∂2z̃ T̃◦,r(z̃, t)− γ̇r(t)∂z̃T̃◦,r(z̃, t)

which by substituting (14a), derived wrt. z̃ twice, becomes:

= α◦∂
2
z̃ ẽ◦ (z̃, t) + γ̇(t)∂z̃T̃◦(z̃, t)− γ̇r(t)∂z̃T̃◦,r(z̃, t).

Furthermore, replacing γ̇(t) and T̃◦(z̃, t) via (14a) and
(14b), respectively, gives

∂tẽ◦ (z̃, t) = α◦∂
2
z̃ ẽ◦ (z̃, t)− γ̇r(t)∂z̃T̃◦,r(z̃, t)

+
(

∆γ̇(t) + γ̇r(t)
)(

∂z̃ ẽ◦ (z̃, t) + ∂z̃T̃◦,r(z̃, t)
)

and thus

∂tẽ◦ (z̃, t) = α◦∂
2
z̃ ẽ◦ (z̃, t) +

(
∆γ̇(t)∂z̃ + γ̇r(t)∂z̃

)
ẽ◦ (z̃, t)

+ ∆γ̇(t)∂z̃T̃◦,r(z̃, t). (A.1)

Finally, examining the boundaries yields

ẽ◦(0, t) = T̃◦(0, t)− T̃◦,r(0, t) = Tm − Tm = 0 (A.2)

∂z̃ ẽ◦

(
Γ̃◦, t

)
= ∂z̃T̃◦

(
Γ̃◦, t

)
− ∂z̃T̃◦,r

(
Γ̃◦, t

)
=
δ◦
λ◦
u◦(t)− ∂z̃T̃◦,r(Γ̃, t) = ũ◦(t). (A.3)

Appendix B. KERNEL EQUATIONS

To derive the mandatory conditions on the transformation
kernel from (23), the derivatives of (23) are taken wrt. t and
z̃. Next, they are substituted in (22a) to express the target
system dynamics in terms of the original error ẽ◦ (z̃, t).
Furthermore, (15) is substituted and integration by parts
is performed to shift the spatial operators onto k̃(z̃, ζ, t).
Finally, since the resulting equation has to hold for all
ẽ◦ (z̃, t), one arrives at the kernel equations
∂tk◦(z̃, ζ, t) = α◦

(
∂2zk◦(z̃, ζ, t)− ∂2ζk◦(z̃, ζ, t)

)
+ a◦(ζ, t)k◦(z̃, ζ, t) (B.1a)

a◦(z̃,t) = 2α◦
d
dz̃k◦(z̃, z̃, t) (B.1b)

α◦k◦(z̃, 0, t) =

∫ z̃

0

b̄◦(ζ, t)k◦(z̃, ζ, t) dζ − b̄◦(z̃, t) (B.1c)

0 =

∫ z̃

0

c̄◦(ζ, t)k◦(z̃, ζ, t) dζ − c̄◦(z̃, t). (B.1d)

Thus, integration of (B.1b) yields

k◦(z̃, z̃, t) =
1

2α◦

∫ z̃

0

a◦(ζ, t) dζ + k◦(0, 0, t)

where k◦(0, 0, t) = −b◦(z̃, t)/α◦ from (B.1c) at z̃ = 0.

Appendix C. DERIVATIVE ORDERS

To analyse the required derivative orders for the computa-
tion of an arbitrary kernel element k̄i,j(t) the l-th derivative
of (31)

∂ltk̄i,j(t) =
∆2

4α

i−1∑
n=j

j−1∑
m=0

(
∂
(l+1)
t k̄n,m(t)

−
l∑

d=0

(
l

d

)
∂
(l)
t a

(
n−m

2 ∆, t
)
∂
(l−d)
t k̄n,m(t)

)

+
∆

α

j−1∑
m=0

l∑
d=0

(
l

d

)
∂
(l)
t b̄
(
j+m
2 ∆, t

)
∂
(l−d)
t k̄j,m(t)

− 1

α
∂ltb̄ (j∆, t) +

∆

4α

i−1∑
n=j

∂lta
(
n
2 ∆, t

)
(C.1)

is examined. As it can be seen, for every derivative in
(31) that is to be eliminated, derivatives of the kernel
elements below and left of one order higher, as well as
derivatives of the provided functions a(z̃, t) and b̄(z̃, t)
with the same order are introduced (cf. shaded areas in
Figure 2). Therefore, the computation of k̄i,j(t) demands a
derivative order of min{i, j} = j for these functions. Hence,
for the computation of the complete kernel, dmax = Nσ − 1
derivatives are required as the kernel element k̄Nσ,Nσ

(t) is
already given by (33).
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