

Faculty of Electrical and Computer Engineering Institute of Control Theory

Control of the VGF Process

Part II: Flatness Based Observer Design

Stefan Ecklebe, Jan Winkler, Techische Universität Dresden, Institue of Control Theory, 01062 Dresden, Germany, {stefan.ecklebe, jan.winkler}@tu-dresden.de Christiane Frank-Rotsch, Natascha Dropka, Leibniz Institute for Crystal Growth, Max-Born-Straße 2, 12489 Berlin, Germany

Introduction

This contribution continues the feedforward and feedback controller design for a simplified model of the Vertical-Gradient-Freeze (VGF) process that has been presented in the poster *Control of the VGF Process Part I: Feedforward and Flatness Based State Feedback*. The presented control system needs values of quantities that cannot be measured directly. The observer designed in this poster will overcome this problem.

Figure 1: Schematics of the general cylindrical coordinate system (r, φ, z, t) , a meridional plane (blue) and the domains of the reduced coordinates z and \overline{z} .

Hence, a lumped approximation of the systems dynamics (1) is required. For further ease of computation, the coordinate transform $\tilde{T}(\tilde{z},t) = T(z,t)$ with $\tilde{z} := z - \gamma(t)$ is introduced which shifts the phase boundary into the origin of a new, moving reference frame as it can be seen on the right hand side of Figure 1. Hence, in the new coordinates the phase boundary is always located at $\tilde{z} = 0$. This yields the transformed generic system

 $\partial_t \tilde{T}(\tilde{z}, t) = \alpha \partial_{\tilde{z}}^2 \tilde{T}(\tilde{z}, t) + \dot{\gamma}(t) \partial_{\tilde{z}} \tilde{T}(\tilde{z}, t)$ (4a) $k \partial_{\tilde{z}} \tilde{T}(\Gamma - \tilde{z}, t) = \delta u(t)$ (4b) $\tilde{T}(0, t) = T_{\rm m} .$ (4c)

The solution of the system can be expressed in terms of a power series expansion $\tilde{T}(\tilde{z},t) = \sum_{i=0}^{\infty} c_i(t) \frac{\tilde{z}^i}{i!}$. From this a so-called flat output $\boldsymbol{\xi}(t) = \left(\partial_{\tilde{z}}\tilde{T}(0,t), \gamma(t)\right)^T$ is found which completely parameterize the solution $\tilde{T}(\tilde{z},t)$ via the recursion $\partial_t c_i(t) = \alpha c_{i+2}(t) + \dot{\gamma}(t)c_{i+1}(t)$ for $i = 0, \ldots, \infty$ with $c_0(t) = T_{\rm m}$ and $c_1(t) = \tilde{T}(0,t)$. Since the temperature distribution in the whole system is given by its components and with observer gain $\boldsymbol{L}(t) \in \mathbb{R}^{M \times 2}$ as well as the disturbances $\boldsymbol{\mu}(t)$ and $\boldsymbol{\nu}(t)$ acting on the system input and output, respectively. The calculation of the observer gain is the key point in observer design. For this purpose the dynamics of the observer error $\bar{\boldsymbol{x}}(t) = \hat{\boldsymbol{x}}(t) - \boldsymbol{x}(t)$ is linearised around the reference trajectory $\boldsymbol{x}_{r}(t), \boldsymbol{u}_{r}(t)$:

$$\dot{\bar{\boldsymbol{x}}}(t) = \boldsymbol{A}(t)\bar{\boldsymbol{x}}(t) - \boldsymbol{B}(t)\boldsymbol{\mu}(t) + \boldsymbol{L}(t)\bar{\boldsymbol{y}}(t)$$
(7a)
$$\bar{\boldsymbol{y}}(t) = \boldsymbol{C}\left(\bar{\boldsymbol{x}}(t) - \boldsymbol{\nu}(t)\right) .$$
(7b)

By means of the linearised system (7), the observer gain $\boldsymbol{L}(t)$ ensures that the error state $\bar{\boldsymbol{x}}(t)$ converges to zero. When designing the observer as a Linear Quadratic Estimator (LQE), this is achieved if a trajectory $\bar{\boldsymbol{x}}(t)$ minimizes the cost functional

$$\bar{\boldsymbol{x}} = \bar{\boldsymbol{x}}^T(0)\boldsymbol{S}\bar{\boldsymbol{x}}(0) + \int_0^t \boldsymbol{\mu}^T(t)\boldsymbol{R}\boldsymbol{\mu}(t) + \bar{\boldsymbol{y}}^T(t)\boldsymbol{Q}\bar{\boldsymbol{y}}(t) \,\mathrm{d}t \quad (8)$$

where $\boldsymbol{S} \in \mathbb{R}^{M \times M}$ and $\boldsymbol{R}, \boldsymbol{Q} \in \mathbb{R}^{2 \times 2}$ denote penalties concerning the initial error as well as the disturbances on input and output, respectively.

Modelling

A very simple, one-dimensional biphasic model neglecting any convective and radiative effects of the VGF process is considered, cf. Figure 1:

 $\partial_t T(z,t) = \alpha \partial_z^2 T(z,t), \ z \in \Omega$ $k \partial_z T(\Gamma,t) = \delta u(t)$ $T(\gamma(t),t) = T_{\rm m}$

(1a)

(1b)

(1c)

with the Stefan condition:

 $\rho_{\rm m}L\dot{\gamma}(t) = k_{\rm s}\partial_z T_{\rm s}(\gamma(t)^{-}, t) - k_{\rm l}\partial_z T_{\rm l}(\gamma(t)^{+}, t) .$ (2)

Here one has the following parameters: melting temperature $T_{\rm m}$, thermal conductivity k, thermal diffusivity $\alpha = \frac{k}{\rho c_{\rm p}}$ with specific heat capacity $c_{\rm p}$ and density ρ . Furthermore one has the density $\rho_{\rm m}$ in the melt, specific latent heat L, growth rate $\dot{\gamma}(t)$, heat conductivities $k_{\rm s}$ and $k_{\rm l}$ of the solid and the melt (at melting temperature) and the temperature gradients $\partial_z T_{\rm s}(\gamma(t)^{-}, t)$ and $\partial_z T_{\rm l}(\gamma(t)^{+}, t)$ on the solid and liquid side of the phase boundary, respectively. The direction of the heat flow is considered by $\delta = -1$ (bottom, solid boundary) and $\delta = 1$ (top, liquid boundary). their derivatives, they serve well as components of a new approximation. Truncating the series expansion at order N therefore yields the following state

$$\boldsymbol{x} := \left(\partial_{\tilde{z}}^{(0)} \tilde{T}(0), \, \dots, \, \partial_{\tilde{z}}^{(N/2-1)} \tilde{T}(0), \, \gamma^{(0)}, \, \dots, \, \gamma^{(N/2)}\right)^{T}$$
(5)

of dimension N - 1, with the input $\boldsymbol{u}(t) := \left(u_{s}(t), u_{l}(t)\right)^{T}$ and the output measurement $\boldsymbol{y}(t) := \left(\bar{T}_{s}(\Gamma_{0}, t), \bar{T}_{l}(\Gamma_{1}, t)\right)^{T}$.

Figure 2: Structure of the complete control loop with feedforward control, feedback control and state observer.

Results

The presented approach has been evaluated in a closed loop simulation of the systems utilizing a flatness based feedforward and feedback control as presented in the poster *Control of the VGF Process Part I*.

Figure 3: Comparison: Feedforward control only (blue) vs. feedforward & feedback control with observer (or-ange).

A flat approximation

The observer design is based on a lumped nonlinear system model of the following structure:

 $\dot{x}(t) = f(x(t), u(t)), \quad y(t) = h(x(t)).$ (3)

Observer design

The derived tracking controller $u(t) = \Phi(\boldsymbol{x}(t))$ for which the observer is designed satisfies the tracking error dynamics $\sum_{n=0}^{N} \kappa_n \boldsymbol{e}^{(n)}(t) = 0$ with $\boldsymbol{e}(t) = \boldsymbol{\xi} - \boldsymbol{\xi}_r$ and the controller parameters κ_n . This control law requires estimates $\hat{\boldsymbol{x}}(t)$ for the state $\boldsymbol{x}(t)$. They are calculated by an observer of the following structure

> $\dot{\hat{\boldsymbol{x}}}(t) = f(\hat{\boldsymbol{x}}(t), \boldsymbol{u}(t)) + \boldsymbol{L}(t)\bar{\boldsymbol{y}}(t)$ (6a) $\hat{\boldsymbol{y}}(t) = h(\hat{\boldsymbol{x}}(t))$ (6b)

Conclusion & Acknowledgments

A boundary value control regime, utilizing estimates provided by a state observer has been successfully applied to a very simple model of the VGF process. Currently, work is focused on the transfer of the result to more realistic models of the process, especially including a 2D modelling of the plant. This work has been funded by the Deutsche Forschungsgemeinschaft (DFG), Project numbers WI 4412/1-1 and FR 3671/1-1.

Technische Universität Dresden Faculty of Electrical and Computer Engineering Institute of Control Theory 01062 Dresden Stefan Ecklebe

Telefon:++49 (0)351 / 463 - 34311Telefax:++49 (0)1234 / 567 - 889901Mail:stefan.ecklebe@tu-dresden.deWeb:https://tud.de/rst

