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On c-embedded subgroups of finite groups

Julian Kaspczyk*

Abstract

Let G be a group and H < K < G. We say that H is c-embedded in G with respect
to K if there is a subgroup B of G such that G = HB and H N B < Z(K). Given a
finite group G, a prime number p and a Sylow p-subgroup P of GG, we investigate the
structure of G under the assumption that Ng(P) is p-supersolvable or p-nilpotent and
that certain cyclic subgroups of P with order p or 4 are c-embedded in G with respect
to P. New characterizations of p-supersolvability and p-nilpotence of finite groups will
be obtained.
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1 Introduction

All groups in this paper are implicitly assumed to be finite. We use standard notation and
terminology, see for example [I0] or [II]. Throughout, p denotes an arbitrary but fixed
prime.

Recall that a group G is said to be p-nilpotent if G has a normal Hall p’-subgroup.
This concept plays an important role in local finite group theory, and many criteria for p-
nilpotence of finite groups can be found in the literature. For example, a well-known theorem
of Burnside asserts that a group G with Sylow p-subgroup P is p-nilpotent if P < Z(Ng(P)),
or equivalently if P is abelian and Ng(P) is p-nilpotent (see [II, Theorem 5.13]). This
result has been generalized in many directions, and we shall now consider some of these
generalizations.

First let us introduce some notation. Let P be a p-group and ¢ be a positive integer.
Then the subgroup of P generated by all elements z of P with 27" = 1 is denoted by Q;(P).
We set Q(P) := Qy(P) if p is odd and Q(P) := Qu(P) if p = 2.

In 1974, Laffey [12] published the following generalization of Burnside’s p-nilpotency
criterion: If G is a group and P is a Sylow p-subgroup of G, then G is p-nilpotent if
Q(P) < Z(P) and Ng(P) is p-nilpotent (see [12, p. 136]).

In 2000, Ballester-Bolinches and Guo [3] published the following more general result: If G
is a group and P is a Sylow p-subgroup of G, then G is p-nilpotent if Q(PNG’) < Z(Ng(P))
(see [3, Theorem 1]). Moreover, they proved that a group G with Sylow 2-subgroup P is
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2-nilpotent if (P NG') < Z(P), P is quaternion-free and Ng(P) is 2-nilpotent (see [3),
Theorem 2]). Here, a group is said to be quaternion-free if it has no section isomorphic to
the quaternion group of order 8.

For a non-empty formation § and a group G, we use G to denote the §-residual of G,
i.e. G¥ is the smallest normal subgroup of G' whose quotient lies in §. As usual, ¢ denotes
the formation of all nilpotent groups.

In 2004, Asaad [1] published the following result, which extends the above-mentioned
results of Ballester-Bolinches and Guo.

Theorem 1. ([I, Theorem 1 (a) < (b)]) Let P be a Sylow p-subgroup of a group G. If p =2,
assume that P is quaternion-free. Then the following statements are equivalent:

(1) G is p-nilpotent.
(2) Ng(P) is p-nilpotent and Q,(G™* N PN P*) < Z(P) for all z € G\ Ng(P).

Recall that a group G is said to be p-solvable if any chief factor of GG is either a p-group
or a p’-group. A p-solvable group G is called p-supersolvable if every p-chief factor of G
has order p. The formation of all p-supersolvable groups is denoted by l,,. Note that every
p-nilpotent group is p-supersolvable. In particular, we have G* < G™ for any group G.

By [13, Theorem 2.2|, if P is a Sylow p-subgroup of a group G, then we have P N
G™ = PN G, where 91, denotes the formation of all p-nilpotent groups. Therefore, the
nilpotent residual G™ can be replaced by the p-nilpotent residual G™ in Theorem [l In
view of this observation, it is natural to ask whether Theorem [Il still remains true when the
nilpotent residual G™ is replaced by the p-supersolvable residual G*. We will show that G™
cannot only be replaced by GY but that it is enough to require in (2) that the normalizer
Ng(P) is p-nilpotent and that every minimal subgroup of G** N P N P® is central in P or
complemented in G for all + € G\ Ng(P). We will also show that Theorem [I] remains
true if we additionally replace ”p-nilpotent” by ”p-supersolvable” in both statements of the
theorem and furthermore assume G to be p-solvable.

In fact, our results are slightly more general than just stated, and they also deal with
the case that P € Syl (G) is not quaternion-free when p = 2. In order to state our results
in full generality, we introduce the following definition.

Definition 2. Let G be a group and H < K < G. Then H is said to be c-embedded in G
with respect to K if there is a subgroup B of G such that G = HB and H N B < Z(K).

Let G be a group and H < K < G such that H is c-embedded in G with respect to K,
so that there exists a subgroup B of G with G = HBand HNB < Z(K). f HNB =1
then H is complemented in G, and if HN B = H then H iscentral in K. If 1l < HNB < H,
then H can be described as being between complemented in G and central in K. Note that
if H is a minimal subgroup of G, then H is c-embedded in G with respect to K if and only
if H is complemented in G or central in K.

Having introduced the concept of c-embedded subgroups, we can now state our main
results.

Theorem A. Let P be a Sylow p-subgroup of a p-solvable group G. Then G is p-supersolvable
if and only if the following two conditions are satisfied:
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(1) Ng(P) is p-supersolvable.

(2) For allz € G\ Ng(P), the following hold: Any subgroup of G* N P N P with order
p is c-embedded in G with respect to P. Moreover, if p = 2 and G* N P N P* is not
quaternion-free, any cyclic subgroup of G*» N P N P* with order 4 is c-embedded in G
with respect to P.

The p-solvability condition on G cannot be dropped in Theorem [Al For example, the
conditions (1) and (2) from Theorem [A] are satisfied for G = As and p = 5 since a Sylow
5-subgroup of Ay is cyclic of order 5 and has a normalizer of order 10, but As is not 5-
supersolvable.

Theorem B. Let P be a Sylow p-subgroup of a group G. Then G is p-nilpotent if and only
if the following two conditions are satisfied:

(1) Ng(P) is p-nilpotent.

(2) For all z € G\ Ng(P), the following hold: Any subgroup of G% N P N P with order
p is c-embedded in G with respect to P. Moreover, if p = 2 and G* N P N P* is not
quaternion-free, any cyclic subgroup of G*» N P N P* with order 4 is c-embedded in G
with respect to P.

2 Preliminaries

In this section, we collect some lemmas needed for the proofs of our main results. The
following well-known result can be deduced from [2, Theorem 1 and Proposition 1].

Lemma 3. Let G be a p-solvable minimal non-p-supersolvable group. Then the following
hold:

(1) GY is a p-group, G* has exponent p if p is odd and exponent at most 4 if p = 2.
(2) GY /®(G™) is a chief factor of G.

Lemma 4. Let G be a p-solvable minimal non-p-supersolvable group, H be a proper subgroup
of G* and B be a subgroup of G such that G = HB. Then B = G.

Proof. Assume for the sake of contradiction that B is a proper subgroup of G. Let M be a
maximal subgroup of G such that B < M. Then G* £ M because otherwise G = HB < M.
Thus G = MG,

We have ®(G*) < G** N ®(G) < G* N M. By Lemma B[(1), G¥ is a p-group. Since
G /®(G"r) is elementary abelian, (G** N M)/®(G¥) is normal in G* /®(G**). So G*¥* N M
is normal in G¥. Since G*» N M is also normal in M and since G = MG*, it follows that
G NM <G.

As G /®(GY) is a chief factor of G by Lemma Bl(2), it follows that either G* N M =
O(G¥) or G N M = G¥. In the latter case, we have H < M and so G = HB < M, a
contradiction. Thus G* N M = &(G*»).

Now we have G** = G N HB = H(G* N B) < H(G* N M) = H®(G"). Thus
GY = H®(GY) and so G* = H. This is a contradiction since H is assumed to be a proper
subgroup of G*». So we have B = G. O



Lemma 5. Let G be a group and L be a subgroup of G. Then L¥ < G¥.

Proof. Set Ly := LN GY. Then L/Ly & LG*/G* < G/GY. As subgroups of p-
supersolvable groups are p-supersolvable, it follows that L/Lq is p-supersolvable. Thus
LY < Ly < G, O

Lemma 6. Let G be a p-supersolvable group and P be a Sylow p-subgroup of G. Suppose
that Ng(P) is p-nilpotent. Then G is p-nilpotent.

Proof. Set G := G/O,(G). Then G is p-supersolvable and O, (G) = 1. So G is p-closed by
[5, Lemma 2.1.6]. Consequently P < G, and so G = Ng(P) = Ng(P). Now, since Ng(P) is
p-nilpotent, we have that G = Ng(P) is p-nilpotent. This implies that G is p-nilpotent. [

3 Proofs of Theorems A and B

Proof of Theorem [Al Let G and P be as in the statement of Theorem [Al Assume that
G is p-supersolvable. Then, since subgroups of p-supersolvable groups are p-supersolvable,
we have that Ng(P) is p-supersolvable, whence condition (1) from Theorem [Al is satisfied.
Also G* = 1, so that condition (2) from Theorem [Alis trivially satisfied.

Suppose now that conditions (1) and (2) from Theorem [Al are satisfied. We have to show
that G is p-supersolvable. To prove this, we assume that G is not p-supersolvable, and we are
going to derive a contradiction from this assumption. Since G is not p-supersolvable, G has
a minimal non-p-supersolvable subgroup, say L. Without loss of generality, we assume that
PN L eSyl,(L). As G is p-solvable, we have that L is p-solvable, and so I* is a p-group
by Lemma[B[(1). In particular L*» < PN L. In order to obtain the desired contradiction, we
proceed in a number of steps.

1) Any subgroup of L¥ with order p is c-embedded in G with respect to P. Moreover, if
p =2 and L* is not quaternion-free, any cyclic subgroup of L* with order 4 is c-embedded
in G with respect to P.

Since Ng(P) is p-supersolvable and L is not p-supersolvable, we have L € Ng(P). Let
r € L\ Ng(P). Using Lemma [Fl and the fact that L% < L, we see that L' = L% N (L*)*N
GY < PN P*NGY%. Since condition (2) from Theorem [A] is satisfied by assumption, it
follows that any subgroup of L** with order p is c-embedded in G with respect to P.

Assume that p = 2 and that L' is not quaternion-free. Then P N P* N G¥ is not
quaternion-free either, and so the validity of condition (2) from Theorem [Alimplies that any
cyclic subgroup of I with order 4 is c-embedded in G with respect to P.

2) If H is a proper subgroup of L which is c-embedded in G with respect to P, then
H< Z(P).

Let H be a proper subgroup of L* such that H is c-embedded in G with respect to P.
Hence there is a subgroup B of G such that G = HB and H N B < Z(P). Set By := LN B.
Then L = LN HB = HBy. Lemma [ implies that L = By < B. So it follows that
H=HnNB<KZ(P).

3) L% < Z(P).



Suppose that LY has exponent p. Let # € LY. We show that z € Z(P). Clearly, we
only need to consider the case z # 1. Then |(z)| = p. We have |L¥**| > p since L would be
p-supersolvable otherwise. Hence (z) is a proper subgroup of L¥*». So 1) and 2) imply that
x € Z(P). As x was arbitrarily chosen, it follows that L' < Z(P).

Suppose now that LY does not have exponent p. Then, by Lemma B(1), p = 2 and
L[*2 has exponent 4. Therefore L is a group appearing in [4, Theorem 9] as a group of
Type 3. In particular, L*2 = P N L is a non-abelian special 2-group, ®(L*?) < Z(L) and
|L¥2 /@(L¥2)| = 22, |®(L¥2)] < 2™ for some positive integer m.

We claim that L*2 is not quaternion-free. Assume that m = 1. Then |L¥*2| = 8, and L*?
cannot be dihedral because then LY /®(L*2) would not be a chief factor of L. Consequently
L* is isomorphic to the quaternion group of order 8 and in particular not quaternion-
free. Assume now that m > 1. Let R be a maximal subgroup of ®(L¥2). Then L*2/R is
extraspecial of order 22™*1 > 2° and so L*2/R has a section isomorphic to the quaternion
group of order 8 (see [, Chapter 5, Theorem 5.2]). Hence L¥2 is not quaternion-free.

Now let # € L*2. We show that z € Z(P). Clearly, we only need to consider the case
x # 1. Then |[{x)| = 2 or 4. Also (x) is a proper subgroup of L*2. So 1) and 2) imply that
x € Z(P). As x was arbitrarily chosen, it follows that L' < Z(P).

4) The final contradiction.

Set N := Ng(L*). By 3), we have P < Cg(L*). Since Cg(L*) < N, the Frattini
argument implies that N = Ny (P)Cq(L").

Clearly L* <O Ny(P). Let 1 = Ly < Ly < --+- < Ly = L* be a part of a chief series of
Ny(P) below LM ie. L; I Ny(P) for all 0 < i <t and L;,1/L; is a chief factor of Ny(P)
for all 0 < i < t. Since Ng(P) is p-supersolvable and Ny (P) < Ng(P), we have that Ny (P)
is p-supersolvable. Consequently |L;y1/L;| = p for all 0 <i < ¢.

For each 0 < i < t, we have C(L*) < Cg(L;) < Ng(L;) and hence N = Ny (P)Cq(L¥) <
N¢(L;). In particular, we have L; < L for all 0 < i < t. Consequently, each chief factor of L
below L* has order p. So it follows that L is p-supersolvable. This contradiction completes
the proof. O

Proof of Theorem Bl Let P be a Sylow p-subgroup of a group GG. Assume that G is p-
nilpotent. Then, since subgroups of p-nilpotent groups are p-nilpotent, we have that Ng(P)
is p-nilpotent, whence condition (1) from Theorem [Blis satisfied. Also G* < G™ = 1, so
that condition (2) from Theorem [Blis trivially satisfied.

Let 2 denote the class of all groups G such that condition (2) from Theorem [Blis satisfied
for any Sylow p-subgroup P of G. Note that if condition (2) from Theorem [Bl is satisfied
for one Sylow p-subgroup of a group G, then it is satisfied for all Sylow p-subgroups of G,
so that G € 2. Let Z, denote the class of all 9l-groups with p-nilpotent normalizers of
Sylow p-subgroups. To complete the proof of Theorem [B] we show that the class %, is
contained in the class 91, of all p-nilpotent groups. Suppose that this is not true, and choose
a non-p-nilpotent Z,-group G of minimal order.

Arguing similarly as in [6, Example 2], we see that ) is subgroup-closed and that X/N €
2) whenever X € 2) and N is a normal p’-subgroup of X. Applying [0, Theorem A], we
conclude that G is p-solvable.

Let P € Syl,(G). Then Ng(P) is p-nilpotent and hence p-supersolvable as G € 2,
whence condition (1) from Theorem [Al is satisfied. Also, condition (2) from Theorem [A] is
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satisfied since it is identical to condition (2) from Theorem [B] which holds as G € ). So
Theorem [A] implies that G is p-supersolvable. Applying Lemma [6, we conclude that G is
p-nilpotent. This contradiction shows that Z, is contained in ,, as wanted. O

4 Remarks and open questions

One might wonder whether Theorems [Al and [B] remain true when, in condition (2) of the
theorems, “c-embedded in G with respect to P” is replaced by “c-embedded in P with respect
to P”. For the case p = 2, the answer is negative, as the following example shows.

Example 7. Let G := S, the symmetric group of degree 4, and let P be a Sylow 2-subgroup
of G. Then P is dihedral of order 8, and we have Ng(P) = P. Any subgroup of P with
order 2 is either complemented or central in P and thus c-embedded in P with respect to P.
However, G is not 2-nilpotent (or, equivalently, not 2-supersolvable).

For the case p = 3, the following example shows that Theorem [Al does not remain true
when “c-embedded in G with respect to P” is replaced by “c-embedded in P with respect
to P”.

Example 8. Let G be the group indexed in GAP [7] as SmallGroup(216,153). Then G
is solvable and hence 3-solvable. Let P be a Sylow 3-subgroup of G. Then Ng(P) is 3-
supersolvable, and any subgroup of P with order 3 is complemented or central in P and thus
c-embedded in P with respect to P. However, GG is not 3-supersolvable.

We were not able to answer the following question.

Question 9. Suppose that p is odd. Does Theorem [Bl remain true when, in condition (2)
from Theorem B, “c-embedded in G with respect to P” is replaced by “c-embedded in P
with respect to P77

Using GAP [7], we have checked that there are no counterexamples of order up to 2000.

Wei, Wang and Liu [I3] obtained the following characterization of p-nilpotent groups: A
group G with Sylow p-subgroup P is p-nilpotent if and only if every minimal subgroup of
PN G™ is complemented in P and Ng(P) is p-nilpotent (see [I3, Corollary 2.3]). In a less
general form, this had been proved before by Guo and Shum [9, Theorem 2.1]. Note that
if the correct answer to Question [@ is positive, then this would generalize both Theorem [BI
and the mentioned result of Wei, Wang and Liu.
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