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Introduction
This contribution continues the feedforward and
feedback controller design for a simplified model of
the Vertical-Gradient-Freeze (VGF) process that has
been presented in the poster Control of the VGF Pro-
cess Part I: Feedforward and Flatness Based State Feed-
back. The presented control system needs values
of quantities that cannot be measured directly. The
observer designed in this poster will overcome this
problem.
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Figure 1: Schematics of the general cylindrical coordinate
system (r, ϕ, z, t), a meridional plane (blue) and the do-
mains of the reduced coordinates z and z̄.

Modelling
A very simple, one-dimensional biphasic model ne-
glecting any convective and radiative effects of the
VGF process is considered, cf. Figure 1:

∂tT (z, t) = α∂2
zT (z, t), z ∈ Ω (1a)

k∂zT (Γ, t) = δu(t) (1b)
T (γ(t), t) = Tm (1c)

with the Stefan condition:
ρmLγ̇(t) = ks∂zTs(γ(t)-, t)− kl∂zTl(γ(t)+, t) . (2)

Here one has the following parameters: melting tem-
perature Tm, thermal conductivity k, thermal diffusiv-ity α = k

ρcp
with specific heat capacity cp and density ρ.Furthermore one has the density ρm in the melt, spe-cific latent heat L, growth rate γ̇(t), heat conductivi-

ties ks and kl of the solid and the melt (at melting tem-perature) and the temperature gradients ∂zTs(γ(t)-, t)
and ∂zTl(γ(t)+, t) on the solid and liquid side of the
phase boundary, respectively. The direction of the
heat flow is considered by δ = −1 (bottom, solid
boundary) and δ = 1 (top, liquid boundary).
A flat approximation
The observer design is based on a lumped nonlinear
system model of the following structure:

ẋ(t) = f (x(t),u(t)), y(t) = h(x(t)) . (3)

Hence, a lumped approximation of the systems dy-
namics (1) is required. For further ease of computa-
tion, the coordinate transform T̃ (z̃, t) = T (z, t) with
z̃ := z − γ(t) is introduced which shifts the phase
boundary into the origin of a new, moving reference
frame as it can be seen on the right hand side of
Figure 1. Hence, in the new coordinates the phase
boundary is always located at z̃ = 0. This yields the
transformed generic system

∂tT̃ (z̃, t) = α∂2
z̃T̃ (z̃, t) + γ̇(t)∂z̃T̃ (z̃, t) (4a)

k∂z̃T̃ (Γ− z̃, t) = δu(t) (4b)
T̃ (0, t) = Tm . (4c)

The solution of the system can be expressed
in terms of a power series expansion T̃ (z̃, t) =∑∞

i=0 ci(t)z̃
i

i! . From this a so-called flat output ξ(t) =(
∂z̃T̃ (0, t), γ(t)

)T is found which completely parame-
terize the solution T̃ (z̃, t) via the recursion ∂tci(t) =
αci+2(t) + γ̇(t)ci+1(t) for i = 0, . . . ,∞ with c0(t) = Tmand c1(t) = T̃ (0, t). Since the temperature distribution
in the whole system is given by its components and
their derivatives, they serve well as components of a
new approximation. Truncating the series expansion
at order N therefore yields the following state
x :=

(
∂

(0)
z̃ T̃ (0), . . . , ∂(N/2−1)

z̃ T̃ (0), γ(0), . . . , γ(N/2)
)T
(5)

of dimension N − 1, with the input u(t) :=(
us(t), ul(t)

)T and the output measurement y(t) :=(
T̄s(Γ0, t), T̄l(Γ1, t)

)T .

Figure 2: Structure of the complete control loop with
feedforward control, feedback control and state ob-
server.

Observer design
The derived tracking controller u(t) = Φ(x(t)) for
which the observer is designed satisfies the tracking
error dynamics ∑N

n=0 κne
(n)(t) = 0 with e(t) = ξ − ξrand the controller parameters κn. This control lawrequires estimates x̂(t) for the state x(t). They are

calculated by an observer of the following structure
˙̂x(t) = f (x̂(t),u(t)) +L(t)ȳ(t) (6a)
ŷ(t) = h(x̂(t)) (6b)

with observer gain L(t) ∈ RM×2 as well as the distur-
bances µ(t) and ν(t) acting on the system input and
output, respectively. The calculation of the observer
gain is the key point in observer design. For this
purpose the dynamics of the observer error x̄(t) =
x̂(t) − x(t) is linearised around the reference trajec-
tory xr(t),ur(t):

˙̄x(t) = A(t)x̄(t)−B(t)µ(t) +L(t)ȳ(t) (7a)
ȳ(t) = C (x̄(t)− ν(t)) . (7b)

By means of the linearised system (7), the observer
gain L(t) ensures that the error state x̄(t) converges
to zero. When designing the observer as a Linear
Quadratic Estimator (LQE), this is achieved if a trajec-
tory x̄(t)minimizes the cost functional
J = x̄T (0)Sx̄(0) +

t∫
0

µT (t)Rµ(t) + ȳT (t)Qȳ(t)dt (8)
where S ∈ RM×M and R,Q ∈ R2×2 denote penal-
ties concerning the initial error as well as the distur-
bances on input and output, respectively.
Results
The presented approach has been evaluated in a
closed loop simulation of the systems utilizing a flat-
ness based feedforward and feedback control as pre-
sented in the poster Control of the VGF Process Part I.

0.0

2.5

5.0

7.5

10.0

γ̇
(t

)/m
m

h−
1

γ̇r(t)
γ̇ff(t)
γ̇fb(t)

0 5 10 15 20 25
t / h

17.5

20.0

22.5

25.0

∂
z
T
s(γ

(t
)z
i,
t)
/K

cm
−

1 ∂zTr(γ(t), t)
∂zTff(γ(t), t)
∂zTfb(γ(t), t)

0.0

2.5

5.0

7.5

10.0

ε̇(
t)
/m

m
h−

1

ε̇ff(t)
ε̇fb(t)

Figure 3: Comparison: Feedforward control only (blue)
vs. feedforward & feedback control with observer (or-
ange).

Conclusion & Acknowledgments
A boundary value control regime, utilizing estimates
provided by a state observer has been successfully
applied to a very simple model of the VGF process.
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sult to more realistic models of the process, espe-
cially including a 2D modelling of the plant.
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