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Abstract
We present a mesh-free collocation scheme to discretize intrinsic surface differ-

ential operators over surface point clouds with given normal vectors. The method
is based on Discretization-Corrected Particle Strength Exchange (DC-PSE), which
generalizes finite difference methods to mesh-free point clouds and moving La-
grangian particles. The resulting Surface DC-PSE method is derived from an em-
bedding theorem, but we analytically reduce the operator kernels along the surface
normals, resulting in an embedding-free, purely surface-intrinsic computational
scheme. We benchmark the scheme by discretizing the Laplace-Beltrami operator
on a circle and a sphere, and present convergence results for both explicit and im-
plicit solvers. We then showcase the algorithm on the problem of computing mean
curvature of an ellipsoid and of the Stanford Bunny by evaluating the surface di-
vergence of the normal vector field with the proposed Surface DC-PSE method.

1 Introduction
Partial Differential Equations (PDEs) on curved surfaces and differentiable manifolds
are an important tool in understanding and studying physical phenomena such as sur-
face flows [27, 19] or active morphogenesis [15]. Analytically solving intrinsic PDEs in
curved surfaces quickly becomes impossible for nonlinear PDEs or surfaces that are not
spheres. Therefore, numerical methods for solving intrinsic PDEs on curved surfaces
are important, and a wide variety of both embedded and embedding-free schemes have
been developed to consistently discretize intrinsic differential operators on surfaces.

Embedding-free methods require a parametrization of the surface in order to dis-
cretize the differential operators via coordinate charts or a local basis of the mani-
fold [28]. This includes methods based on moving frames [5], a concept originally
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developed in continuous group theory, where the surface geometry is locally repre-
sented by orthonormal vectors. The concept of moving frames has also been combined
with discontinuous Galerkin discretization, e.g., to solve shallow-water equations on
arbitrary rotating surfaces [6]. Other embedding-free Finite Element Methods (FEM)
include intrinsic SurfaceFEM, which discretizes differential operators on a triangula-
tion of the surface [1, 10] and methods based on Discrete Exterior Calculus (DEC)
[18].

Embedding methods discretize the surface problem in the embedding space and use
projections to restrict the differential operators computed in the embedding space to the
surface. This includes methods that use explicit tracer points to represent the surface,
but interpolate to an embedding mesh to evaluate differential operators [13], diffuse-
interface methods based on phase-field representations of the surface [17], embedding
FEM such as TraceFEM [20], narrow-band level-set methods based on orthogonal ex-
tension of the surface quantities [7, 3], level-set methods based on the closest-point
transform [22, 14], and volume-of-fluid methods for surface PDE problems [12].

While each of these methods has its specific strengths, embedding methods usu-
ally generalize better to complex-shaped or arbitrary surfaces [22]. However, they
tend to have higher computational cost, because computations are done in the higher-
dimensional embedding space and additional extension (for level sets), right-hand-side
evaluation (for phase fields), or interpolation (for closest-point transforms) steps are re-
quired, albeit specific optimizations are available, e.g., for level sets [21]. Embedding-
free methods are generally more accurate because they avoid the interpolation and pro-
jection errors arising when the discretization of the embedding space does not trace the
surface exactly, but they tend to be more difficult to implement and harder to generalize
to complex-shaped surfaces.

Here, we present a mesh-free collocation method that combines elements from em-
bedding and embedding-free approaches. The method is algorithmically embedding-
free in the sense that surface quantities are represented on tracer points that are con-
tained in the surface. This also discretizes and represents the surface itself. But the
method is mathematically related to embedding approaches, since the stencils used to
approximate differential operators at the surface points are computed in the embedding
space by a reduction operation along the local normal vector, which needs to be known.
The resulting method shares properties with moving frame approaches, such as the low
dimensionality (and hence low computational cost) and the mesh-free character [5].
It combines these with properties of embedding methods, such as their flexibility in
generalizing to complex surfaces [22]. Our method is based on the Discretization-
Corrected Particle Strength Exchange (DC-PSE) collocation scheme, which general-
izes finite differences to arbitrary point clouds. Given the local surface normal n, we
derive intrinsic discrete operators by first creating an embedding narrow band and plac-
ing collocation points along the normal from each surface point. We then determine
the regular DC-PSE operator kernels in the embedding space. These kernels are then
reduced under the condition of normal extension∇f ·n = 0 for any (sufficiently) dif-
ferentiable field f to derive intrinsic kernels at the surface points. This is possible due
to the kernel nature of DC-PSE, and it preserves the information from the embedding
space in a scheme that only requires computation on the surface points.

This paper is organized as follows: Section 2 recollects the DC-PSE method for
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convenience and introduces the notation. In Section 3, we describe the Surface DC-
PSE scheme for numerically consistent discretization of surface differential operators.
We present validation and convergence result in Section 4 and conclude in Section 5.

2 Discretization-Corrected Particle Strength Exchange
(DC-PSE)

DC-PSE is a numerical method for discretizing differential operators on irregular dis-
tributions of collocation points [24]. The method was originally derived as an im-
provement over the classic Particle Strength Exchange (PSE) [8] scheme, reducing
its quadrature error on irregularly distributed collocation points, but mathematically
amounts to a generalization of finite differences [24]. The PSE/DC-PSE class of collo-
cation methods uses mollification with a symmetric smoothing kernel ηε(·) to approx-
imate (sufficiently smooth) continuous functions f(x), x ∈ Ω ⊆ Rd,

f(xp) ≈ fε(xp) =

∫
Ω

f(x) ηε(xp − x) dx, (1)

where fε(xp) is a regularized approximation of the function f at location xp ∈ Ω of
collocation point p. The scalar ε is the smoothing length (or the kernel width) of the
mollification. Linear differential operators in Rd,

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αd
d

, (2)

defined by the multi-index α = (α1, . . . , αd) ∈ Zd with |α| =
∑d
i=1 αi are approxi-

mated by Taylor series expansion to find a discrete operator

Qαf(xp) = Dαf(xp) +O
(
h(xp)

r
)

(3)

at collocation point xp. The order of approximation r depends on the kernel ηε used
in Eq. (1), and h(xp) is the average distance between collocation point p and its neigh-
bors. The Taylor expansion yields integral constraints (also known as continuous mo-
ment conditions), which the kernel ηε needs to fulfill in order to reach a certain order
r [8].

DC-PSE uses different kernels ηαε (·, ·) for different differential operators and di-
rectly acts on a given quadrature of Eq. (1) with collocation points xq ∈ Ω, resulting
in the discrete operator:

Qαh f(xp) =
1

ε(xp)|α|

∑
xq∈N (xp)

(
f(xq)± f(xp)

)
ηαε (xp,xq), (4)

where N (xp) are all collocation points in the neighborhood (of a certain radius rc
defined by the kernel width) around point xp, as illustrated in Fig. 1a. The positive
sign in the parenthesis is used for odd |α|, the negative sign for even |α|. This ren-
ders the operator conservative on symmetric collocation point distributions, i.e., when
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ηαε (xp,xq) = ηαε (xq,xp). In DC-PSE, the kernels ηαε are thus not determined from
continuous moment conditions, as in PSE, but directly from the discrete moment con-
ditions that result from substituting Eq. (4) into the quadrature of Eq. (1) [24] for a
given set of {xq}Nq=1. This adapts the kernels to the specific distribution of discretiza-
tion points (hence the name “discretization-corrected”) and avoids the quadrature error
of PSE [8], leading to a scheme that is consistent with order r on (almost1) arbitrary
collocation point sets. This means that at each collocation point, a potentially dif-
ferent kernel is used for the same differential operator if the neighboring collocation
points within the kernel support are distributed differently. Evaluating such a kernel
at the locations of the collocation points yields a generalized finite-difference stencil,
which reduces to the classic compact finite differences on regular grid arrangements of
points [24].

DC-PSE kernels are determined at runtime by solving a small system of linear
equations for each collocation point, resulting from the discrete moment conditions
in its kernel neighborhood. For this, one can choose the function space such that the
kernels are compact and symmetric. A frequent choice are polynomials windowed by
truncated exponentials [25]:

ηαε (xp,xq) = ηαε

(
xp − xq
ε(xp)

)
:=

|α|+r−1∑
|γ|=βmin

aγ(xp)

(
xp − xq
ε(xp)

)γ e−
∣∣∣xp−xq
ε(xp)

∣∣∣2

(5)
of finite radius rc. The polynomial coefficients aγ are determined for a given α and a
given distribution of collocation points, such that the following discrete moment con-
ditions are satisfied:

Zβh =


(−1)|α|α!, β = α

0, β 6= α, βmin 6 |β| 6 |α|+ r − 1, βmin =

{
0, |α| odd
1, |α| even

<∞, |β| = |α|+ r

(6)
where

Zβh (x) =
1

ε(xp)n

∑
xq∈N (xp)

(xp − xq)β

ε(xp)|β|
ηαε

(
xp − xq
ε(xp)

)
(7)

is the discrete moment of order β of the kernel ηαε , and βmin is the parity of |α|,
because the zeroth moment Z0

h vanishes for even operators. Under these conditions,
DC-PSE is consistent with order r as long as

h(xp)

ε(xp)
∈ O(1), (8)

i.e., the kernel width ε scales proportionally with the average inter-point distance h
around xp.

1The collocation point distribution must not be degenerate in the sense that the Vandermonde matrix of
the kernel system must have full rank [4]. A trivial example: placing all points along a line and then asking
for an approximation of the derivative in the perpendicular direction cannot work.
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Figure 1: (a) Representation of the DC-PSE method. The collocation points xq
(blue) are within the symmetric operator supportN (xp) of radius rc around the center
point xp (red) at which the discrete operator is to be evaluated. (b) Representation
of the Surface DC-PSE method. The intrinsic differential operator at a point xp
(red) on the surface S is discretized with neighbor surface points xs (blue) and normal
extension points xn (yellow) that are implicitly assumed (but never explicitly created)
when determining the kernel. The vector n in the figure shows the normal onto S at
xp.

3 Surface DC-PSE
We generalize DC-PSE to surface differential operators based on the following classic
result [22, 16]: Let S ⊂ Rd be a differentiable manifold that has a tubular neighbor-
hood and is orientable2 and f : S → R. Define F : Rd → R, such that the restriction
F |S = f , and F is constant along the normal direction n of S, i.e.,∇F ·n = 0. Then,
on the surface S,

∇Sf = (∇F )|S , (9)

where ∇Sf is the intrinsic surface gradient. A similar result is true for the intrinsic
divergence operator (∇S · ) and for any vector-valued function that is extended by con-
stant tangential extension to all surfaces displaced along the normal of S [22, 16].

Given this result, it is straightforward to see the advantages of a mesh-free dis-
cretization: it allows for conforming discretization of the surface and for exact constant
extension by copying points along the normal. One can then derive intrinsic DC-PSE
operators at the surface points by constructing a narrow band by orthogonal normal ex-
tension, followed by using Eq. (9) to compute the required surface differential operator.

Upon careful inspection of the DC-PSE method, we realize that the constant normal
extension can be made internal to the operator evaluation by accumulating the kernel
coefficients along the normals. To see this, consider the DC-PSE operator in Eq. (4) in

2Every boundary-less smooth surface embedded in Rd has a tubular neighborhood, and the orientability
condition is not restrictive when considered locally [16].
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the embedding space. The neighborhood N for the summation contains both surface
points xs and normally extended points xn, as shown in Fig. 1b. Because the f(xn)
are identical copies of the values of the respective surface points, we note that the pre-
factors

(
f(xs)± f(xp)

)
in the summation of Eq. (4) are the same for all extended

normal points and the corresponding surface point xs. Hence, they can be factored out
and the summation performed over the normally extended kernels:

f(xs)± f(xp)

ε(xp)|α|

∑
xq={xs,xn:(xn−xs)||n(xs)}

ηαε

(
xp − xq
ε
(
xp
) )

=
f(xs)± f(xp)

ε(xp)|α|
ηS(xp,xs), (10)

defining the surface kernels ηS(xp,xs). These can be evaluated over only the surface
points xs = NS(xp) in the in-surface neighborhood NS(xp) around the surface point
xp, see Fig. 1b, yielding the Surface DC-PSE operator:

QαS f(xp) =
1

ε(xp)|α|

∑
xs∈NS(xp)

(
f(xs)± f(xp)

)
ηS(xp,xs). (11)

Importantly, the surface kernels ηS(xp,xs), summed over all orthogonally extended
points, can directly be computed when determining the kernel weights and without ex-
plicitly creating or storing the normally extended points xn. Evaluation of the Surface
DC-PSE operators involves only the neighboring points on the surface and requires
no embedding, even though the derivation of the method uses an embedding. This is
detailed in Algorithm 1.

Algorithm 1: Surface Discretization-Corrected Particle Strength Exchange
Input:

1. Point distribution on a surface S.

2. Cutoff radius for the operator support rc.

3. Number of normal copies of each surface point during operator construction.

4. Index α of the surface differential operator and order of convergence r.

5. Optional: spacing δn between the normal points. Default: average lateral
spacing h between surface points.

Output: Surface DC-PSE discrete operator with convergence order r.
Algorithm: For each point p on the surface S,

1. Use the provided rc, r, and α to compute the DC-PSE kernel coefficients for
ηε() (Eq. (5)) along with δn-spaced virtual normal points.

2. Sum the kernel coefficients to compute ηS() as per Eq. (10).
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4 Results
We validate and benchmark the Surface DC-PSE method. First, we verify its conver-
gence in simple test cases with known analytical solution. Then, we show applications
to cases with more general surfaces where no analytical solution is available.

4.1 Laplace-Beltrami operator on a circle and a sphere

(a) (b)
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Figure 2: Visualization and convergence of the Laplace-Beltrami operator on the
unit circle. (a) Visualization of ∆S(sin(θ) + cos(θ)) computed using second-order
accurate Surface DC-PSE operators. (b) Visualization of the solution of the Poisson
equation ∆Sf = 4 sin(2θ) solved with second-order accurate Surface DC-PSE opera-
tors. (c) Convergence plot of the Laplace-Beltrami operator in (a). L∞(•) and L2(�)
norms of the absolute errors are computed against the analytical solution in Eq. (13)
for increasing numbers of points on the circle. (d) Convergence plot of the Poisson
equation solution in (b). L∞(•) and L2(�) norms of the absolute errors are computed
against the analytical solution in Eq. (17) for increasing numbers of points on the circle.
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We start by verifying convergence for the Laplace-Beltrami operator on a the unit
circle S1. The collocation points are distributed regularly using equi-angular spacing.
We use a normal spacing of δn = 3/(Np − 1) to compute the surface operators in
Eq. (11) in a narrow band with 4 layers on each side of the surface. Np is the number
of surface points xs. We choose rc = 4.1δn as the operator support and r = 2 as the
desired order of convergence. The Laplace-Beltrami operator is characterized by the
multi-index α = (2, 0) + (0, 2). Note that this multi-index is 2-dimensional, despite
the circle being one-dimensional, since the operators are constructed in the embedding
space, but evaluated intrinsically.

We test the numerical approximation of the surface operator on the function

f(θ) = sin(θ) + cos(θ) (12)

in polar coordinates. The error is computed against the analytical solution

∆Sf(θ) = ∇S · (∇Sf(θ)) = ∇2
θ f(θ) = −(sin(θ) + cos(θ)). (13)

The visualization of the numerical solution and the convergence plot of the absolute
errors are shown in Fig. 2a,c. We observe second order convergence to the analytical
solution, as expected for r = 2.

We further test the method on the unit sphere S2. The collocation points are
distributed using the Fibonacci sphere technique [9]. We use a normal spacing of
δn = 0.8/( 3

√
Np − 1) to determine the surface operators in Eq. (11) in a narrow band

with 2 layers on each side of the surface. Np is the number of points on the sphere. We
choose rc = 2.9δn as the operator support and r = 2 and r = 4 as the desired orders of
convergence. The Laplace-Beltrami operator is characterized by the three-dimensional
multi-index α = (2, 0, 0) + (0, 2, 0) + (0, 0, 2). We test the numerical approximation
of the surface operator on the scalar spherical harmonic function

f(θ, φ) = Ylm (14)

in spherical coordinates for the mode l = 4, m = 0 (Fig. 3a). The error is computed
against the analytical solution

∆Sf = ∇S · (∇Sf(θ, φ)) = −l(l + 1)Ylm (15)

and is plotted in Fig. 3c.
We also use this test case to benchmark against the Closest Point method [22] with

L2 andL∞ errors plotted in Fig. 3c. Surface DC-PSE is one to two orders of magnitude
more accurate than the Closest Point method for the same operator order.

Finally, we perform a strong scaling benchmark of the computation time with in-
creasing numbers of CPU cores with both codes implemented in the parallel computing
library OpenFPM [11, 26] in C++ and run on the same hardware. The results in Fig. 3b
show that one evaluation of the Surface DC-PSE operators over the whole domain
is about one order of magnitude faster than using the Closest-Point method [22] and
scales better with increasing numbers of parallel CPU cores. When including also the
time required to determine the Surface DC-PSE operator kernels, the Surface DC-PSE
method is about 1.5 orders of magnitude slower than constructing the Closest-Point
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representation in a narrow band, but shows similar parallel scalability. However, for
Eulerian simulations, the kernels have to be determined only once at the beginning of
a simulation, or they can be loaded from files for standard point distributions.

4.2 Poisson equation on a circle and a sphere
Given the DC-PSE surface operators, implicit equations can be solved by solving a lin-
ear system of equations with a system matrix constructed using the discrete operators.
We test this by solving the Poisson equation on the unit circle S1:

∆Sf = 4 sin(2θ) θ ∈ Ω = S1\(1, 0) (16)

with Dirichlet boundary condition at one point (1, 0) conforming to the analytical so-
lution

f(θ) = sin(2θ) θ ∈ Ω ∪ (1, 0). (17)

We use the same Surface DC-PSE operators as in the previous subsection to con-
struct the system of equations, which is then solved using the KSPGMRES solver
from PETSc [2]. Fig. 2b,d show the numerically computed solution f , along with the
convergence plot of the absolute error toward the analytical solution.

Next, we test the method in three dimensions by solving the Poisson equation on
the sphere S2:

∆Sf = −20Y4,0 (18)

with Dirichlet boundary condition along the equatorial circle parallel to the y−z plane
conforming to the analytical solution

f = Y40. (19)

We solve the resulting linear system with KSPGMRES from PETSc [2] without pre-
conditioning. The convergence plots for orders r = 2 and r = 4 are shown in Fig. 3d.

4.3 Mean curvature computation
We verify Surface DC-PSE for vector fields by computing the mean curvature H of an
ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 (20)

with a = 1, b = 0.8, c = 0.75 and parametrization (u, v)

x = a cosu sin v, y = b sinu sin v, z = c cos v. (21)

We compute mean curvature as the divergence of the surface normal field and compare
it with the analytical solution

H = −1

2
∇S · n

=
abc[3(a2 + b2) + 2c2 + (a2 + b2 − 2c2) cos(2v)− 2(a2 − b2) cos(2u) sin2 v]

8[a2b2 cos2 v + c2(b2 cos2 u+ a2 sin2 u) sin2 v]3/2
.

(22)
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Figure 3: Visualization and convergence of the Laplace-Beltrami operator on the
unit sphere. (a) Visualization of the spherical harmonic function Y4,0. (b) Results of
a strong scalability test for the computation of ∆S(Y4,0) for average spacing h = 0.05
using Surface DC-PSE operators (•,�) and the Closest Point (CP) method (◦,♦) [22]
on increasing numbers of CPU cores. Times for the creation of Surface DC-PSE oper-
ators (•) and for the creation of the CP representation (◦) are required once in Eulerian
simulations. Times for the computation of ∆S(Y4,0) for Surface DC-PSE operators
(�) include evaluation of the operators, and for the CP method (♦) include extension
of initial condition, computation of the surface Laplacian, and extension of the result.
Dashed lines show the ideal linear speedup. (c) Convergence plot of ∆S(Y4,0) for Sur-
face DC-PSE (L∞(•), L2(�)) and the Closest Point method (L∞(◦), L2(♦)) using
second-order (black) and fourth-order (gray) approximations. Norms of the absolute
errors are computed against the analytical solution in Eq. (15) for increasing numbers
of points (decreasing average spacing h). (d) Convergence plot of the solution of the
Poisson equation ∆Sf = −20Y4,0 using second-order (black) and fourth-order (gray)
approximations. L∞(•) and L2(�) norms of the absolute errors are computed against
the analytical solution in Eq. (19) for increasing numbers of surface points.

We approximate the surface divergence operator using Surface DC-PSE with δn =
4.5/(Np − 1), rc = 3.1δn, and r = 2. The result and the convergence plot of the
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Figure 4: Mean curvature computation using the Surface DC-PSE divergence op-
erator. (a) Visualization of the mean curvature of an ellipsoid, numerically computed
as the divergence∇·n of the surface normal vector fieldn using second-order accurate
Surface DC-PSE operators. (b) Visualization of the relative error in the computed cur-
vature from (a) on 32,258 surface points in comparison with the analytical solution in
Eq. (22). (c) Convergence plot of the mean curvature computation. L∞(•) and L2(�)
norms of the absolute errors are computed against the analytical solution in Eq. (22)
for decreasing average surface-point spacing h. (d) Visualization of the mean curvature
computed on the Stanford bunny with 2960 points using second-order accurate Surface
DC-PSE operators.

absolute errors are shown in Fig. 4a,c. As specified by r, we observe second-order
convergence to the analytical solution when decreasing the average spacing h between
the points. The relative errors are visualized in Fig. 4b. They concentrate around
extremal points of the curvature, as expected.

Finally, we apply the same mean-curvature computation to an arbitrary surface
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with no analytical solution, the Stanford bunny from the Stanford Computer Graph-
ics Laboratory. We use the down-sampled version of the original data set with 2960
points on the surface, obtained from https://www.stlfinder.com/model/
stanford-bunny-S4kAUsKI/3091553. The result is visualized in Fig. 4d,
showing that the Surface DC-PSE method qualitatively works also for non-algebraic
surfaces.

5 Conclusions
We have presented a mesh-free collocation scheme for consistently approximating in-
trinsic differential operators on curved surfaces. Our scheme is based on the DC-PSE
method for discretizing bulk differential operators on irregular point clouds [24]. We
have derived the present surface-intrinsic version by realizing that the kernel evalu-
ations can be factored out across points created by constant normal extension, and
that the partial sums over the kernels can be pre-computed and stored on the surface
points only. This yields a method that is easy to implement and is computationally
efficient, as it only requires collocation points on the surface. In this sense, Surface
DC-PSE combines features from embedding methods with features from embedding-
free methods. The operators are determined in an embedding formulation, but result in
an embedding-free algorithm for operator evaluation.

We have verified the method in different test cases with known analytical solutions.
This included evaluating the Laplace-Beltrami operator on the unit circle and the unit
sphere, solving Poisson equations on the unit circle and the unit sphere using an implicit
solver, and computing mean curvature of an ellipsoid as the divergence of the normal
vector field. In all cases, the scheme converged as expected. We then applied the
method to compute the mean curvature of the Stanford bunny, showing an application
to a non-analytical surface.

Despite its advantages, Surface DC-PSE also has a number of limitations: First, the
normal field is required as an input, which can be limiting or introduce additional errors
in cases where the normals are not analytically know or given in the data. Second, for
a given point distribution, the numerical error is limited by the curvature of the given
surface and depends on the average spacing between the surface points and the normal
extension points (see Figs. 1b and 4b). This can be alleviated by using higher resolution
in higher-curvature areas. The required minimum resolution can be pre-determined
based on an approximation of the curvature. Lastly, determining the DC-PSE kernels
is computationally expensive, as it involves solving a small linear system of equations
for each point. For Eulerian simulations, where the collocation points do not move,
the kernels have to be determined once at the beginning of the simulation. However, if
points move, e.g. in a Lagrangian simulation, the kernels need to be recomputed at each
time step. While the cost may be amortized by a gain in accuracy and stability [24], it
is still significant.

In future work, we will consider extensions of Surface DC-PSE to Lagrangian prob-
lems involving moving and deforming surfaces. This also includes simulations of de-
formable surfaces, where the surface deformation itself results from intrinsic force-
balance equations [23, 15]. We will also consider coupling Surface DC-PSE with
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regular DC-PSE in the surrounding space in order to describe coupled bulk-surface
phenomena.

In summary, we have extended the mesh-free collocation method DC-PSE to prob-
lems on curved surfaces, requiring only intrinsic surface points. Like DC-PSE, also
Surface DC-PSE computes the operator kernels numerically at runtime and is consis-
tent for any desired order of convergence r. This makes the presented algorithm partic-
ularly attractive for higher-order intrinsic operators, such as the fourth-order operators
in Fig. 3, and for determining the system matrices of implicit equations on surfaces or
implicit time integration schemes.
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