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Abstract. Reasoners can be used to derive implicit consequences from
an ontology. Sometimes unwanted consequences are revealed, indicating
errors or privacy-sensitive information, and the ontology needs to be ap-
propriately repaired. The classical approach is to remove just enough
axioms such that the unwanted consequences vanish. However, this is
often too rough since mere axiom deletion also erases many other con-
sequences that might actually be desired. The goal should not be to
remove a minimal number of axioms but to modify the ontology such
that only a minimal number of consequences is removed, including the
unwanted ones. Specifically, a repair should rather be logically entailed
by the input ontology, instead of being a subset. To this end, we intro-
duce a framework for computing fixed-premise repairs of EL TBoxes. In
the first variant the conclusions must be generalizations of those in the
input TBox, while in the second variant no such restriction is imposed.
In both variants, every repair is entailed by an optimal one and, up to
equivalence, the set of all optimal repairs can be computed in exponential
time. A prototypical implementation is provided. In addition, we show
new complexity results regarding gentle repairs.

Keywords: Description logic · Optimal repair · TBox repair ·
Generalized-conclusion repair · Fixed-premise repair

1 Introduction

Description Logics (DLs) [4] are logic-based languages with model-theoretic se-
mantics that are designed for knowledge representation and reasoning. Several
DLs are fragments of first-order logic, but with restricted expressivity such that
reasoning problems usually remain decidable. Knowledge represented as a DL
ontology consists of a terminological part (the schema, TBox) and an assertional
part (the data, ABox). The TBox expresses global knowledge on the underly-
ing domain of interest, such as implicative rules and integrity constraints, and
the ABox expresses local knowledge, such as assignment of objects to classes or
relations between objects. DLs differ in their expressivity and there is always a
trade-off to complexity of reasoning. Many reasoning tasks in lightweight DLs
such as EL [3] and DL-Lite [12] are in P and thus tractable, but are N2EXP-
complete in the very expressive DL SROIQ [16,18], which is the logical founda-
tion of the OWL 2 Web Ontology Language.1 However, the latter is a worst-case
complexity, and efficient reasoning techniques [34] can often avoid reaching it.
1 https://www.w3.org/TR/owl2-primer/
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Reasoners can be used to derive implicit consequences from an ontology.
Sometimes unwanted consequences are revealed, indicating errors or privacy-
sensitive information, and the ontology needs to be appropriately repaired. The
classical approach is to remove just enough axioms such that the unwanted con-
sequences vanish [14,29]. In particular, optimal classical repairs can be obtained
by means of axiom pinpointing [10,11,31,32]: firstly, one determines all minimal
subsets of the given ontology that entail the unwanted consequences (so-called
justifications), secondly, one constructs a minimal set that contains at least one
axiom from each justification (a so-called hitting set) and, thirdly, one removes
from the erroneous ontology all axioms in the hitting set. In a similar way, incon-
sistency or incoherence of ontologies can be resolved — a task also called ontology
debugging [17, 22, 30, 33]. Proof visualizations can be used to guide the process
of ontology repair [1], and it can be distributed and parallelized by means of
decomposition [26]. Furthermore, there are connections to belief revision [13].

The classical repair approach is often too rough since mere axiom deletion
also erases too many other consequences that might actually be desired. The
goal should not be to remove a minimal number of axioms but to modify the
ontology such that only a minimal number of consequences is removed, including
the unwanted ones. Alternative repair techniques that are less dependent on the
syntax should therefore be designed. To this end, a repair need not be a subset
of the input ontology anymore, but must only be logically entailed by it.

A framework for constructing gentle repairs based on axiom weakening was
developed [8]. The main difference to the classical repair approach is that, instead
of being removed completely, one axiom from each justification is replaced by
a logically weaker one such that the unwanted consequences cannot be derived
anymore. The framework can be applied to every monotonic logic, and one only
needs to devise a suitable weakening relation on axioms.2 In terms of belief
revision, gentle repairs correspond to pseudo-contractions [27].

In the DL EL [3], concept descriptions are built from concept names and
role names by conjunction and existential restriction, and a TBox is a finite
set of concept inclusions (CIs), which are axioms of the form C ⊑ D where
the premise C and the conclusion D are concept descriptions. For instance,
the CI MountainBike ⊑ ∃hasPart.SuspensionFork ⊓ ∃ isSuitableFor.OffRoadCycling
expresses that every mountain bike has a suspension fork and is suitable for
off-road cycling. Such axioms can be weakened by specializing the premise or by
generalizing the conclusion. Two weakening relations ≻syn and ≻sub for EL CIs
were devised [8], which instantiate the gentle repair framework for EL TBoxes.

Repairs of EL TBoxes can also be obtained by axiomatizing the logical in-
tersection of the input TBox and the theory of a countermodel to the unwanted
consequences [15], e.g., by means of the framework for axiomatizing EL closure
operators [19]. Such a countermodel can either be manually specified by the
knowledge engineer or be automatically obtained by transforming a canonical
model of the TBox, e.g., with the methods for repairing quantified ABoxes [9].

2 There is always the trivial weakening relation that replaces each axiom with a tau-
tology, for which each gentle repair is a classical repair.
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The axiomatization method is very precise since it can introduce new
premises in the resulting repair if necessary [15, Example 18]. From a theoretical
perspective, this is a clear advantage simply because thereby a large amount of
knowledge can be retained in the repair. From a practical perspective, however,
this can be seen as a disadvantage as the resulting repairs might get consider-
ably larger than the input TBox. In order to prevent such an increase in size, I
have further proposed to construct a repair from a countermodel J in a slightly
different manner [15]: namely one keeps all premises unchanged and only gen-
eralizes the conclusions by means of J , which yields an approach very close to
the gentle repairs for the weakening relation ≻sub.

The goal of this article is to elaborate the latter idea in detail. We introduce
a framework for computing generalized-conclusion repairs of EL TBoxes, where
the premises must not be changed and the conclusions can be generalized. We
first devise a canonical construction of such repairs from polynomial-size seeds,
and then show that each generalized-conclusion repair is entailed by an optimal
one and that, up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time.

As an example, consider the TBox consisting of the single concept inclusion
Bike ⊑ ∃hasPart.SuspensionFork ⊓ ∃ isSuitableFor.OffRoadCycling, which differs
from the above in that the premise is replaced by Bike. It entails the false CIs
Bike ⊑ ∃hasPart.SuspensionFork and Bike ⊑ ∃ isSuitableFor.OffRoadCycling. The
(unique) optimal generalized-conclusion repair consists of the single CI Bike ⊑
∃hasPart.⊤⊓ ∃ isSuitableFor.⊤. In contrast, the classical repair approach deletes
the single CI completely, yielding an empty repair, which only entails tautologies
but does not entail that every bike has a part and is suitable for something.

In addition to developing the framework of generalized-conclusion repairs,
we introduce fixed-premise repairs. The difference to the generalized-conclusion
repairs is that the conclusions of CIs need not be generalizations anymore; only
the premises must remain the same and the input TBox must entail each CI
in the repair. Thereby even more consequences can be retained. Employing the
same seeds as before, we show that every fixed-premise repair is entailed by an
optimal one and that the set of all optimal fixed-premise repairs can be computed
in exponential time.

Clearly, the above generalized-conclusion repair is not satisfactory if
additional knowledge would be expressed in the given TBox, such as
SuspensionFork ⊑ Fork and OffRoadCycling ⊑ Cycling. Both additional CIs are
obviously true in real world and should thus be retained in an optimal repair.
Taking this into account, the (unique) optimal fixed-premise repair additionally
contains the CI Bike ⊑ ∃hasPart.Fork ⊓ ∃ isSuitableFor.Cycling, and it preserves
more consequences than the above generalized-conclusion repair, e.g., that every
bike is suitable for cycling.

An experimental implementation is available.3 In addition, we provide new
complexity results regarding gentle repairs w.r.t. the weakening relation ≻sub.
Due to space constraints, proofs can only be found in the extended version [20].

3 https://github.com/francesco-kriegel/right-repairs-of-el-tboxes

https://github.com/francesco-kriegel/right-repairs-of-el-tboxes
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2 Preliminaries

Fix a signature Σ, which is a disjoint union of a set ΣC of concept names and a
set ΣR of role names. In EL, concept descriptions are inductively constructed by
means of the grammar rule C ::= ⊤ | A | C ⊓ C | ∃r.C where A ranges over ΣC

and r over ΣR. A concept inclusion (CI) is of the form C ⊑ D for concept
descriptions C and D, where we call C the premise and D the conclusion. A
terminological box (TBox) T is a finite set of concept inclusions. The set of all
premises in T is denoted by Prem(T ).

The semantics is defined via models. An interpretation I consists of a domain
Dom(I), which is a non-empty set, and an interpretation function ·I that maps
each concept name A to a subset AI of Dom(I) and that maps each role name r
to a binary relation rI over Dom(I). The interpretation function is extended
to all concept descriptions in the following recursive manner: ⊤I := Dom(I),
(C ⊓ D)I := CI ∩ DI , and (∃r.C)I := { x | (x, y) ∈ rI for some y ∈ CI }.
Furthermore, I satisfies a CI C ⊑ D if CI ⊆ DI , written I |= C ⊑ D, and
I is a model of a TBox T if it satisfies all CIs in T , written I |= T . We say
that T entails C ⊑ D if C ⊑ D is satisfied in every model of T , denoted
as T |= C ⊑ D. We then also say that C is subsumed by D w.r.t. T and
write C ⊑T D. Subsumption in EL can be decided in polynomial time [3]. With
C ⊏T D we abbreviate C ⊑T D and D ̸⊑T C. Given sets K and L of EL concept
descriptions, we say that K is covered by L w.r.t. T and write K ≤T L if, for
each K ∈ K, there is some L ∈ L such that K ⊑T L.

An atom is either a concept name or an existential restriction ∃r.C. Order
and repetitions of atoms in conjunctions as well as nestings of conjunctions are
irrelevant. In this sense, each concept description C is a conjunction of atoms,
which we call the top-level conjuncts of C, and the set of these is denoted by
Conj(C). Furthermore, we sometimes write

d
{C1, . . . , Cn} for C1⊓· · ·⊓Cn. The

(unique) reduced form Cr of a concept description C is obtained by exhaustively
removing occurrences of atoms that subsume (w.r.t. ∅) another atom in the same
conjunction. C is equivalent to Cr, and two concept descriptions are equivalent
iff they have the same reduced form [21]. The subsumption order ⊑∅ restricted
to reduced concept descriptions is a partial order and not just a pre-order [9].

We denote by Sub(α) the set of all concept descriptions that occur as sub-
concepts in α, and Atoms(α) is the set of atoms occurring in α. Given a set K
of atoms, Max(K) denotes the subset consisting of all ⊑∅-maximal atoms, i.e.,
Max(K) := { K | K ∈ K and there is no K ′ ∈ K such that K ⊏∅ K ′ }. If all
atoms in K are reduced, then Max(K) does not contain ⊑∅-comparable atoms.

Let I be an interpretation and X a subset of Dom(I). A most specific con-
cept description (MSC) of X w.r.t. I is a concept description C that satisfies
X ⊆ CI and, for each concept description D, X ⊆ DI implies C ⊑∅ D. The
MSC of X w.r.t. I is unique up to equivalence and is denoted as XI . Due to
cycles in the interpretation, MSCs might not be expressible in EL, but MSCs
always exist in an extension of EL with greatest fixed-points, e.g., in ELsi [23].
The latter DL extends EL with simulation quantifiers ∃sim(I, x) where the se-
mantics of such concept descriptions is defined by: y ∈ (∃sim(I, x))J if there is a



Optimal Fixed-Premise Repairs of EL TBoxes 5

simulation from I to J that contains (x, y). As shown in [19, Proposition 4.1.6],
the MSC XI is equivalent to ∃sim(℘(I), X), where the powering P(I) has do-
main Dom(℘(I)) := ℘(Dom(I)), and A℘(I) consists of all subsets X such that
X ⊆ AI , and r℘(I) consists of all pairs (X,Y ) such that Y is a minimal hitting
set of { { y | (x, y) ∈ rI } | x ∈ X }. A CI C ⊑ D is satisfied in I iff CII ⊑∅ D,
and X ⊆ CI is equivalent to XI ⊑∅ C for each subset X ⊆ Dom(I) and for
each ELsi concept description C.

A least common subsumer (LCS) of concept descriptions C and D is a concept
description E such that C ⊑∅ E as well as D ⊑∅ E and, for each concept
description F , C ⊑∅ F and D ⊑∅ F implies E ⊑∅ F . The LCS of C and D is
unique up to equivalence and we denote it by C ∨ D. It can be computed as
the product of the graphs representing C and D. In particular, the LCS of an
EL concept description C and an ELsi concept description ∃sim(I, x) is always
expressible in EL and the following recursion allows us to construct it:

C ∨ ∃sim(I, x) ≡∅
l

{A | A ∈ Conj(C) and x ∈ AI }

⊓
l

{ ∃r.(D ∨ ∃sim(I, y)) | ∃r.D ∈ Conj(C) and (x, y) ∈ rI }.

Furthermore, the MSC XI is equivalent to the LCS of all ∃sim(I, x) where x ∈ X.

3 Generalized-Conclusion Repairs of EL TBoxes

In this section we develop the framework for computing generalized-conclusion
repairs of EL TBoxes. We begin with defining basic notions.

Definition 1. Let T and U be EL TBoxes. We say that U is a generalized-
conclusion weakening (GC-weakening) of T , written T ⪰GC U if, for each CI
C ⊑ D in U , there is a CI E ⊑ F in T such that C = E and F ⊑∅ D.

GC-weakening is strictly stronger than entailment, i.e., T ⪰GC U implies
T |= U but the converse need not hold. For instance, {A ⊓ B ⊑ ∃r.(A ⊓ B),
C ⊑ A ⊓ ∃r.A} has the GC-weakening {A ⊓B ⊑ ∃r.A ⊓ ∃r.B, C ⊑ ∃r.A}, and
it entails {A ⊓B ⊑ ∃r.(A ⊓ ∃r.A)}, which is not a GC-weakening.

Definition 2. A repair request P is a finite set of EL concept inclusions. A
TBox T complies with P if it does not entail any CI in P, i.e., it holds that
T ̸|= C ⊑ D for each C ⊑ D ∈ P. A countermodel to P is an interpretation in
which none of the CIs in P is satisfied.

Definition 3. Given an EL TBox T and a repair request P, a generalized-
conclusion repair (GC-repair) of T for P is an EL TBox U that is a GC-
weakening of T and complies with P. We further call U optimal if there is no
other GC-repair V such that V ⪰GC U but U ̸⪰GC V.

Throughout the whole section we assume that T is an EL TBox and that P
is a repair request, and the goal is to construct a generalized-conclusion repair
(preferably an optimal one). Of course, if P contains a tautology, then no repair
exists. We therefore assume that this is not the case. Without loss of generality,
all concept descriptions in T and P must be reduced.
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Induced Countermodels. In the first step, we transform a canonical model
of the input TBox T into countermodels to P, which are used in the next sec-
tion to devise a canonical construction of generalized-conclusion repairs. The
construction of each countermodel is guided by a repair seed.

Definition 4. A repair seed is a TBox S that complies with P and consists
of CIs of the form C ⊑ F for a premise C ∈ Prem(T ) and an atom F ∈
Atoms(P, T ) where C ⊑T F .

The completion algorithm for EL is a decision procedure for the subsumption
problem (and also for the instance problem). In the correctness proof a canoni-
cal model of the TBox is constructed that involves all subconcepts occurring in
the TBox [3]. While this algorithm works in a rule-based manner, thus implic-
itly constructing the canonical model step by step, there is also a closed-form
representation [25]. Resembling the latter we define the canonical model I with
domain Dom(I) := { xC | C ∈ Sub(P, T ) } and its interpretation function is
given by AI := { xC | C ⊑T A } for each A ∈ ΣC and rI := { (xC , xD) |
C ⊑T ∃r.D } for each r ∈ ΣR. Then I is a model of T , and xC ∈ EI iff C ⊑T E
for each subconcept C ∈ Sub(P, T ) and for each EL concept description E [20].

The transformation of the canonical model I is based on modification types.
These describe how copies of objects in the domain of I are modified in order
to create objects of a countermodel.

Definition 5. Let xC ∈ Dom(I). A modification type for xC is a subset K of
Atoms(P, T ) where xC ∈ KI for each K ∈ K, and K1 ̸⊑∅ K2 for each two
K1,K2 ∈ K. Given a repair seed S, we say that K respects S if additionally
{D} ≤S K implies {D} ≤∅ K for each D ∈ Sub(P, T ) where xC ∈ DI .

Each repair seed S induces a countermodel to P. Its domain consists of
all copies of objects in the canonical model I that are annotated with an S-
respecting modification type. The definition of the interpretation function guar-
antees that each such copy does not satisfy any atom in the modification type.

Definition 6. Let S be a repair seed. The induced countermodel JS has the
domain Dom(JS) consisting of all objects xC,K where xC ∈ Dom(I) and K is a
modification type for xC that respects S, and its interpretation function is defined
by AJS := { xC,K | xC ∈ AI and A ̸∈ K } for each concept name A ∈ ΣC and
rJS := { (xC,K, xD,L) | (xC , xD) ∈ rI and Succ(K, r, xD) ≤∅ L } for each role
name r ∈ ΣR, where Succ(K, r, xD) := {E | ∃r.E ∈ K and xD ∈ EI }.

We can show that an object xC,K satisfies an EL concept description E in JS
iff xC satisfies E in I and K does not contain an atom subsuming E [20]. Now
consider an unwanted CI C ⊑ D in the repair request P. Since S complies
with P, there is a top-level conjunct D′ in D such that S ̸|= C ⊑ D′. We can
thus construct an S-respecting modification type K for xC that contains an atom
subsuming D′ but none subsuming C. It follows that the copy xC,K satisfies the
premise C but not the conclusion D, i.e., JS is indeed a countermodel to C ⊑ D.

Proposition 7. For each repair seed S, the induced countermodel JS is a coun-
termodel to P.
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Canonical Generalized-Conclusion Repairs. Next, we show how each re-
pair seed S induces a GC-repair. We obtain it by generalizing each conclusion
according to countermodel JS , namely we take each concept inclusion C ⊑ D in
the given TBox T and replace D with the least common subsumer of D and the
most specific concept description E for which the CI C ⊑ E is satisfied in JS .

Definition 8. Each repair seed S induces the TBox

repGC(T ,S) := {C ⊑ D ∨ CJSJS | C ⊑ D ∈ T }.

The following lemma shows that repGC(T ,S) has exactly those TBoxes as
GC-weakenings that are GC-weakenings of T and of which JS is a model.

Lemma 9. repGC(T ,S) ⪰GC U iff T ⪰GC U and JS |= U
As repGC(T ,S) is a GC-weakening of itself, we infer that JS is a model of

repGC(T ,S). According to Proposition 7, JS is a countermodel to P, and so
repGC(T ,S) complies with P. It is further easy to see that repGC(T ,S) is a GC-
weakening of T . We have thus shown that the following holds.

Proposition 10. If S is a repair seed, then repGC(T ,S) is a GC-repair.

If the repair request P does not contain a tautological CI, then the empty set
is already a repair seed, i.e., repGC(T , ∅) is a GC-repair of T for P. Furthermore,
the induced GC-repairs are complete in the sense that every GC-repair is a
GC-weakening of repGC(T ,S) for some repair seed S.

Proposition 11. If U is a GC-repair of T for P, then there is a repair seed S
such that repGC(T ,S) ⪰GC U .

Proof Sketch. Given a GC-repair U , a repair seed S∗
U is obtained as the least

fixed point of the equation S = { C ⊑ F | C ⊑ D′ ∈ U , F ∈ Atoms(P, T ),
and D′ ⊑S F }. It has the important property that {D′} ≤S∗

U K implies
{C} ≤S∗

U K for each CI C ⊑ D′ ∈ U and for each modification type K. With
this property we can easily show that xE,K ∈ C

JS∗
U implies xE,K ∈ (D′)

JS∗
U for

each CI C ⊑ D′ ∈ U , and thus the induced countermodel JS∗
U

is a model of U .
Lemma 9 yields that U is a GC-weakening of repGC(T ,S∗

U ). ⊓⊔
Each repair seed is of polynomial size, and there are at most exponentially

many seeds. Even with a naïve approach, we can compute all seeds in exponential
time and thus also all induced GC-repairs. Then we must filter out the non-
optimal ones, e.g., by comparing each two repairs w.r.t. ⪰GC. Each comparison
needs polynomial time [3], and we obtain the following main result.

Theorem 12. The set of all optimal GC-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each GC-repair is a GC-
weakening of an optimal one.

In the below example, an optimal GC-repair is not polynomial-time computable.

Example 13. For the repair request {∃r.A ⊑ ∃r.B}, the TBox {∃r.A ⊑ ∃r.(P1⊓
Q1 ⊓ · · · ⊓ Pn ⊓ Qn), P1 ⊓ Q1 ⊑ B, . . . , Pn ⊓ Qn ⊑ B} has the optimal GC-
repair {∃r.A ⊑

d
{ ∃r.(X1 ⊓ · · · ⊓Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} },

P1 ⊓Q1 ⊑ B, . . . , Pn ⊓Qn ⊑ B}. It has exponential size.
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Computing a Canonical Generalized-Conclusion Repair. In the last step,
we are concerned with the question how the GC-repair induced by a seed S can
efficiently be computed. Recall that, as explained in the preliminaries, each con-
clusion D∨CJSJS can be obtained as the product of the EL concept description
D and the ELsi concept description ∃sim(℘(JS), C

JS ), or alternatively as the
product of D and all ∃sim(JS , xE,K) where xE,K ∈ CJS . However, computing
the induced GC-repair repGC(T ,S) in this way is very inefficient since JS has
exponential size.

The first important observation is that the concept description CJSJS is
already equivalent to ∃sim(JS , xC,S[C]) where S[C] is the largest modification
type for xC that respects S and does not contain an atom subsuming C. This
follows from the fact that there is a simulation on JS that contains the pair
(xC,S[C], xE,K) for each object xE,K in the extension CJS . Secondly, in order
to compute the LCS D ∨ ∃sim(JS , xC,S[C]) it is not necessary to start from
xC,S[C] in the product construction, but it suffices to start from xD,S[C⊑D] where
S[C ⊑ D] is the largest modification type for xD that respects S and does not
contain an atom subsuming C. Thirdly, when computing the product of D and
∃sim(JS , xD,S[C⊑D]) we do not need to consider all objects xE,K that are reach-
able from xD,S[C⊑D] in JS , but only those where E is a filler of an existential
restriction that occurs in D. As main result we obtain the following proposition.

Definition 14. Given a subconcept E ∈ Sub(P, T ) and a modification type K
for xE that respects S, we define the restriction E↾K by the following recursion.

E↾K :=
l

{A | A ∈ Conj(E) and A ̸∈ K }

⊓
l

{
∃r.F ↾L

∣∣∣∣∣ ∃r.F ∈ Conj(E), and L is a ≤∅-minimal mod. type

for xF that respects S and where Succ(K, r, xF ) ≤∅ L

}

Proposition 15. Given a repair seed S, it holds that D ∨CJSJS ≡∅ D↾S[C⊑D]

for each CI C ⊑ D in T , and thus the induced GC-repair repGC(T ,S) is equiv-
alent to the TBox {C ⊑ D↾S[C⊑D] | C ⊑ D ∈ T }, where the modification type
S[C ⊑ D] is defined as Max{K | K ∈ Atoms(P, T ), C ̸⊑S K, and D ⊑T K }.

Two Observations. The below example illustrates that entailment between
repair seeds need not imply entailment between the induced GC-repairs.

Example 16. For the TBox T := {A ⊑ B, C ⊑ ∃r.(A ⊓ B)} and the repair
request P := {C ⊑ ∃r.B}, there are two optimal GC-repairs: U1 := {A ⊑ B,
C ⊑ ∃r.⊤}, induced by the seed S1 := {A ⊑ B}, and U2 := {A ⊑ ⊤, C ⊑ ∃r.A},
induced by S2 := ∅. Now, U1 does not entail U2, although S1 entails S2.

The next example shows that, possibly contradicting intuition, it does not
suffice that a repair seed consists only of CIs C ⊑ F where C ⊑ D ∈ T and
F ∈ Atoms(P, T ) such that D ⊑∅ F . We definitely sometimes need CIs C ⊑ F
where C ⊑T F , as per Definition 4. Notably, the only optimal repair in the
following example can be described by the latter CIs.
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Example 17. Consider the TBox T := {A ⊑ ∃r.∃r.(B ⊓ C), ∃r.B ⊑ B} and
the repair request P := {A ⊑ ∃r.∃r.C}. The unique optimal GC-repair is {A ⊑
∃r.∃r.B, ∃r.B ⊑ B}. It is induced only by the seeds {A ⊑ ∃r.B, ∃r.B ⊑ B}
and {A ⊑ B, A ⊑ ∃r.B, ∃r.B ⊑ B}. Specifically the seed CI A ⊑ ∃r.B would
not be allowed if we simplified the definition of a seed as explained above.

Another GC-repair is {A ⊑ ∃r.∃r.B, ∃r.B ⊑ ⊤}, which is induced by the
empty seed ∅, but also by {A ⊑ B}, {A ⊑ ∃r.B}, and {A ⊑ B, A ⊑ ∃r.B}.

The above example also shows that a repair need not entail its seed, and
that a repair can be induced by multiple seeds. Conducted experiments support
the claim that each GC-repair might be induced by a unique seed with minimal
cardinality and such that every CI in the seed is also entailed by the repair.

4 Fixed-Premise Repairs of EL TBoxes

We have seen in the introduction that simply generalizing the conclusions of
the input TBox T might not yield satisfactory repairs. Therefore, we will now
construct repairs that can retain more consequences. It is still required that each
premise in the repair is also a premise in T , but apart from that we do not impose
further conditions except that the repair must, of course, be entailed by T .

Definition 18. Consider TBoxes T and U . We say that T fixed-premise entails
(FP-entails) U , written T |=FP U , if Prem(T ) = Prem(U) and T |= U .

T ⪰GC U implies T |=FP U and the latter implies T |= U , but the converse
implications need not hold. This means that the relation |=FP is between ⪰GC and
|=. Thus, repairs based on this new relation are, usually, better than GC-repairs.

Definition 19. Let T be an EL TBox and P a repair request. A fixed-premise
repair (FP-repair) of T for P is an EL TBox U that is FP-entailed by T and
complies with P. We further call U optimal if there is no other FP-repair V such
that V |=FP U and U ̸|=FP V.

Obviously, each GC-repair is an FP-repair but the converse does not hold.
By reusing the notion of a repair seed as well as the results on GC-repairs

in Section 3, we obtain the following characterization of (optimal) FP-repairs.
First of all, each repair seed S induces an FP-repair: we take each CI C ⊑ D in
the input TBox T and replace the conclusion D with the most specific concept
description E for which the CI C ⊑ E is satisfied in the induced countermodel
JS . Note that now D is not generalized anymore by computing an LCS.

Definition 20. Each repair seed S induces the TBox

repFP(T ,S) := {C ⊑ CJSJS | C ∈ Prem(T ) }.

Recall that each conclusion CJSJS is equivalent to the ELsi concept descrip-
tion ∃sim(JS , xC,S[C]), where S[C] is the largest modification type for xC that
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respects S and does not cover {C}, i.e., S[C] := Max{K | K ∈ Atoms(P, T ),
C ̸⊑S K, and C ⊑T K }. Analogously to the GC-repairs, every TBox
repFP(T ,S) is an FP-repair and each FP-repair is FP-entailed by repFP(T ,S)
for some repair seed S.

Proposition 21. For each repair seed S, the TBox repFP(T ,S) is an FP-repair.

Proposition 22. For each FP-repair U of T for P, there is a repair seed S
such that repFP(T ,S) |=FP U .

We obtain the following main result of this section. Its proof is analogous to
Theorem 12, but uses the argument that entailment between ELsi TBoxes can
be decided in polynomial time [23].

Theorem 23. The set of all optimal FP-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each FP-repair is FP-entailed
by an optimal one.

We have seen in Example 17 that a repair seed might not be entailed by its
induced GC-repair. This is not the case for its induced FP-repair.

Lemma 24. Each repair seed S is entailed by its induced FP-repair repFP(T ,S).

Contrary to the GC-repairs, not every FP-repair is an EL TBox but might
require cyclic ELsi concept descriptions [23] as conclusions to be optimal. For
instance, consider the TBox {A ⊑ ∃r.A} that is also the repair request. The
unique optimal FP-repair consists of the single CI

A ⊑ ∃sim(
A Ar r r ).

If a standard EL TBox is required as result, one might rewrite the repair by
introducing fresh concept names (used as quantified monadic second-order vari-
ables). For the above optimal repair this yields the TBox ∃{X,Y, Z}.{A ⊑ X,
X ⊑ A ⊓ ∃r.Y, Y ⊑ ∃r.Z, Z ⊑ A ⊓ ∃r.Z}. One could also try to compute
a uniform interpolant [24, 28] of the latter in order to get rid of the additional
symbols and so obtain a usual EL TBox. Alternatively, one could unfold the
cyclic conclusions into EL concept descriptions up to a certain role-depth bound.

If the TBox T is cycle-restricted [2], then the canonical model I is acyclic
and so is the induced countermodel JS for each repair seed S. The FP-repair
repFP(T ,S) then only has acyclic ELsi concept descriptions as conclusions and
these can be rewritten into EL concept descriptions.

5 Complexity of Maximally Strong ≻sub-Weakenings

As mentioned in the introduction, a framework for computing gentle repairs
based on axiom weakening was developed, and two weakening relations that
operate on EL CIs were introduced [8]. We briefly recall the modified gentle
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repair algorithm. As input, fix an ontology O that is partitioned into a static
part Os and a refutable part Or as well as an axiom α, the unwanted consequence,
that follows from O but not already from Os. A repair is an ontology O′ such
that O |= O′ but Os ∪ O′ ̸|= α. In order to obtain such a repair, we repeatedly
compute a justification J for α and replace one axiom β ∈ J by a weaker one.4
Specifically, a justification for α is a minimal subset J ⊆ Or such that Os∪J |= α.
After at most exponentially many iterations a repair has been obtained.

A weakening relation is a pre-order ≻ on axioms such that β ≻ γ implies
that γ is weaker than β. Such relations are used to guide the selection of a
weaker axiom in the above iteration. Specifically, when processing a justification
J for α and a selected axiom β ∈ J , we should replace β by a maximally strong
weakening, which is an axiom γ such that β ≻ γ and Os ∪ (J \ {β}) ∪ {γ} ̸|= α,
but Os ∪ (J \ {β}) ∪ {δ} |= α for all δ where β ≻ δ ≻ γ. This prevents the
loss of too many other consequences (apart from α). However, maximally strong
weakenings need not exist for every weakening relation.

The syntactic weakening relation ≻syn on EL CIs removes subconcepts from
the conclusions. Maximally strong ≻syn-weakenings always exist in all direc-
tions,5 all of them can be computed in exponential time, one can be computed
in polynomial time, and recognizing them is coNP-complete.

The semantic weakening relation ≻sub replaces conclusions of EL CIs by more
general concepts, i.e., C ⊑ D ≻sub C ′ ⊑ D′ if C = C ′, D ⊏∅ D′, and C ′ ⊑ D′

̸|= C ⊑ D. It has only been known that maximally strong ≻sub-weakenings always
exist in all directions,5 all of them can effectively be computed, and recognizing
them is coNP-hard. As a side result from Section 3, we obtain the following.

Proposition 25. If the unwanted consequence α is a CI, then all maximally
strong ≻sub-weakenings of an axiom β in a justification J for α can be computed
in exponential time.

The following modification of [8, Example 30] shows that a single maximally
strong ≻sub-weakening cannot always be computed in polynomial time.

Example 26. Take the ontology O with Os := { Pi ⊓ Qi ⊑ B | i ∈ {1, . . . , n} }
and Or := {β} for β := ∃r.A ⊑ ∃r.(P1 ⊓ Q1 ⊓ · · · ⊓ Pn ⊓ Qn), and the un-
wanted consequence α := ∃r.A ⊑ ∃r.B. Then J := {β} is a justification
for α. There is exactly one maximally strong ≻sub-weakening of β in J , namely
∃r.A ⊑

d
{ ∃r.(X1 ⊓ · · · ⊓ Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} }. Since

this weakening has exponential size, it cannot be computed in polynomial time.

Finally, recognizing maximally strong ≻sub-weakenings is also in coNP.

Proposition 27. The problem of deciding whether an EL CI γ is a maximally
strong ≻sub-weakening of an EL CI β in a justification J for α is coNP-complete.
4 We say that γ is weaker than β if β entails γ but γ does not entail β.
5 That is, each weakening of an axiom β in a justification J is weaker than a maximally

strong weakening of β in J —where a weakening of β in J is an axiom γ such that
β ≻ γ and Os ∪ (J \ {β}) ∪ {γ} ̸|= α.
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6 Conclusion

We have introduced a framework for computing generalized-conclusion repairs
of EL TBoxes, where the premises must not be changed and the conclusions can
be generalized. Up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time. Each generalized-conclusion re-
pair is entailed by an optimal one and, furthermore, each optimal generalized-
conclusion repair can be described by a repair seed that has polynomial size. In
addition, we have extended the framework to the fixed-premise repairs, with the
difference that the conclusions need not be generalizations anymore. This usu-
ally leads to better repairs, but with the disadvantage that the conclusions in an
optimal repair might be cyclic and can thus only be expressed in an extension of
EL with greatest fixed-point semantics or by introducing fresh concept names.
Not affected by the latter, all optimal fixed-premise repairs can be computed in
exponential time too, and each fixed-premise repair is entailed by an optimal
one, which is induced by a polynomial-size repair seed. An experimental imple-
mentation is available, which interacts with the user to construct the seed from
which the repair is built.

An interesting task for future research is to combine this approach to repair-
ing TBoxes with the approach to repairing quantified ABoxes [5]. This should be
possible by, firstly, adapting the notion of a repair seed such that it can addition-
ally contain concept assertions and role assertions and, secondly, suitably adapt-
ing the transformation of the saturation/canonical model into a countermodel
from which the final repair is constructed. Another interesting question is how the
approach can be extended to more expressive DLs, such as EL with the bottom
concept ⊥, nominals {a}, inverse roles r−, and role inclusions R1 ◦ · · · ◦Rn ⊑ S.
Ideas from the latest extension of quantified ABox repairs to the DL ELROI(⊥)
might be helpful [6,7]. An extension with nominals would immediately add sup-
port for ABox axioms, since each concept assertion C(a) is equivalent to the CI
{a} ⊑ C and each role assertion is equivalent to {a} ⊑ ∃r.{b}. Furthermore, it
should not be hard to add support for a partitioning of the TBox into a static
and a refutable part, or for a set of wanted consequences that must still be en-
tailed by the repair. Also, it would be interesting to find a suitable partial order
on repair seeds such that minimality of the seed is equivalent to optimality of
the induced repair, similar to the qABox repairs [9]. Last, it would be interesting
to investigate whether and how the quality of the repairs can be improved if also
new premises can be introduced by the repair process. Currently, this can be
done by manually extending the input TBox to be repaired.
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