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Introduction
The Vertical-Gradient-Freeze (VGF) crystal growth pro-

cess is a key technology in the production of com-

pound semi-conductors such as Gallium-Arsenide or

Indium-Phosphide. Crystallization of the material

molten in an ampoule is realized by appropriately

moving a temperature field along the ampoule’s ver-

tical axis. From a technological point of view, the

control of this process is a challenging task because

no in-situ measurement information about the con-

trolled object is available, esp. of the growth rate. A

few thermocouples placed outside of the ampoule

are the only devices providing information about the

process state. Moreover, the manipulated variables

are of lumped type, i.e., the electrical current entering
the heaters, while one has to properly track a spatially
distributed temperature field in the ampoule.

Modelling
To involve all characteristic phenomena of the pro-

cess such as its biphasic character or the varying do-

mains of crystal and melt in the model while simul-

taneously keeping it simple enough to illustrate the

general design idea of the control concept, a rigor-

ously simplified 1D-model is used. Herein, convec-

tion in the melt and radial temperature gradients are

neglected. Hence, the temperature T (z, t) in the cru-
cible depends on the time t and the height z. The

boundaries at the bottom and top of the crucible are

located at z = Γ0 and z = Γ1, respectively. Assum-

ing piecewise constant parameters for the solid and

liquid phase the plant is decomposed into two free

boundary problems for Ts(z, t) and Tl(z, t):

∂tTs(z, t) = αs∂
2
zTs(z, t) ∂tTl(z, t) = αl∂

2
zTl(z, t)

ks∂zTs(Γ0, t) = −us(t) kl∂zTl(Γ1, t) = ul(t) (1)

Ts(γ(t), t) = Tm Tl(γ(t), t) = Tm.

Herein, the index “s” denotes the solid and the index

“l” the liquid phase. The heat flows us(t) and ul(t) at
the bottom and top boundary are considered as the

system inputs and α = k
ρcp
is the thermal diffusivity.

The partial derivative of the quantity T with respect

to z or t is denoted by ∂zT (z, t) or ∂tT (z, t), respec-
tively. This setup is shown in Figure 1.
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Figure 1: 1D System

Due to the moving phase boundary, latent heat is re-

leased by the solidification process. By declaring the

left- (•-) and right- (•+) hand side limits respectively,
this effect is described by the Stefan-Condition

ρmLγ̇(t) = ks∂zTs(γ(t)-, t)− kl∂zTl(γ(t)+, t) (2)

with the density of the solid phase at melting temper-

ature ρm and the specific latent heat L.

Exploiting their identical structure and denoting the

domains Ωs = (Γ0, γ(t)) and Ωl = (γ(t),Γ1), the sys-
tems in (1) can be written as one generic system

∂tT (z, t) = α∂2
zT (z, t), z ∈ Ω (3a)

k∂zT (Γ, t) = δu(t) (3b)

T (γ(t), t) = Tm (3c)

with the phase dependent sign δ = −1 at the solid
and δ = 1 at the liquid boundary as well as appropri-
ately chosen parameters k and α.

For further ease of computation, the coordinate

transform T̃ (z̃, t) = T (z, t) with z̃ := z − γ(t) is in-
troduced which shifts the phase boundary into the

origin of a new, moving reference frame as it can be

seen in Figure 2. Hence, in the new coordinates the

phase boundary is always located at z̃ = 0. This yields
the transformed generic system

∂tT̃ (z̃, t) = α∂2
z̃T̃ (z̃, t) + γ̇(t)∂z̃T̃ (z̃, t) (4a)

k∂z̃T̃ (Γ− z̃, t) = δu(t) (4b)

T̃ (0, t) = Tm . (4c)

where γ̇(t) denotes the growth rate.
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Figure 2: Transformed System

Feedforward
Expanding T̃ (z̃, t) into a power series T̃ (z̃, t) =∑∞

i=0 ci(t)z̃
i

i! one obtains the recursion formula

∂tci(t) = αci+2(t) + γ̇(t)ci+1(t) for i = 0, . . . ,∞. Closer
examination of this relation shows that, by providing

trajectories for the temperature gradient ∂z̃T̃s(0-, t) at
the solid side of the interface and for the interface

position γ(t), the temperature distribution in both
phases can be determined without solving any par-

tial differential equation (PDE). Note that these are

exactly the variables one is targeting in the VGF pro-

cess.
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Figure 3: Reference Temperature Profile

State Feedback
Assuming that a pair of reference trajectories is given

by ξr(t) =
(
∂z̃T̃s(0-), γ(t)

)T
and the current state of

these variables is given by ξ, a tracking error can be

expressed as e(t) = ξ(t) − ξr(t). Thus, choosing the
error dynamic as

N∑
n=0

κne
(n)(t) = 0 (5)

with the weights κ as desired, a control law can be

given with u(t) = Φ
(
ξ(t), . . . , ξ(β−1)(t), ξr(t), . . . , ξ(β)

r (t)
)
.

Figure 4 shows how the controller performs com-

pared to a pure feedforward setup.
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Figure 4: Results with state feedback compared to pure

feedforward control

Conclusion & Acknowledgments
Flatness basedmethods provide an swift and straight

forward way to handle feedforward and feedback de-

sign problems of the VGF process. While the track-

ing controller performs well, it is dependent on mea-

surements of process internals like the growth veloc-

ity which are not feasible to attain.
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