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ABSTRACT

We present a content-adaptive generation and parallel compositing
algorithm for view-dependent explorable representations of large
three-dimensional volume data. Large distributed volume data are
routinely produced in both numerical simulations and experiments,
yet it remains challenging to visualize them at smooth, interactive
frame rates. Volumetric Depth Images (VDIs), view-dependent
piece wise-constant representations of volume data, offer a potential
solution: they are more compact and less expensive to render than the
original data. So far, however, there is no method to generate such
representations on distributed data and to automatically adapt the
representation to the contents of the data. We propose an approach
that addresses both issues by enabling sort-last parallel generation
of VDIs with content-adaptive parameters. The resulting VDIs can
be streamed for display, providing responsive visualization of large,
potentially distributed, volume data.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms Human-centered
computing—Visualization—Visualization techniques

1 INTRODUCTION

Scientific simulations and experimental measurement devices gen-
erate increasingly large scalar field data. For a growing number of
applications of scientific exploration, visualization at high, consistent
frame rates and low latency is crucial to providing better scientific
intuition and interactivity. Compute clusters may be used to acceler-
ate rendering of large data, distributing the data and parallelizing the
calculations among processors, but consistent, high frame rates are
difficult to achieve due to the time-consuming raycasting procedure
and the remote rendering setup requiring communication across a
network.

Here, we propose the use of view-dependent piecewise-constant
representations of volume data to decouple interactive viewpoint
changes and zooming from network latency and distributed vol-
ume raycasting. These representations are generated by dividing
the volume-rendering integral along each ray into chunks that store
cumulative color and opacity. The resulting representation can be
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much smaller than the volume data [11], can be compressed and
streamed efficiently [10], and recent work has shown that it can be
rendered at high frame rates, providing high-fidelity approximations
near the viewpoint from which it was generated [12]. However, there
currently exists no method to generate such representations on dis-
tributed volume data. Moreover, discretizing the volume-rendering
integral requires a data and transfer-function dependent parameter,
which so far had to be tuned manually to generate accurate represen-
tations.

We present a sort-last parallel generation approach for view-
dependent representations of distributed volumes. We further intro-
duce an automatic way of determining the discretization parameter,
which allows us to do so independently for each ray, resulting in a
content-adaptive representation of the data. We choose the Volumet-
ric Depth Image (VDI) [11] as the view-dependent representation.
VDIs are generated on each processing element on its volume do-
main in parallel—we call these “sub-VDIs”—and we present an
efficient algorithm to composite them in parallel into a single VDI.
We further present an algorithm to perform an efficient parameter
search for the discretization of the rendering integral into chunks
and apply it at both stages of the distributed generation, thereby
eliminating the need for manual intervention. We design the com-
positing algorithm such that it can adapt to arbitrary, potentially
non-convex domain decompositions, as may arise, for example, in
in situ visualization of distributed simulations.

We implement and benchmark our method on real-world datasets.
We show that our content-adaptive parameter search for discretizing
the rendering integral produces more accurate representations than
generation criteria that has been used in previous work. We test the
parallel compositing algorithm for accuracy and scalability, showing
that it can be used to enable responsive visualization at high frame
rates for large, potentially distributed volume data. We implement
our method as an extension of an existing open-source visualization
library scenery [13].

In particular, we contribute the following:

• We propose the use of view-dependent piecewise-constant vol-
ume representations, such as VDIs, for interactive visualization
of distributed volumes at high, consistent frame rates.

• We propose an efficient parallel compositing algorithm for
scalable sort-last generation of VDIs over distributed data.

• We propose a method to automatically discretize the volume in-
tegral for each ray by performing a parameter search, enabling
content-adaptive representations.
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2 RELATED WORK

2.1 Distributed Volume Rendering

Volume rendering is widely used for the visualization of 3D scalar
fields. Soon after the volume raycasting algorithm was first pre-
sented by Levoy [18], parallel volume visualization began to receive
research interest [21, 23] with the purpose of achieving interactive
visualization by distributing the data and parallelizing the rendering
calculations. Recent work in parallel volume rendering has focused
on achieving efficient rendering at high degrees of parallelism and
for large data sizes [1, 6, 14].

A commonly used strategy for parallel volume rendering is sort-
last rendering [14, 22, 25]. There, the volume data are distributed
among the n processes taking part in the rendering. Each process
performs a front-to-back raycasting on its data, producing a full-
resolution sub-image. The sub-images from the various processes
are then composited into a single image corresponding to the overall
data.

Cavin et al. [4] provide a theoretical comparison of some of the al-
gorithms used for compositing the sub-images. Perhaps the simplest
is the direct-send algorithm [8], where the image is divided among
the n processes such that each process is responsible for compositing
1/n of the total pixels in the final image. For this, each process re-
ceives fragments of images from all other processes, corresponding
to the part of the final image that it “owns”. Peterka et al. [25] used
the direct-send approach in their study of parallel volume rendering
on an IBM Blue Gene/P system. Other frequently used compositing
algorithms include the binary-swap algorithm [17], which uses a tree
data structure with pairs of processes communicating for composit-
ing at every node of the tree, and the hybrid radix-k compositing
algorithm [24], which combines the direct-send and binary-swap
algorithms, offering configurable parameters for optimization on
different hardware architectures. Recent work [19] has aimed to
optimize interactivity in distributed visualization by compressing
the image data on the GPU before compositing, but responsive vi-
sualization with distributed rendering remains a challenge due to
network latency between the user and the distributed cluster.

2.2 Explorable Image Representations

Shade et al. [28] introduced the view-dependent Layered Depth Im-
age representation, storing multiple pixels along each line of sight,
enabling deferred rendering of surface and geometry data. Stone et
al. [30] rendered omnidirectional stereoscopic images of molecu-
lar dynamics simulations on remote compute clusters. The images
were streamed and reprojected locally at frame rates that enabled
Virtual Reality (VR). However, omnidirectional stereoscopic images
require warping to prevent distortions [29], which requires depth
information and therefore cannot be applied to volume data. For
reprojecting volume data, Zellmann et al. [32] transmitted a single
depth layer along with the color buffer from the remote rendering
server and provided a number of heuristics to create the depth buffer.
While the use of a single depth value per pixel creates small message
sizes, it is not conducive to producing high-quality reprojections,
and holes may occur where rays do not intersect the depth layer.
This has been addressed by view-dependent piecewise-constant vol-
ume representations, such as the Volumetric Depth Image (VDI),
which produce a continuous representation of the volume by storing
multiple layers and composited color and opacity in-between. These
representations are described in more detail in Sect. 2.3.

Exploratory visualization of numerical simulations was also done
post-hoc using the Cinema [2] database, which stores images gen-
erated in situ using a range of visualization parameters, including
different camera viewpoints. All parameters, including viewpoints,
however, must be specified in advance, and the database becomes
large if many viewpoints are required. Our approach, on the other
hand, generates a compact VDI at regular time intervals, which can

be streamed to enable approximate rendering with full 6 degrees-of-
freedom camera viewpoint changes.

2.3 View-Dependent Piecewise-Constant Volume Repre-
sentations

View-dependent representations of volume data are generated by ray-
casting the volume and decomposing the volume rendering integral
into segments, each of which contain pre-classified composited color
and opacity, potentially determined using global lighting techniques
such as ambient occlusion.

The distinguishing feature of these representations, in compar-
ison to other techniques that compress volume data, is that they
produce an exact image when rendered from the original viewpoint
of generation, owing to the associativity of the over operator [26]
used in alpha-compositing. Rendering from deviating viewpoints in-
volves accumulation over the segments, which is much cheaper than
evaluating the full integral [16]. Close approximations to volume
rendering are achieved around the viewpoint of generation [11]. Re-
cent work [12] has presented a raycasting-based rendering algorithm,
showing that interactive frame rates are achieved at up to 30 degree
deviations about the original viewpoint of generation for full-HD
viewport resolution.

Previous work in generating view-dependent representations has
proposed a variety of strategies to determine the size and extent of
the segments generated along the rays. Brady et al. [3] use constant-
size segments in each ray, which leads to segments containing com-
posited color and opacity over potentially highly heterogeneous
samples, hampering the quality of rendering from a different view-
point. Lochmann et al. [20] create segments of constant opacity by
determining the total transmittance along each ray and partitioning
that equally among the segments. This, however, does not account
for potentially varying color values within the segments. Frey et
al. [11] proposed the Volumetric Depth Image (VDI), which uses
homogeneity as a criteria for the creation of segments, accumulating
a sample into a segment unless it differs from the segment by more
than a pre-defined sensitivity parameter γ . They also permit empty
regions between segments if transparent samples are found. Due to
these desirable properties, we choose to build upon the VDI repre-
sentation in our work, albeit replacing the manually defined constant
γ with an automated per-ray search. We also propose a sort-last
parallel generation technique for view-dependent representations,
such as the VDI.

3 THE VOLUMETRIC DEPTH IMAGE (VDI)
Frey et al. proposed the Volumetric Depth Image [11] as a view-
dependent representation of volume data. They call the segments
generated along each ray supersegments. Each supersegment S is
represented by its front and back faces, f (S) and b(S), and its color
and opacity, C(S) and α(S).

Each ray (x,y) cast into the volume creates a so-called list Lxy
of supersegments Sxy

j where j represents the index of the superseg-
ment in the list (Fig. 1a). The total number of lists created, |L|,
corresponds to the viewport resolution the VDI is generated on, i.e.
|L|= wh where w is the width of the viewport and h the height.

The decomposition of the volume rendering integral into super-
segments is governed by a termination criterion τ , which depends
on a sensitivity parameter γ . Samples along each ray are merged
into a supersegment until

τ : γ > ||C(S)α(S)−C′α ′||2, (1)

where C′ and α ′ are the color and the length-adjusted transmittance
of the next sample. In words, a sample along the ray is merged
into the current S unless it differs from the premultiplied color of S
by more than γ , in which case a new S is started. This criterion τ

therefore generates homogeneous S that are important for generating
high-quality approximated renderings from changed viewpoints.
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(a) Generation of a VDI. Samples collected along rays cast into the volume are partitioned
into neighborhoods of similarity called supersegments. Empty spaces are not included.
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(b) A VDI: A list of supersegments per-raycast into the volume. Each supersegment is
represented by its start and end depths along the ray, and the color and opacity composited
within the depth interval

Figure 1: (a) The process of generating a VDI [11] and (b) the VDI representation.

Figure 2: A sample VDI rendering of the Kingsnake dataset show-
casing a smearing artefact that results from a low γ value.

The sensitivity parameter γ , however, must be manually selected
and is constant across rays. Tuning γ depends on the dataset, transfer
function, and colormap. The VDI rendering produced is highly
sensitive to the choice of γ , making its manual determination a
matter of trial and error. If γ is too low, more supersegments would
be generated than the fixed per-list maximum NS. Then, the last
supersegment is forced to accumulate all remaining samples until
the ray terminates, leading to “smearing” artefacts in the rendering,
as illustrated in Fig. 2. If γ is too high, not enough supersegments
are generated, and quality of reprojection is hampered. Moreover,
selecting a constant γ for the entire VDI can lead to suboptimal
results for heterogeneous datasets.

4 CONTENT-ADAPTIVE AUTOMATIC GENERATION OF SU-
PERSEGMENTS

Our proposed method retains the homogeneity criteria of Frey et
al. [11] (Equation 1), but determines the sensitivity parameter γ au-
tomatically and independently for each ray. A maximum of NS
supersegments are generated per list.

Algorithm 1 explains the method used to determine γ . Leverag-
ing the fact that the number of supersegments produced decreases
monotonically with increasing γ , algorithm 1 performs an iterative

bisection search between the highest and lowest possible threshold
values, using the number of supersegments produced for a given
value of γ to adjust γ for the next iteration. Since the distance metric
in Equation 1 is an L2 distance between pre-multiplied color vectors
with 3 elements each, the highest possible threshold value is

√
3

and the lowest is 0. Each iteration of the search samples the volume
along the ray to determine the number of supersegments generated
for a given γ (Line 7).

Since several iterations may be required to determine a γ that
generates exactly NS supersegments, a tolerance of up to δ less
supersegments than NS is permitted, but never more than NS as this
would lead to either the “smearing” artefact mentioned above or to
skipping the additional supersegments entirely. In experiments, we
found a δ value of 15% of NS to provide a good trade-off between
generation performance and rendering quality. With most datasets
and transfer functions, empty regions in volumes are common. To
eliminate rays that pass through empty or homgeneous regions, we
initialize γ with a small positive value (Line 3). If the first iteration
of supersegment generation creates less supersegments than NS, it
implies that the samples along the ray are homogeneous. The ray can
therefore terminate, generating either one or zero supersegments de-
pending on whether the region was homogeneous or empty, thereby
freeing up computational resources for other rays. The search also
terminates when the search space reduces below a small ε , selecting
the high end of the range as γ , which is guaranteed to produce less
supersegments than NS and therefore prevent smearing, unless it
would produce 0 supersegments (line 10). In our experiments, we
set ε to 10−6. The value of γ produced by algorithm 1 is then used
by the ray to generate its list L.

Performing multiple sampling passes through the volume to de-
termine γ has obvious performance overhead, but it allows the VDI
generation to automatically adapt to different datasets and varying
transfer functions and color maps. It also generates different values
of γ per ray, which yields higher-quality renderings than a globally
constant γ , as shown in Table 2.

The parameter NS controls the performance vs. quality trade-
off: Higher values of NS lead to better rendering quality at lower
performance. A constant value of NS across L gives the VDI a
regular 3D structure in memory, which simplifies the data structure
and its generation on distributed data.



Algorithm 1: Determining the supersegment termination
parameter γ using an iterative bisection search

1 low← 0
2 high←

√
3

3 γ ← 0.00001
4 firstIteration← TRUE
5 found← FALSE
6 while !found do
7 n← numSupersegmentsGenerated(γ)
8 if abs(high-low) < ε then
9 found← TRUE

10 γ ← ((n== 0) ? low : high)
11 else if n > NS then
12 low = high
13 else if n < NS−δ then
14 high = low
15 else
16 found← TRUE
17 end
18 if firstIteration then
19 firstIteration← FALSE
20 if n < NS then
21 found← TRUE
22 end
23 end
24 if !found then
25 γ ← (low + high) / 2
26 end
27 end
28 return γ

4.1 Handling Transparent Samples
Similar to Frey et al. [11] we only begin supersegments at non-
transparent samples. While Frey et al. [11] also terminate a super-
segment every time a transparent sample is encountered, regardless
of the merge criteria τ , we find that this can lead to too much frag-
mentation along the ray in datasets with high-frequency signals
(see Fig. 5). Instead, we terminate supersegments based only on
τ , using the iteratively determined γ , recording b(S) as the last
non-transparent sample accumulated into S.

5 VOLUMETRIC DEPTH IMAGES OF DISTRIBUTED DATA

We propose a method to generate a VDI representing data that is
distributed across Processing Elements (PE), e.g., compute nodes in
a cluster, GPUs within a node, etc. This extends the content-adaptive
automatic supersegment generation of Sect. 4 to work on distributed
data. The final VDI then represents the entire volume data in the
viewport, though it may lie on multiple PEs, and can be transmitted
for display.

Our strategy for the parallel generation of VDIs bears similarity
to techniques commonly used in the generation of images from
distributed data. We follow a sort-last parallel rendering approach
[22], in order to achieve scalability with the volume data size, and
to conform to arbitrary domain decompositions, e.g. produced by
an in-situ simulation. Distributed VDI generation therefore begins
with an object-space decomposition, with each PE handling a part
of the overall volume. Each PE generates a VDI at full viewport
resolution corresponding to its local data, called a sub-VDI. The
sub-VDIs are composited into a single VDI representing the entire
volume data using a compositing algorithm that is based on the direct-
send algorithm [8]. The compositing stage receives supersegments
produced on each PE and combines them to produce a total of NS
supersegments per list, ensuring that as little detail as possible is

lost.

5.1 Phase 1: Distributed generation of sub-VDIs

Distributed sub-VDI generation starts from an object-space decom-
position. Our approach can adapt to arbitrary domain decomposi-
tions, which can be defined externally, for example by an in-situ
simulation application running on the PEs. As in typical sort-last
rendering approaches, a VDI corresponding to the full viewport reso-
lution is generated on each PE. All PEs share the camera viewpoint,
from which rays are cast to generate supersegments.

Any given ray in the view frustum, in general, will pass through
the domain of multiple PEs, creating supersegments in each of
these domains. Using the supersegment generation algorithm from
Sect. 4) would therefore require communication and synchronization
between all PEs at each iteration of the algorithm. Instead, we allow
each PE to generate NS supersegments within its domain for each
ray. The supersegment generation algorithm can therefore be run in
parallel on each PE, without any communication or synchronization
between PEs. Given no communication is required between PEs
while generating the sub-VDIs, it is important to generate a full NS
on every PE in order to correctly discretize the volume integral in
cases where all non-transparent samples lie on a single PE. We call
the supersegments of a sub-VDI as sub-supersegments (S sub).

The output of the first phase of the algorithm is therefore a full-
resolution sub-VDI on each PE, representing the data held by that
PE. The work done by a PE during sub-VDI generation depends
on the size of the volume held by the PE as well as the viewport
resolution.

5.2 Phase 2: Parallel compositing of sub-VDIs

The goal of the second phase is to composite the distributed sub-
VDIs stored on each PE to a single VDI representing the entire
volume.

At the end of phase 1, each ray has produced up to NS sub-
supersegments on each PE (Fig. 3b). These need to be combined
to produce a total of up to NS supersegments for each ray. The first
step is therefore to bring the sub-supersegments for a ray from each
PE onto a single PE where they can be combined.

We design an algorithm based on the direct-send approach for
compositing sub-images in distributed volume rendering [23]. In
our case, the number of supersegment lists L in the final composited
VDI is divided equally among the PEs, with each PE responsible
for producing composited supersegment lists Lxy for the pixels in its
part of the image space.

The number of supersegment lists a PE needs to produce is there-
fore |L|/n, where n is the total number of PEs. For each pixel
it is responsible for compositing, a PE receives sub-supersegment
lists from all PEs, including itself. Each PE then holds n lists for
each pixel it is responsible for compositing. The process of combin-
ing the sub-supersegments from the n input lists can be formulated
as another supersegment generation task (Section 3), performed
by raycasting through the sub-supersegments, which are, after all,
piecewise constant representations of the original volume. We can
therefore treat each sub-supersegment as a sample along the ray.

The sampling procedure along the ray then requires determining
the order in which the sub-supersegments lie along the ray. The sub-
supersegments in any list cannot be assumed to be contiguous. There
may be gaps in depth between consecutive sub-supersegments when
the ray passes into the domain of another PE, before returning to the
first PE. In Fig. 3a, for instance, ray 2 traverses sub-supersegments
from PE 1, which are to be placed in-between sub-supersegments
from PE 3.

Each input list contains sub-supersegments in sorted order, since
it was created by front-to-back raycasting. Therefore, to deter-
mine the next supersegment in a list, the depths of the front-most
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(a) Generation of a Distributed VDI. The domain is decomposed among three processing
elements (PE), and supersegments are generated by raycasting in parallel on each PE. No
synchronisation or communication between PEs is required.

Sub-VDI at Process 1
Ray Number
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Ray Number

0 1 2 3 4 5

Sub-VDI at Process 2

Ray Number
0 1 2 3 4 5

Sub-VDI at Process 3

(b) A Distributed VDI: A set of sub-VDIs, one on each PE.

Figure 3: (a) The process of generating a Distributed VDI and (b) the Distributed VDI representation.

sub-supersegments of all input lists are compared, and the sub-
supersegment with the lowest starting depth is selected as the next
sample along the ray, before being popped off its list.

Algorithm 2 details the procedure of raycasting through sub-
supersegments S sub and combining them into homogenous su-
persegments S. Since the sub-supersegments are each of different
lengths, the process of raycasting through them is analogous to
volume raycasting with irregular step size. The transmittance ob-
tained from sub-supersegment is the transmittance stored in the
sub-supersegment, corrected by its length [9] as:

α̃ = 1− (1−α)l (2)

where α̃ is the adjusted transmittance, α is the transmittance stored
in the sub-supersegment, and l is the length of the sub-supersegment.

Raycasting thus steps through the sub-supersegments from all
input lists. Empty spaces between S sub are treated as transparent
samples along the ray (lines 17-21 of algorithm 2) with lengths equal
to the total empty space between the S sub. At each sample, the sub-
supersegment can either be merged with the previous supersegment,
or can begin a new one. This is determined using the same criterion
τ (Equation 1) as before and therefore requires determining another
γ that leads to the generation of NS total supersegments. This is
again done per-ray using algorithm 1.

Since the number of supersegments in the list produced is limited
to NS, combining the n input lists into one output list is O(n), where
n is the number of PEs. The number of output lists produced by
each PE, however, decreases linearly with n, as the lists get divided
among more PEs. Therefore, the work performed by any PE during
phase 2 is independent of the number of PEs and the size of the
volume data.

Between phases 1 and 2, communication of sub-supersegment
lists between PEs is required. At the end of Phase 1, each PE holds a
screen-resolution sub-VDI consisting of |L| sub-supersegment lists.
This is divided into n equal blocks, each containing |L|/n = wh/n
sub-supersegment lists. One such block is sent to every render-
ing PE, including one to self, in a manner that conforms with the
image-space decomposition described above. This is achieved by an
MPI AllToAll call. As the number of PEs increases, the number
of messages any PE needs to send increases linearly, but the size
of each message decreases linearly. At large n, the high number of
messages may thus cause latency issues.

At the end of phase 2, each PE holds wh/n supersegment lists of
the composited VDI. These are then gathered on the root PE using
an MPI Gather call. Once at the root process, the composited VDI
can be streamed for (remote) display, potentially after applying
compression techniques [10].

5.3 Handling Non-Convex Data Decompositions
A key feature of our compositing method is that it can handle
non-convex domain decompositions and therefore work with any
application-given data distribution.

A non-convex domain decomposition is one where a ray can
intersect the boundary of the domain of a PE in more than two
points. Such decompositions occur, e.g., in numerical simulations
in complex-shaped simulation domains, where the domain decom-
position balances the computations in each sub-domain and the
communication overhead across PEs [15], not necessarily produc-
ing an equal division of data among PEs. Figure 4 shows such
a hypothetical decomposition where the ray shown intersects the
boundary between Processes 1 and 2 at points a, b, c, and d. Such
situations are challenging for distributed volume rendering, due to
the non-commutativity of the over operator [26]:

a over b 6= b over a. (3)

The color composited along the ray exemplarily shown in Figure 4
is:

C = cb
a over cc

b over cd
c , (4)

where cb
a represents the color composited from points a and b. In

general,
C 6= cb

a over cd
c over cc

b. (5)

This implies that in non-convex domain decompositions, volume
rendering cannot composite color across disjoint segments of a ray
without requiring communication or synchronization between the
PEs, or redistribution of the volume data.

Our method avoids this problem by generating supersegments
that store world-space front and back depth values along the ray. A
supersegment necessarily terminates when the ray leaves the domain
of a PE. Since supersegments are sorted by their depth values during
compositing, subsequent over operations are done in the correct
order. The supersegments along a ray can therefore be generated
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Figure 4: Distributed VDI generation on a non-convex domain
decomposition between two processes. The ray shown intersects the
domain of Process 2 at four points: a, b, c, d. The sub-supersegments
(boxes) are depth-ordered and placed in the correct sequence before
being composited into supersegments.

in parallel without synchronization or communication between the
PEs, as illustrated in Figure 4.

We note that our method includes non-convex distributed volume
rendering as a limit case: when generating only a single superseg-
ment per sub-domain intersection, the compositing algorithm can, in
addition to placing the supersegments in order, also perform over-
operator compositing along the supersegment lists. This effectively
performs volume rendering of a plain image on a non-convex domain
decomposition without requiring synchronization or communication
between PEs.

6 IMPLEMENTATION

We have implemented the algorithms described in the previous sec-
tions on top of the open-source rendering framework scenery [13].
Both sub-VDI generation and VDI compositing are implemented as
compute shaders via the Vulkan API. For work distribution in the
compute shaders, a local work-group size of 16x16 is used, i.e., the
screen space is divided into 2D blocks of that size. Upon raycasting,
each ray within the block corresponds to a thread on the GPU, and a
single pixel on screen. The image load/store texture used for writ-
ing the VDI, which is pre-allocated, with a user-defined maximum
number of supersegments. The layout of the texture is NS×w×h,
which is somewhat unorthodox, but chosen to enable easy decom-
position and fast CPU-side copying for MPI communication. Each
VDI consists of two floating-point textures: one for storing color
and opacity of supersegments (type RGBA32F), and one for the depth
of the supersegments (type R32F). The resulting VDIs have the full
resolution of the screen.

The full source code is available under the open-source BSD
license and can be found at github.com/scenerygraphics/scenery-
insitu.

7 EXPERIMENTAL SETUP

We tested our system on the alpha-centauri partition of the Taurus
high-performance computer at the Technische Universität Dresden.
Each node contains 8 NVIDIA A100-SXM4 GPUs with 40 GB of
DRAM each, 2 AMD EPYC 7352 CPUs with 24 cores each, and 1
TB RAM, and runs Red Hat Enterprise Linux version 7.9. C++ code
was compiled using GCC 10.3.0, Java code was run using OpenJDK
11.0.2, and OpenMPI version 4.1.1 was used. Rendering of VDIs,
performed to verify the quality of VDIs generated, used the recently
proposed raycasting method [12] for rendering VDIs, running on an
Nvidia RTX 3090 on a workstation with Ubuntu 20.04. Performance
of VDI rendering was previously reported on the same hardware
setup, and is therefore not reported here. Processes were always

Algorithm 2: Combining sub-supersegments into superseg-
ments
/* Combining sub-supersegments along a ray
into supersegments for a given γ */

1 supersegmentIsOpen← False
2 f (S), b(S)← 0
3 b(S)t ← 0
4 C(S), α(S)← 0
5 transparent← False
6
/* The front element of all lists is
initialized to the index of the first
element */

7 frontIndex[0 . . .n]← 1
8 while !samplesComplete do
9 C(S sub), α(S sub), f(S sub), b(S sub), p←

findNextSub(frontIndex[])
10 if p = -1 then
11 samplesComplete← True
12 end
13 l← distance(f(S sub), b(S sub))
14 α̃(S sub) = 1 - (1-α(S sub))l

15 if supersegmentIsOpen then
16 if f(S sub) > b(S) then
17 transparent← True
18 C(S sub), α(S sub)← 0
19 b(S sub← f(S sub)
20 f(S sub)← b(S)
21 end
22 C̃(S)← C(S

α(S) )
23 ls← distance( f (S), b(S))
24 α̃(S) = 1− (1−α(S)ls

25 if γ< ||C̃(S)α̃(S)−C(S sub)α(S sub)||2 then
26 newSupersegment← True
27 end
28 if newSupersegment || samplesComplete then

/* Closing S. If γ was the final
value determined by algorithm 1,
store S sub */

29 numTerminations← numTerminations + 1
30 else
31 C(S)← C(S) + (1 - α(S)) * C(S sub) *

α(S sub)
32 α(S)← α(S) + (1- α(S)) * α(S sub)
33 b(S)← b(S sub)
34 if !transparentSample then
35 b(S)t ← b(S sub)
36 end
37 end
38 if !supersegmentIsOpen & !transparent then
39 supersegmentIsOpen← True
40 f (S)← f(S sub)
41 b(S), b(S)t ← b(S sub)
42 C(S)← C(S sub) * α(S sub)
43 α(S)← α(S sub)
44 end
45 end
46 if p 6= -1 & !transparent then

/* Increment the front index of the
process whose supersegment was
selected */

47 frontIndex[p]←frontIndex[p]+1
48 end
49 end

https://github.com/scenerygraphics/scenery-insitu
https://github.com/scenerygraphics/scenery-insitu


(a) Terminations at each transparent
sample.

(b) Terminations determined only by τ .

Figure 5: A VDI rendering at 30° from viewpoint of generation on
the Beechnut dataset, comparing the approach terminating super-
segments at each transparent, vs. not doing so. Both VDIs were
generated using an per-ray γdetermined using algorithm 1. Smearing
artefacts are possible when supersegments are terminated at every
transparent sample, as in (a).

distributed in a block manner across nodes, i.e., all 8 GPUs on a
node were occupied before using another node, if necessary.

The datasets used for the evaluation are described in Table 1.
Kingsnake, Beechnut, and Richtmyer-Meshkov [7] are commonly
used visualization datasets. Boneplug is from a PEGASOS-cleared
mouse tibia bone marrow plug acquired using lightsheet fluores-
cence microscopy [5]. Finally, the rotating stratified turbulence
dataset (Rotstrat) shows the temperature field from a direct numer-
ical simulation of turbulent fluid flow [27]. In each case, we used
a simple domain decomposition, splitting the volumes along their
z-axis equally among PEs.

8 RESULTS AND EVALUATION

We compare the quality of VDIs generated using our content-
adaptive supersegment generation approach (Sect. 4), which uses a
different automatically determined value of γ for each ray, against
the original approach of Frey et al. [11], which used a manually tuned
constant value of γ across all rays. In order to select a suitable global
value of γ for comparison, we run our iterative content-adaptive
algorithm (algorithm 1), producing a unique γ at each ray, and then
choose the median γ over all the rays that passed through non-empty
regions of the volume as the global γ value.

Table 2 reports the results of the comparison, performed on a
VDI of viewport resolution 1920×1080, with NS = 20. VDIs gen-
erated from a viewpoint VO are rendered at different degrees of
rotation around VO. Comparison is performed in each case to the
ground-truth volume rendering, and uses the SSIM [31] metric,
where identical images result in a value of 1.0. We observe that
our content-adaptive approach of selecting a unique γ per ray pro-
duces better or equal results in all cases. The difference in rendering
quality increases with increasing angle deviation around VO. The
exception is the Beechnut dataset, where the selected global γ seems
to be almost optimal.

Our supersegment generation approach also differs from Frey
et al. [11] in how transparent samples along the ray are handled:
We do not terminate a supersegment at each transparent sample,
but allow the termination to be governed only by τ (Equation 1).
Figure Fig. 5 provides a comparison between the two approaches
for the Beechnut dataset. In both cases, a γ is determined per-
ray using algorithm 1, but in the case of Fig. 5a, supersegments
are terminated at every transparent sample, while Fig. 5b uses our
proposed approach of terminating based on τ . A smearing artefact
is visible in Fig. 5a, because some rays exceed their supersegment
budget during generation, due to too many terminations caused by
transparent samples. Our approach avoids the smearing artefact by
merging across transparent samples, if necessary, and better utilizing
the supersegment budget.

Next, we evaluate the run-time of the content-adaptive VDI gener-
ation approach by measuring the time taken to generate a single VDI

on a single GPU for different VDI and dataset resolutions. To test
scalability with volume size, we produce a downsampled version of
the Boneplug dataset with a resolution of 5154×1874×1839 (uint
16), producing a volume that just fits into the 40 GB DRAM of the
Nvidia A100 GPU. Table 3 reports the mean times for the generation
of a single VDI over 144 iterations. Timings reported include the
kernel time as well as the time required to transfer the generated
VDI from the GPU to the CPU. Each subsequent VDI is generated
for a 5° rotation of the dataset, with the camera always pointing at
the center of the dataset, until two full revolutions are completed,
for a total of 360

5 ·2 = 144 successive VDI generations.
Generation times scale as expected with the volume and viewport

resolution: larger numbers of voxels require more memory samples
at each iteration of the γ search, and high viewport resolutions launch
more rays that need to sample the volume. Slightly unexpected is
the observation that VDIs with NS=15 took longer to generate than
VDIs with NS=30, despite the fact that NS=30 VDIs are slower to
write to for the kernel, and slower to fetch from the GPU. Analysis
revealed that this is caused by our γ-search algorithm converging
to a suitable value in fewer iterations for NS=30 VDIs than for the
NS=15 VDIs.

Next, we evaluate the accuracy of supersegment compositing
(algorithm 2). We consider datasets that fit the memory of a single
GPU and compare VDIs generated on a single GPU, where no com-
positing is performed, with VDIs generated with the data distributed
over multiple GPUs. To eliminate potential bias in the results caused
by the domain decomposition splitting the data among PEs only
along along the z-dimension, we choose two different viewpoints
for VDI generation: V1 and V2. V2 is a 90° rotation of the camera
around the dataset from V1. The camera points at the center of the
dataset in both cases. VDIs are then rendered for different view-
points about the viewpoint of generation, and quality is compared
against ground-truth volume rendering. Table 4 reports the results.

We find that the quality of the images produced by VDI rendering
remains similarly high for VDIs generated on multiple GPUs as for
a VDI generated on a single GPU, indicating that our compositing
algorithm is formulated and implemented correctly.

Next, we evaluate the performance of our parallel sort-last com-
positing algorithm, including the MPI communication involved
therein, i.e., Phase 2 (Sect. 5.2) of our parallel VDI generation.
VDIs were generated on the Richtmyer-Meshkov dataset. We note
that the performance of this phase does not scale with the size of
the volume, only with the resolution of the VDI. The dataset filled
the viewport to ensure accurate measurement of the compositing
algorithm, and every subsequent VDI was generated with a revolu-
tion of 10° about the data. Results are averaged over 100 successive
VDI generations. An MPI Barrier was placed before the MPI calls.
Results are reported for in Fig. 6 for the three stages of Phase 2
(Sect. 5.2).

We observe that the overall compositing time increases with
increasing number of GPUs, due to an increase in the time spent
in the MPI AllToAll. Our implementation allocates and transmits
full-resolution 3D sub-VDIs at each PE, which leads to the total data
to be communicated increasing linearly with the number of PEs.

Finally, we evaluate the overall VDI generation and composit-
ing for the large Boneplug and Rotstrat datasets. Performance is
reported in Fig. 7. Once again, the camera revolved around the
dataset at 10° steps, and results are averaged over 100 successive
VDI generations. We observe differing performance and scalability
for the two datasets, which is due to the sub-VDI generation time
being larger for the Rotstrat dataset. This is at least partially due
to the difference in shape between the two datasets; we selected
camera viewpoints such that the entire data was in the viewport. In
the case of the Rotstrat dataset, this meant that the data filled the
viewport along both dimensions, while the Boneplug dataset left the
y-dimension partially empty due to it’s much larger length along



Kingsnake Beechnut Richtmyer-Meshkov [7] Boneplug [5] Rotating stratified turbu-
lence (Rotstrat) [27]

1024×1024×795, 8bit,
795 MiB

1024×1024×1546,
16bit, 3092 MiB

2048×2048×1920, 8bit,
7680 MiB

25762×9366×9189,
16bit, 8.2 TiB;
downsampled to
8588×3122×3064,
16bit, 156 GiB

4096×4096×4096,
32bit, 256 GiB; con-
verted to uint 16,
128 GiB

Table 1: Description of the datasets used.

VDI Generation
Method

Kingsnake Beechnut Richtmyer-Meshkov
S 5° S 30° S 5° S 30° S 5° S 30°

Orig. 0.971 0.931 0.989 0.986 0.981 0.979
Ours 0.986 0.971 0.992 0.986 0.985 0.986

Table 2: Comparing our content-adaptive supersegment against the
original method of Frey et al. [11]. SSIM values of the rendering of
the resultant VDI are compared at 5- and 30-degree rotation, with
respect to ground truth volume rendering.

1280x720

Ns = 15

1280x720

Ns = 30

1920×1080

Ns = 15

1920×1080

Ns = 30

Kingsnake 0.16 0.12 0.27 0.25

Beechnut 0.35 0.31 0.74 0.62

Richtmyer Meshkyov 0.76 0.71 1.37 1.25

Boneplug (34 GB) 1.75 1.72 2.94 2.63

Table 3: Wall-clock time (mean, in seconds) to generate a single
VDI.
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Figure 6: Wall-clock time of the three stages involved the parallel
compositing of a VDI with viewport resolution 1920×1080, NS=20,
for different numbers of GPUs.
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Figure 7: Generation time of 1920×1080 VDIs with NS=20 at
varying degrees of parallelism and data sizes.

x. The difference is particularly evident at small number of GPUs,
where the sub-VDI generation time dominates. At higher number
of GPUs, we observe that the MPI AllToAll time begins to domi-
nate, as the data is divided into smaller chunks, and communication
increases (Fig. 6).

We also evaluate the quality of the final VDIs generated on the
Boneplug and Rotstrat datasets. Results are reported in Table 5,
showing that image quality is maintained on VDIs generated on the
largest of the datasets tested. Fig. 8 provides visual comparison.

9 DISCUSSION AND CONCLUSIONS

We have presented algorithms for content-adaptive generation of
Volumetric Depth Images [11] on distributed volume data and their
parallel compositing. This enables responsive visualization of large
distributed volume data on GPU clusters. We introduced a per-ray
iterative search for the supersegment termination criterion in order
to enable automatic generation of optimally homogeneous superseg-
ments. We proposed a sort-last parallel generation approach to scale
to large volume sizes. Full resolution VDIs are generated at each
PE and composited in parallel. No communication or transfer of the
volume data is required. We also proposed a parallel compositing
algorithm where the supersegments generated on each PE are treated
as samples of various lengths and accumulated into a combined final
VDI for display.

Our benchmarks have shown that using a per-ray value of γ , in-
stead of a global value as originally proposed by Frey et al. [11],
produces VDIs that provide better or equal quality rendering approxi-



1 GPU 4 GPUs 32 GPUsDataset 5° 15° 30° 5° 15° 30° 5° 15° 30°
V1 0.986 0.981 0.971 0.982 0.976 0.967 0.985 0.980 0.969Kingsnake V2 0.986 0.981 0.974 0.986 0.981 0.974 0.984 0.980 0.972
V1 0.993 0.990 0.986 0.992 0.990 0.986 0.991 0.989 0.985Beechnut V2 0.991 0.983 0.973 0.991 0.984 0.973 0.991 0.983 0.972
V1 0.985 0.985 0.986 0.985 0.985 0.986 0.984 0.984 0.984Richtmyer-Meshkov V2 0.985 0.984 0.986 0.985 0.984 0.986 0.984 0.983 0.985

Table 4: The SSIM quality, with respect to ground truth volume rendering, for VDIs generated using varying number of Nvidia A100 GPUs.
VDIs generated on 4 and 32 GPUs are composited using our compositing algorithm (Sect. 5.2), while VDIs generated on 1 GPU do not
undergo compositing. All VDIs were of viewport resolution 1920×1080, with NS= 20.

Dataset 10° 20° 30°
Boneplug 0.978 0.975 0.972
Rotstrat 0.982 0.978 0.975

Table 5: SSIM image similarity between 1920×1080, NS 20 VDIs
generated on 16 GPUs, and ground truth volume rendering, at vary-
ing degrees of rotation about the viewpoint of generation.

(a) VDI rendering, SSIM 0.978 w.r.t. (b) (b) Ground truth volume rendering

(c) VDI rendering, SSIM 0.975 w.r.t. (b) (d) Ground truth volume rendering

Figure 8: Visual comparison between ground-truth volume render-
ings and a VDI generated on 16 GPUs at 20° viewpoint deviation.

mations (Table 2). It also enables VDIs to be generated automatically,
eliminating the need for manual parameter tuning, which would be
hard in a distributed setup. Further, our benchmarks showed that the
proposed compositing algorithm maintains the quality of the VDI
(Table 4). The sort-last parallel generation approach enables the
generation of VDIs representing more that 100 gigabytes of volume
data in less than 2 seconds (Fig. 7), depending on the degree of
parallelism.

We evaluated compression of the VDI and found that the multi-
threaded LZMA (compared to Brotli, gzip, and Zstd) performed best,
yielding combined compression and decompression times of about
one second (tested on an Apple M1 Max using 10 CPU threads),
reducing the total VDI size to about 80 MiB for a full-HD viewport
resolution and NS=20. The generated VDI therefore provides a com-
pact representation of the volume that can be streamed for responsive
visualization with 6 degrees of freedom for the camera movement.
Recent work [12] has shown that full-HD VDIs can be rendered at
between 13 and 84 fps for viewpoint deviations between 5° and 30°.
While rendering of the VDI maintains responsive visualization at
the user’s display, a new VDI could be generated from the user’s
latest viewpoint and streamed when ready, maintaining interactivity
and accuracy.

We performed benchmarks on volume data loaded from disk,

which allowed us to analyze the performance of the VDI generation
in isolation. However, we also see this as a potential solution for
live in situ visualization of numerical simulations. The time taken
to generate a VDI (Fig. 7) is shorter or comparable to the time
steps of typical computer simulations, implying that visualization
at full temporal resolution would be possible. In comparison to
the Cinema technique [2], which generates a database of images
to enable interactive visualization, the VDI does not require the
desired viewpoints to be pre-defined, and it allows for full 6 degrees-
of-freedom user navigation. It also is generated from only one
viewpoint and is therefore potentially faster and more compact than
the larger number of images that would need to be generated for a
database to enable navigation with 6 degrees of freedom. In this
sense, the present approach is complementary to Cinema. While
Cinema enables post-hoc exploration of a wide array of visualization
parameters, we focus on rapid viewpoint changes in a live in situ use
case with potentially remote display clients.

We note that while the present content-adaptive supersegment
generation approach was efficient here (Table 3), it may run into
limitations when the VDI is to be generated with more complex
lighting models, such as global ambient occlusion. Then, each step
of the iterative algorithm would need to perform additional lighting
calculations. We also observe that our use of MPI All to All for
compositing full-resolution VDIs does not scale to arbitrarily large
numbers of GPUs (Fig. 6). Ensuring theoretical scalability would
likely require the use of Active Pixel encoding for the sub-VDIs, as
for example implemented in IceT [19].

Nevertheless, we believe the methods we have proposed represent
a significant advance in the field of view-dependent volume repre-
sentations, such as the VDI, and their use on large, distributed data.
We see our method finding use in interactive applications, such as
the computational steering of distributed numerical simulations.
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