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Figure 1: (a) Rendering of a 1280x720 view-dependent piecewise constant representation, at 30° rotation from the viewpoint of
generation, of the Beechnut dataset (1024x1024x1546 uint16) using the proposed method at 47 fps on an Nvidia GeForce RTX
3090. (b) Reference volume rendering at 14 fps with SSIM between (a) and (b) of 0.982. (c) Accelerated preview rendering of (a)
at 60 fps using the proposed method with SSIM of 0.90 w.r.t. (a).

ABSTRACT

We present an efficient raycasting-based rendering algorithm for
view-dependent piecewise constant representations of volumetric
data. Our algorithm leverages the properties of perspective pro-
jection to simplify intersections of rays with the view-dependent
frustums that form part of these representations. It also leverages
spatial homogeneity in the underlying volume data to minimize
memory accesses. We further introduce techniques for skipping
empty-space and for dynamic subsampling for accelerated approxi-
mate renderings at controlled frame rates. Benchmarks show that
responsive frame rates can be achieved close to the viewpoint of
generation for HD display resolutions, while providing high-fidelity
approximate renderings of Gigabyte-sized volumes.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms Human-centered
computing—Visualization—Visualization techniques

1 INTRODUCTION

View-dependent, piecewise constant representations of volumetric
data decompose the volume rendering integral into segments that
store composited color and opacity. Rendering such a represen-
tation involves compositing these segments, which is much less
expensive than performing the full integration [7], and produces
high-fidelity approximations for camera viewpoints near the view-
point from which the representation was generated [5, 9]. These
representations are much smaller than the original volume data and
can be generated and streamed efficiently [4, 5], providing an attrac-
tive solution for interactive remote rendering. However, available
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rendering techniques for visualizing view-dependent piecewise con-
stant representations do not scale to display and volume resolutions
common today.

In this work, we present an efficient raycasting-based rendering
method that is designed to scale to large volumes and high-resolution
(full-HD) displays. At the core of our raycasting algorithm is a
simplified way of computing intersections of rays with segments
by computing them in clip space, as well as minimizing memory
accesses by leveraging spatial homogeneity in the data. We addi-
tionally show how empty regions can be efficiently skipped in our
raycasting algorithm, and we propose a technique to subsample a
VDI to maintain a desired frame rate. We benchmark our algorithm
on multiple datasets and with different levels of compresssion, and
package our implementation as an extension of an existing open-
source visualization library omitted for blind review.

2 BACKGROUND AND RELATED WORK

Frey et al. [5] introduced the Volumetric Depth Image (VDI) as a
compressed, view-dependent piecewise constant representation of
volumetric data, and we adopt the nomenclature introduced therein.
Fig. 2a illustrates the structure of a VDI. Each ray cast into the
volume from the original viewpoint (VO) decomposes the rendering
integral into so-called supersegments. Each ray i generates a list Li
of supersegments Si

j that store the distance of their front and the back
faces from the near-plane, f (Si

j) and b(Si
j), respectively. Each Si

j
contains pre-classified accumulated color and opacity between f (Si

j)

and b(Si
j), potentially determined with global lighting techniques,

such as ambient occlusion. Fully transparent regions in the volume
are not included in supersegments.

Given perspective projection during VDI generation, L evenly
subdivides the space spanned by the respective view frustum. As
such, all Li and Si

j are irregular pyramidal frustums themselves.
VDI generation techniques [2,5,9] predefine a maximum number

of supersegments per-list NS, which determines the size of the VDI

ar
X

iv
:2

20
6.

08
66

0v
1 

 [
cs

.G
R

] 
 1

7 
Ju

n 
20

22



O
rig

in
al

 V
ie

w
po

in
t

New Viewpoint
1

2
3

Volume bounding box

tnear

tfar

Supersegment list

L

P2_w

P1_w

 

Near plane

Original view direction

(a) The structure of the Volumetric Depth Image [5] and the rendering calculations that are
performed in world space. S and L form pyramidal frustums in world space. The start and
end points for ray marching are determined by intersecting the viewport and the volume
bounding box. Once Si

j intersection points are determined in clip space, they are converted
back to world space to determine the length of intersection.
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(b) Raycasting the VDI in clip space of VOfor determining S intersections. The start and
end points of the ray are converted to clip space, and the ray steps through L, determining
S intersections. The intersection points are converted back to world space to determine
intersection length.

Figure 2: The structure of the VDI and the coordinate system transformation involved in the rendering.

along with the viewport dimensions, i.e., the number of lists, NL.
Typically, the number of lists is much greater than the number of
per-list supersegments, i.e., NL� NS. Different criteria have been
used to determine supersegment lengths. Brady et al. [2] generate
equal-sized supersegments in each ray. Lochmann et al. [9] divide
the accumulated transmittance along the ray equally among the
supersegments, while Frey et al. [5] use homogeneity within the
supersegments as the criterion, and we follow this approach in our
implementation. Note that our proposed method to render VDIs is
agnostic to the method with which the VDI is generated.

Rendering a VDI representing a volume data set requires inte-
grating over the Si

j instead of the original voxels. Several methods
have been proposed for this. Brady et al. [2] rely on equal-sized
supersegments in each list for their alpha-blending-based rendering
approach, and therefore cannot generalize to supersegments with
arbitrary lengths. Frey et al. [5] propose an object-space approach
that creates frustum geometry for each supersegment Si

j . The su-
persegment lists Li are sorted for the new viewpoint and rendered
using alpha-blending. The opacity contribution from Si

j is based on
the intersection length with a ray from the new viewpoint. This ap-
proach, however, requires creating six triangles to represent the front
faces of each individual Si

j , leading to an excessive total number for
high-resolution VDIs.

Ray-based techniques do not create any geometry and therefore
scale better to higher-resolution VDIs. Being image-based tech-
niques, they also allow for early ray termination and can better
leverage the anisotropy of the VDI, as rays can march quickly along
the lists. In the raycasting method by Lochmann et al. [9], a ray
from VN is projected onto VO, rasterized, and traversed using DDA
(digital differential analyzer) to determine the lists intersected. For
each intersected list, it then computes intersections with the pyra-
midal frustum-shaped supersegments. Our method, on the other
hand, carries out all Si

j intersections in the clip space of VOwhere
all Si

j and Li are cuboids Fig. 2b, thereby enabling the use of voxel
stepping [1] to traverse L, and simplifying the calculations required
to determine intersections with S. Additonally, we leverage spatial
homogeneity across lists to minimize memory accesses (Alg. 1),
propose a method to skip empty regions along rays, and a method
for subsampling the ray for preview rendering.

3 VDI RENDERING BY RAYCASTING

For each pixel in the final rendered image, we cast a ray into the
VDI. The ray passes through supersegment lists L, searches for
supersegments S within them, calculates the intersection length
with each intersected S, thereby adjusting the color contribution
obtained from the supersegment, which it accumulates using the
over operator [10]. The process is illustrated in Fig. 2. The start and
end points for the ray marching are determined by the intersection of
the viewport that was used to create the VDI, and the bounding box
of the volume in the scene. In Fig. 2, for example, the ray marching
begins at tnear and ends at tfar.

To simplify the procedure of traversing through L and determin-
ing intersection lengths with S, the calculations are carried out in
the perspective-deformed clip space of VO. While in world space S
and L form pyramidal frustums, in perspective clip space, they are
transformed into cuboids(Fig. 2b). In clip space, we therefore have
a regular 2D grid of L, each of which is a cuboid. The rendering ray
then traverses this grid using the fast voxel traversal algorithm by
Amanatides and Woo [1]. The traversal not only determines which
L are intersected by the ray, but also returns the intersection points
with a given Li, which are then used to search for Si

j within Li.
For each intersected L, we need to find the S that cover the region

between the entry and exit points of the ray. Once the first of these Si
j

is determined (if any), finding the next is trivial, since the S within L
are implicitly sorted by their position. The algorithm simply needs
to check the next or preceding index, depending on the relative
direction of the ray within L, which is evaluated by the sign of the
scalar product between the ray and the the original ray vector.

To determine the first intersected Si
j in Li, we use information

from the intersections in the previously intersected Lk. For the
very first L intersected by the ray, no such information exists, and
therefore a binary search is done over the S in the first L. For every
subsequent Li, the index p of the last Sk

p found in the previous Lk
is used as an initial guess. If no S was found, p is the index of the
nearest S from the exit point in Lk. If Si

p is not the first supersegment
intersected in the Li, the adjacent index is checked depending on
which side of the ray Si

p lay. If no Si
j is found still, then a binary

search is carried out among the relevant S indices. Algorithm 1
describes this process in detail. In Fig. 2b, for example, when the
ray enters L3, it first tests for intersection with S3

2, which was the
last index intersected in L4. Since S3

2 lies behind the entry point, S3
3



is tested next which is found to intersect the ray.
Our S search routine (see Alg. 1) leverages the spatial smoothness

in the volume data on which the VDI was created: since neighbour-
ing L are created from rays that pass nearby in the data, they are
likely to contain similar sized S. The algorithm is aimed at mini-
mizing costly memory accesses, and provides the method with good
scaling properties with respect to NS(Table 1).

Algorithm 1 Find the first supersegment on a ray entering a list Li

Input: (ientry,iexit ): entry and exit intercepts of the ray in Li, p: the
index of the last intersected S in the previous Lk
Output: index j of the first S intersected in Li, -1 if no such S
Where: BinS(ip) is a binary search function returning an index j
such that b(Si

j) <ip <b(Si
j+1)

1: if p is -1 then
2: BinS(ientry)
3: else
4: if does not exist Si

p or b(Si
p) ≥ ientry then

5: if b(Si
p−1) < ientry then

6: if exists Si
p then j = p else j = BinS(ientry)

7: else
8: if b(Si

p−2) < ientry then
9: if exists b(Si

p−1) then j = p − 1 else j =
BinS(ientry)

10: end if
11: end if
12: else
13: if b(Si

p+1) ≥ ientry then j = p+1 else j = BinS(ientry)

14: end if
15: end if
16: if f (Si

j) > iexit then
17: return j
18: else
19: return -1
20: end if

4 EMPTY-SPACE SKIPPING

The proposed image-order raycasting technique has a number of
advantages over object-order techniques, as outlined in Sect. 2, but
suffers from the lack of inherent support for skipping empty regions,
which are common in most datasets and transfer functions. Since
the performance of the proposed method heavily depends on the
number of memory accesses along a ray, we require an acceleration
data structure built on top of the VDI to skip empty regions.

The VDI does contain the information required to skip empty
space implicitly within a L: consecutive S are sorted, and contain
front and back depths indicating their positions along L. However,
this information cannot be queried based on the current ray position
when moving from one L to the next. In Fig. 3, Ray 1 must sample
each Li at least once even in empty areas, to determine that no Si

j in
those Li is intersected.

We therefore use a grid data structure that informs whether the
region covered by a grid cell is empty or not. When the ray lands
in a cell that is empty, it can immediately jump to the other end of
the cell. Ray 2 in Fig. 3, for example, thus skips several memory
accesses in empty regions. Of course, the grid data structure itself
must be accessed once to identify an empty cell.

The grid cells are created such that they have a constant depth
extent in view space. In clip space, this corresponds to cells that are
larger near the near plane, and smaller near the far plane, due to the
non-linear conversion. Each cell spans an equal number of L along
both dimensions of the viewing plane. The depth of a cell in view
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Figure 3: The grid data structure used for empty-space skipping and
for preview rendering. Numbers in lower right corners are the values
stored in each cell, which indicat the number of supersegments
intersecting that cell. The rays illustrate different traversal strategies:
Ray 1 is the base raycasting algorithm, ray 2 skips empty cells, and
ray 3 subsamples the VDI for preview rendering. Black dots indicate
points at which the rays query the VDI to search for a supersegment
in a list.

space is much larger than its width or height, in keeping with the
anisotropic compression in the VDI: there are far fewer Si

j along Li
than there are Li in the viewing plane.

The 3D grid data structure could be extended to hierarchical
structures that provide better empty-space skipping performance,
such as an octree [8] or sparse-leap [6]. Although, for empty space
skipping, it would be sufficient to simply store a 1 in a grid cell to
indicate that it is not empty, we store instead the total number of
S contained in the region covered by the cell, as shown in Fig. 3.
Grids that span multiple cells are considered as belonging to each
one. The generation of the grid data structure can be integrated
into the generation of the VDI, with each Si

j generated triggering an
atomic add on the appropriate grid cell. The total number of S in a
cell is required for preview rendering when the viewpoint changes
significantly, as explained in the next section.

5 DYNAMIC SUBSAMPLING FOR PREVIEW RENDERING

The rendering performance of the proposed raycasting algorithm
depends on the number of memory accesses made by the rays as they
traverse the VDI. In the original view direction (VO), and nearby,
high frame rates can be achieved as the VDI is compressed along VO.
When the viewpoint changes significantly, rendering performance
reduces, as a larger component of the ray is along one of the view
plane dimensions. In a real-time remote rendering application, a
new VDI could be generated when the viewpoint changes signifi-
cantly, which, once generated, would provide fast and high quality
rendering near the new viewpoint. While the new VDI is generated
and streamed, however, the rendering of the old VDI may need
to maintain rendering performance, trading off quality, to provide
preview rendering. This is especially important in applications that
require a frame rate guarantee, such as Virtual Reality.

We achieve this by sampling a dynamically determined number
of points along the ray when the frame rate falls below the desired
value. No S intersections are calculated. As the ray marches, it
simply queries which Si

j a given sample point lies within, if any,
and obtains the color from Si

j. Length-based opacity correction is
applied based on the distance (in non-empty cells) from the previous
sample point, thereby making the assumption that the emittance and



Dataset NL

Volume VDI, NS15 VDI, NS30

f, 5° f, 30°
5° 30° 5° 30°

f fe s f fe s f fe s f fe s

Kingsnake

1024x1024x795

8bit

1280x720 31 30 231 277 0.982 63 92 0.966 207 235 0.984 58 97 0.978

1920x1080 17 17 90 126 0.985 20 32 0.964 80 110 0.987 19 36 0.980

Beechnut

1024x1024x1546

16bit

1280x720 18 17 166 239 0.99 47 68 0.982 143 175 0.992 40 59 0.988

1920x1080 16 14 68 100 0.991 15 24 0.982 57 74 0.993 13 21 0.988

Richtmyer-

Meshkov [3]

2048x2048x1920

8bit

1280x720 9 7 267 302 0.948 83 108 0.970 218 226 0.97 71 87 0.983

1920x1080 6 4 106 121 0.958 28 39 0.976 84 91 0.976 24 32 0.986

Table 1: Benchmarking the proposed rendering algorithm, including the empty-space skipping technique, for different datasets, at different
VDI resolutions, and at different degrees of movement around VO. Columns titled ’f’ represent frame rates without empty space skipping, fe is
the frame rate with empty space skipping, and s is the similarity metric SSIM. Inset images show baseline volume rendering at VO.

transmittance stored in Si
j remain constant over the jump distance.

Since Si
j intersections do not need to be calculated, the subsampling

takes place directly in world space, which also allows for the samples
to be taken at regular intervals along the ray. Each sample point
determines which Li it lies within, based on it’s x- and y-coordinates
in clip space, and then uses Alg. 1 to determine the Si

j along Li.
The total number of samples to be taken along the ray is deter-

mined based on the render time of the last 5 frames. If the average
frame rate differs from the desired value by more than a user-defined
threshold, a rough estimate of the cost per sample is calculated as the
average frame time / number of samples, and the number of samples
is accordingly adjusted.

The ray only samples the VDI in non-empty cells of the grid
acceleration data structure. The total number of samples is divided
among the non-empty cells intersected by the ray, with the sampling
frequency in a cell directly proportional to the number of S contained
in the region covered by that cell, which is stored in the grid (Sect. 4).
Ray 3 in Fig. 3, for example, samples the grid with 12 S more finely
than the ones with 4 and 2 S.

6 IMPLEMENTATION AND EVALUATION

Our raycasting algorithm is implemented using Vulkan compute
shaders. It is available open-source, implemented as an extension of
the omitted for blind review visualization library. All benchmarks
were carried out on a workstation with an Nvidia GeForce RTX
3090, running Ubuntu 20.04. For technical reasons, volume datasets
greater than 2 GB in size needed to be split into slices before loading
for volume rendering. VDIs of a given viewport resolution NLwere
always rendered at NLdisplay resolution.

We evaluate our method on a VDIs of different sizes, generated on
various volume datasets. Results are reported in Table 1. VDIs were
generated at VO, chosen such that the data filled the viewport. Image
similarity was compared using the Structural Similarity (SSIM)
metric [11], where higher values are better, 1.0 representing identical
images. Baseline volume-rendering performed simple over-operator
based accumulation, with a 1D transfer function, and no advanced
lighting.

The performance of the rendering algorithm was found to scale
well with NS. Despite double the number of S generated by non-
empty L in the NS30 configuration, frame rates drop by ∼20% in
most cases. This is in contrast to object-space approaches [5] which
scale directly with both NSand NL. On the other hand, frame rates
fell sharply when using the full-HD resolution, a consequence of the
fact that 4x rays were to be cast, with each ray stepping through a

Target fps 40 fps 50 fps 60 fps 70 fps 80 fps
SSIM 0.9059 0.9025 0.8978 0.8917 0.8836

Table 2: SSIM similarity between full VDI rendering and images
produced by dynamic subsampling for a target fps on a 1920x1080
VDI of the Beechnut dataset with NS15 at VN= 30°.

higher NL. Rendering quality was found to be higher when using
NS30, with the difference more pronounced at the 30° deviated
viewpoint. An anomaly in this regard was the Richtmyer-Meshkov
dataset [3], where the higher approximation quality at 30° was
attributed to the choice of VOwhich presented more detail at the
5° viewpoint. Empty-space skipping was found to perform well,
providing speed ups in each case, and >20% in most cases. The
observed heavy reliance of performance on VNis expected due to
the anisotropic view-dependent compression in the VDI.

The dynamic subsampling approach for preview rendering was
evaluated on the Beechnnut dataset, at the 1920x1080 resolution
with NS15, at 30° around VO. The full-resolution VDI rendering
in this configuration yielded 24 fps with empty-space skipping(Ta-
ble 1). Table 2 reports the SSIM between the image produced by
the proposed subsampling method for a target frame-rate, and the
reference full-resolution VDI rendering.

7 CONCLUSIONS

We presented an efficient raycasting algorithm for view-dependent
piecewise constant representations of volumetric data, such as the
Volumetric Depth Image (VDI) [5]. We used raycasting with super-
segment intersection computed in clip space, efficient empty-space
skipping, and minimized memory accesses by exploiting spatial
smoothness in the data. This resulted in a VDI rendering algorithm
suited for generating high-resolution images of large volume data at
responsive frame rates.

We presented benchmarks on different volume datasets and for
different VDI compression ratios, rendering images at HD and Full
HD resolution. In all cases, the frame rates achieved by our ap-
proach were significantly higher than those achieved by volume
rendering. We observed >200 fps for small (5°) differences between
the viewpoint from which the VDI was generated and the render-
ing viewpoint. For large (30°) viewpoint differences, frame rates
remained >20 fps when empty-space skipping was used.

We further introduced dynamic subsampling for accelerated ap-
proximate rendering of VDIs. This enabled achieving desired frame
rates at the expense of rendering quality, which we quantified. We



anticipate that the proposed approach may be particularly useful in
interactive remote rendering applications.
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