On c-embedded subgroups of finite groups

Julian Kaspczyk*

Abstract

Let G be a group and $H \leq K \leq G$. We say that H is *c-embedded* in G with respect to K if there is a subgroup B of G such that G = HB and $H \cap B \leq Z(K)$. Given a finite group G, a prime number p and a Sylow p-subgroup P of G, we investigate the structure of G under the assumption that $N_G(P)$ is p-supersolvable or p-nilpotent and that certain cyclic subgroups of P with order p or 4 are c-embedded in G with respect to P. New characterizations of p-supersolvability and p-nilpotence of finite groups will be obtained.

Keywords: finite groups; *p*-supersolvable; *p*-nilpotent; *c*-embedded. MSC (2010): 20D10, 20D20

1 Introduction

All groups in this paper are implicitly assumed to be finite. We use standard notation and terminology, see for example [10] or [11]. Throughout, p denotes an arbitrary but fixed prime.

Recall that a group G is said to be *p*-nilpotent if G has a normal Hall p'-subgroup. This concept plays an important role in local finite group theory, and many criteria for *p*nilpotence of finite groups can be found in the literature. For example, a well-known theorem of Burnside asserts that a group G with Sylow *p*-subgroup P is *p*-nilpotent if $P \leq Z(N_G(P))$, or equivalently if P is abelian and $N_G(P)$ is *p*-nilpotent (see [11, Theorem 5.13]). This result has been generalized in many directions, and we shall now consider some of these generalizations.

First let us introduce some notation. Let P be a p-group and i be a positive integer. Then the subgroup of P generated by all elements x of P with $x^{p^i} = 1$ is denoted by $\Omega_i(P)$. We set $\Omega(P) := \Omega_1(P)$ if p is odd and $\Omega(P) := \Omega_2(P)$ if p = 2.

In 1974, Laffey [12] published the following generalization of Burnside's *p*-nilpotency criterion: If G is a group and P is a Sylow *p*-subgroup of G, then G is *p*-nilpotent if $\Omega(P) \leq Z(P)$ and $N_G(P)$ is *p*-nilpotent (see [12, p. 136]).

In 2000, Ballester-Bolinches and Guo [3] published the following more general result: If G is a group and P is a Sylow p-subgroup of G, then G is p-nilpotent if $\Omega(P \cap G') \leq Z(N_G(P))$ (see [3, Theorem 1]). Moreover, they proved that a group G with Sylow 2-subgroup P is

^{*}Institut für Algebra, Technische Universität Dresden, 01069 Dresden, Germany, Email address: julian.kaspczyk@gmail.com

2-nilpotent if $\Omega_1(P \cap G') \leq Z(P)$, P is quaternion-free and $N_G(P)$ is 2-nilpotent (see [3, Theorem 2]). Here, a group is said to be quaternion-free if it has no section isomorphic to the quaternion group of order 8.

For a non-empty formation \mathfrak{F} and a group G, we use $G^{\mathfrak{F}}$ to denote the \mathfrak{F} -residual of G, i.e. $G^{\mathfrak{F}}$ is the smallest normal subgroup of G whose quotient lies in \mathfrak{F} . As usual, \mathfrak{N} denotes the formation of all nilpotent groups.

In 2004, Asaad [1] published the following result, which extends the above-mentioned results of Ballester-Bolinches and Guo.

Theorem 1. ([1, Theorem 1 (a) \Leftrightarrow (b)]) Let P be a Sylow p-subgroup of a group G. If p = 2, assume that P is quaternion-free. Then the following statements are equivalent:

- (1) G is p-nilpotent.
- (2) $N_G(P)$ is p-nilpotent and $\Omega_1(G^{\mathfrak{N}} \cap P \cap P^x) \leq Z(P)$ for all $x \in G \setminus N_G(P)$.

Recall that a group G is said to be *p*-solvable if any chief factor of G is either a *p*-group or a *p'*-group. A *p*-solvable group G is called *p*-supersolvable if every *p*-chief factor of G has order p. The formation of all *p*-supersolvable groups is denoted by \mathfrak{U}_p . Note that every *p*-nilpotent group is *p*-supersolvable. In particular, we have $G^{\mathfrak{U}_p} \leq G^{\mathfrak{N}_p}$ for any group G.

By [13, Theorem 2.2], if P is a Sylow p-subgroup of a group G, then we have $P \cap G^{\mathfrak{N}} = P \cap G^{\mathfrak{N}_p}$, where \mathfrak{N}_p denotes the formation of all p-nilpotent groups. Therefore, the nilpotent residual $G^{\mathfrak{N}}$ can be replaced by the p-nilpotent residual $G^{\mathfrak{N}_p}$ in Theorem 1. In view of this observation, it is natural to ask whether Theorem 1 still remains true when the nilpotent residual $G^{\mathfrak{N}}$ is replaced by the p-supersolvable residual $G^{\mathfrak{U}_p}$. We will show that $G^{\mathfrak{N}}$ cannot only be replaced by $G^{\mathfrak{U}_p}$, but that it is enough to require in (2) that the normalizer $N_G(P)$ is p-nilpotent and that every minimal subgroup of $G^{\mathfrak{U}_p} \cap P \cap P^x$ is central in P or complemented in G for all $x \in G \setminus N_G(P)$. We will also show that Theorem 1 remains true if we additionally replace "p-nilpotent" by "p-supersolvable" in both statements of the theorem and furthermore assume G to be p-solvable.

In fact, our results are slightly more general than just stated, and they also deal with the case that $P \in \text{Syl}_p(G)$ is not quaternion-free when p = 2. In order to state our results in full generality, we introduce the following definition.

Definition 2. Let G be a group and $H \leq K \leq G$. Then H is said to be *c-embedded* in G with respect to K if there is a subgroup B of G such that G = HB and $H \cap B \leq Z(K)$.

Let G be a group and $H \leq K \leq G$ such that H is c-embedded in G with respect to K, so that there exists a subgroup B of G with G = HB and $H \cap B \leq Z(K)$. If $H \cap B = 1$ then H is complemented in G, and if $H \cap B = H$ then H is central in K. If $1 < H \cap B < H$, then H can be described as being between complemented in G and central in K. Note that if H is a minimal subgroup of G, then H is c-embedded in G with respect to K if and only if H is complemented in G or central in K.

Having introduced the concept of c-embedded subgroups, we can now state our main results.

Theorem A. Let P be a Sylow p-subgroup of a p-solvable group G. Then G is p-supersolvable if and only if the following two conditions are satisfied:

- (1) $N_G(P)$ is p-supersolvable.
- (2) For all $x \in G \setminus N_G(P)$, the following hold: Any subgroup of $G^{\mathfrak{U}_p} \cap P \cap P^x$ with order p is c-embedded in G with respect to P. Moreover, if p = 2 and $G^{\mathfrak{U}_p} \cap P \cap P^x$ is not quaternion-free, any cyclic subgroup of $G^{\mathfrak{U}_p} \cap P \cap P^x$ with order 4 is c-embedded in G with respect to P.

The *p*-solvability condition on *G* cannot be dropped in Theorem A. For example, the conditions (1) and (2) from Theorem A are satisfied for $G = A_5$ and p = 5 since a Sylow 5-subgroup of A_5 is cyclic of order 5 and has a normalizer of order 10, but A_5 is not 5-supersolvable.

Theorem B. Let P be a Sylow p-subgroup of a group G. Then G is p-nilpotent if and only if the following two conditions are satisfied:

- (1) $N_G(P)$ is p-nilpotent.
- (2) For all $x \in G \setminus N_G(P)$, the following hold: Any subgroup of $G^{\mathfrak{U}_p} \cap P \cap P^x$ with order p is c-embedded in G with respect to P. Moreover, if p = 2 and $G^{\mathfrak{U}_p} \cap P \cap P^x$ is not quaternion-free, any cyclic subgroup of $G^{\mathfrak{U}_p} \cap P \cap P^x$ with order 4 is c-embedded in G with respect to P.

2 Preliminaries

In this section, we collect some lemmas needed for the proofs of our main results. The following well-known result can be deduced from [2, Theorem 1 and Proposition 1].

Lemma 3. Let G be a p-solvable minimal non-p-supersolvable group. Then the following hold:

- (1) $G^{\mathfrak{U}_p}$ is a p-group, $G^{\mathfrak{U}_p}$ has exponent p if p is odd and exponent at most 4 if p = 2.
- (2) $G^{\mathfrak{U}_p}/\Phi(G^{\mathfrak{U}_p})$ is a chief factor of G.

Lemma 4. Let G be a p-solvable minimal non-p-supersolvable group, H be a proper subgroup of $G^{\mathfrak{U}_p}$ and B be a subgroup of G such that G = HB. Then B = G.

Proof. Assume for the sake of contradiction that B is a proper subgroup of G. Let M be a maximal subgroup of G such that $B \leq M$. Then $G^{\mathfrak{U}_p} \leq M$ because otherwise $G = HB \leq M$. Thus $G = MG^{\mathfrak{U}_p}$.

We have $\Phi(G^{\mathfrak{U}_p}) \leq G^{\mathfrak{U}_p} \cap \Phi(G) \leq G^{\mathfrak{U}_p} \cap M$. By Lemma 3(1), $G^{\mathfrak{U}_p}$ is a *p*-group. Since $G^{\mathfrak{U}_p}/\Phi(G^{\mathfrak{U}_p})$ is elementary abelian, $(G^{\mathfrak{U}_p} \cap M)/\Phi(G^{\mathfrak{U}_p})$ is normal in $G^{\mathfrak{U}_p}/\Phi(G^{\mathfrak{U}_p})$. So $G^{\mathfrak{U}_p} \cap M$ is normal in $G^{\mathfrak{U}_p}$. Since $G^{\mathfrak{U}_p} \cap M$ is also normal in M and since $G = MG^{\mathfrak{U}_p}$, it follows that $G^{\mathfrak{U}_p} \cap M \trianglelefteq G$.

As $G^{\mathfrak{U}_p}/\Phi(G^{\mathfrak{U}_p})$ is a chief factor of G by Lemma 3(2), it follows that either $G^{\mathfrak{U}_p} \cap M = \Phi(G^{\mathfrak{U}_p})$ or $G^{\mathfrak{U}_p} \cap M = G^{\mathfrak{U}_p}$. In the latter case, we have $H \leq M$ and so $G = HB \leq M$, a contradiction. Thus $G^{\mathfrak{U}_p} \cap M = \Phi(G^{\mathfrak{U}_p})$.

Now we have $G^{\mathfrak{U}_p} = G^{\mathfrak{U}_p} \cap HB = H(G^{\mathfrak{U}_p} \cap B) \leq H(G^{\mathfrak{U}_p} \cap M) = H\Phi(G^{\mathfrak{U}_p})$. Thus $G^{\mathfrak{U}_p} = H\Phi(G^{\mathfrak{U}_p})$ and so $G^{\mathfrak{U}_p} = H$. This is a contradiction since H is assumed to be a proper subgroup of $G^{\mathfrak{U}_p}$. So we have B = G.

Lemma 5. Let G be a group and L be a subgroup of G. Then $L^{\mathfrak{U}_p} \leq G^{\mathfrak{U}_p}$.

Proof. Set $L_0 := L \cap G^{\mathfrak{U}_p}$. Then $L/L_0 \cong LG^{\mathfrak{U}_p}/G^{\mathfrak{U}_p} \leq G/G^{\mathfrak{U}_p}$. As subgroups of *p*-supersolvable groups are *p*-supersolvable, it follows that L/L_0 is *p*-supersolvable. Thus $L^{\mathfrak{U}_p} \leq L_0 \leq G^{\mathfrak{U}_p}$.

Lemma 6. Let G be a p-supersolvable group and P be a Sylow p-subgroup of G. Suppose that $N_G(P)$ is p-nilpotent. Then G is p-nilpotent.

Proof. Set $\overline{G} := G/O_{p'}(G)$. Then \overline{G} is *p*-supersolvable and $O_{p'}(\overline{G}) = 1$. So \overline{G} is *p*-closed by [5, Lemma 2.1.6]. Consequently $\overline{P} \leq \overline{G}$, and so $\overline{G} = N_{\overline{G}}(\overline{P}) = \overline{N_G(P)}$. Now, since $N_G(P)$ is *p*-nilpotent, we have that $\overline{G} = \overline{N_G(P)}$ is *p*-nilpotent. This implies that *G* is *p*-nilpotent. \Box

3 Proofs of Theorems A and B

Proof of Theorem A. Let G and P be as in the statement of Theorem A. Assume that G is p-supersolvable. Then, since subgroups of p-supersolvable groups are p-supersolvable, we have that $N_G(P)$ is p-supersolvable, whence condition (1) from Theorem A is satisfied. Also $G^{\mathfrak{U}_p} = 1$, so that condition (2) from Theorem A is trivially satisfied.

Suppose now that conditions (1) and (2) from Theorem A are satisfied. We have to show that G is p-supersolvable. To prove this, we assume that G is not p-supersolvable, and we are going to derive a contradiction from this assumption. Since G is not p-supersolvable, G has a minimal non-p-supersolvable subgroup, say L. Without loss of generality, we assume that $P \cap L \in \text{Syl}_p(L)$. As G is p-solvable, we have that L is p-solvable, and so $L^{\mathfrak{U}_p}$ is a p-group by Lemma 3(1). In particular $L^{\mathfrak{U}_p} \leq P \cap L$. In order to obtain the desired contradiction, we proceed in a number of steps.

1) Any subgroup of $L^{\mathfrak{U}_p}$ with order p is c-embedded in G with respect to P. Moreover, if p = 2 and $L^{\mathfrak{U}_p}$ is not quaternion-free, any cyclic subgroup of $L^{\mathfrak{U}_p}$ with order 4 is c-embedded in G with respect to P.

Since $N_G(P)$ is *p*-supersolvable and *L* is not *p*-supersolvable, we have $L \leq N_G(P)$. Let $x \in L \setminus N_G(P)$. Using Lemma 5 and the fact that $L^{\mathfrak{U}_p} \leq L$, we see that $L^{\mathfrak{U}_p} = L^{\mathfrak{U}_p} \cap (L^{\mathfrak{U}_p})^x \cap G^{\mathfrak{U}_p} \leq P \cap P^x \cap G^{\mathfrak{U}_p}$. Since condition (2) from Theorem A is satisfied by assumption, it follows that any subgroup of $L^{\mathfrak{U}_p}$ with order *p* is *c*-embedded in *G* with respect to *P*.

Assume that p = 2 and that $L^{\mathfrak{U}_p}$ is not quaternion-free. Then $P \cap P^x \cap G^{\mathfrak{U}_p}$ is not quaternion-free either, and so the validity of condition (2) from Theorem A implies that any cyclic subgroup of $L^{\mathfrak{U}_p}$ with order 4 is *c*-embedded in *G* with respect to *P*.

2) If H is a proper subgroup of $L^{\mathfrak{U}_p}$ which is c-embedded in G with respect to P, then $H \leq \mathbb{Z}(P)$.

Let H be a proper subgroup of $L^{\mathfrak{U}_p}$ such that H is *c*-embedded in G with respect to P. Hence there is a subgroup B of G such that G = HB and $H \cap B \leq Z(P)$. Set $B_0 := L \cap B$. Then $L = L \cap HB = HB_0$. Lemma 4 implies that $L = B_0 \leq B$. So it follows that $H = H \cap B \leq Z(P)$.

3)
$$L^{\mathfrak{U}_p} \leq Z(P)$$
.

Suppose that $L^{\mathfrak{U}_p}$ has exponent p. Let $x \in L^{\mathfrak{U}_p}$. We show that $x \in Z(P)$. Clearly, we only need to consider the case $x \neq 1$. Then $|\langle x \rangle| = p$. We have $|L^{\mathfrak{U}_p}| > p$ since L would be p-supersolvable otherwise. Hence $\langle x \rangle$ is a proper subgroup of $L^{\mathfrak{U}_p}$. So 1) and 2) imply that $x \in Z(P)$. As x was arbitrarily chosen, it follows that $L^{\mathfrak{U}_p} \leq Z(P)$.

Suppose now that $L^{\mathfrak{U}_p}$ does not have exponent p. Then, by Lemma 3(1), p = 2 and $L^{\mathfrak{U}_2}$ has exponent 4. Therefore L is a group appearing in [4, Theorem 9] as a group of Type 3. In particular, $L^{\mathfrak{U}_2} = P \cap L$ is a non-abelian special 2-group, $\Phi(L^{\mathfrak{U}_2}) \leq Z(L)$ and $|L^{\mathfrak{U}_2}/\Phi(L^{\mathfrak{U}_2})| = 2^{2m}$, $|\Phi(L^{\mathfrak{U}_2})| \leq 2^m$ for some positive integer m.

We claim that $L^{\mathfrak{U}_2}$ is not quaternion-free. Assume that m = 1. Then $|L^{\mathfrak{U}_2}| = 8$, and $L^{\mathfrak{U}_2}$ cannot be dihedral because then $L^{\mathfrak{U}_2}/\Phi(L^{\mathfrak{U}_2})$ would not be a chief factor of L. Consequently $L^{\mathfrak{U}_2}$ is isomorphic to the quaternion group of order 8 and in particular not quaternion-free. Assume now that m > 1. Let R be a maximal subgroup of $\Phi(L^{\mathfrak{U}_2})$. Then $L^{\mathfrak{U}_2}/R$ is extraspecial of order $2^{2m+1} \ge 2^5$, and so $L^{\mathfrak{U}_2}/R$ has a section isomorphic to the quaternion group of order 8 (see [8, Chapter 5, Theorem 5.2]). Hence $L^{\mathfrak{U}_2}$ is not quaternion-free.

Now let $x \in L^{\mathfrak{U}_2}$. We show that $x \in Z(P)$. Clearly, we only need to consider the case $x \neq 1$. Then $|\langle x \rangle| = 2$ or 4. Also $\langle x \rangle$ is a proper subgroup of $L^{\mathfrak{U}_2}$. So 1) and 2) imply that $x \in Z(P)$. As x was arbitrarily chosen, it follows that $L^{\mathfrak{U}_2} \leq Z(P)$.

4) The final contradiction.

Set $N := N_G(L^{\mathfrak{U}_p})$. By 3), we have $P \leq C_G(L^{\mathfrak{U}_p})$. Since $C_G(L^{\mathfrak{U}_p}) \leq N$, the Frattini argument implies that $N = N_N(P)C_G(L^{\mathfrak{U}_p})$.

Clearly $L^{\mathfrak{U}_p} \trianglelefteq N_N(P)$. Let $1 = L_0 \leqslant L_1 \leqslant \cdots \leqslant L_t = L^{\mathfrak{U}_p}$ be a part of a chief series of $N_N(P)$ below $L^{\mathfrak{U}_p}$, i.e. $L_i \trianglelefteq N_N(P)$ for all $0 \leqslant i \leqslant t$ and L_{i+1}/L_i is a chief factor of $N_N(P)$ for all $0 \leqslant i < t$. Since $N_G(P)$ is *p*-supersolvable and $N_N(P) \leqslant N_G(P)$, we have that $N_N(P)$ is *p*-supersolvable. Consequently $|L_{i+1}/L_i| = p$ for all $0 \leqslant i < t$.

For each $0 \leq i \leq t$, we have $C_G(L^{\mathfrak{U}_p}) \leq C_G(L_i) \leq N_G(L_i)$ and hence $N = N_N(P)C_G(L^{\mathfrak{U}_p}) \leq N_G(L_i)$. In particular, we have $L_i \leq L$ for all $0 \leq i \leq t$. Consequently, each chief factor of L below $L^{\mathfrak{U}_p}$ has order p. So it follows that L is p-supersolvable. This contradiction completes the proof.

Proof of Theorem B. Let P be a Sylow p-subgroup of a group G. Assume that G is p-nilpotent. Then, since subgroups of p-nilpotent groups are p-nilpotent, we have that $N_G(P)$ is p-nilpotent, whence condition (1) from Theorem B is satisfied. Also $G^{\mathfrak{U}_p} \leq G^{\mathfrak{N}_p} = 1$, so that condition (2) from Theorem B is trivially satisfied.

Let \mathfrak{Y} denote the class of all groups G such that condition (2) from Theorem B is satisfied for any Sylow *p*-subgroup P of G. Note that if condition (2) from Theorem B is satisfied for one Sylow *p*-subgroup of a group G, then it is satisfied for all Sylow *p*-subgroups of G, so that $G \in \mathfrak{Y}$. Let \mathscr{Z}_p denote the class of all \mathfrak{N} -groups with *p*-nilpotent normalizers of Sylow *p*-subgroups. To complete the proof of Theorem B, we show that the class \mathscr{Z}_p is contained in the class \mathfrak{N}_p of all *p*-nilpotent groups. Suppose that this is not true, and choose a non-*p*-nilpotent \mathscr{Z}_p -group G of minimal order.

Arguing similarly as in [6, Example 2], we see that \mathfrak{Y} is subgroup-closed and that $X/N \in \mathfrak{Y}$ whenever $X \in \mathfrak{Y}$ and N is a normal p'-subgroup of X. Applying [6, Theorem A], we conclude that G is p-solvable.

Let $P \in \text{Syl}_p(G)$. Then $N_G(P)$ is *p*-nilpotent and hence *p*-supersolvable as $G \in \mathscr{Z}_p$, whence condition (1) from Theorem A is satisfied. Also, condition (2) from Theorem A is satisfied since it is identical to condition (2) from Theorem B, which holds as $G \in \mathfrak{Y}$. So Theorem A implies that G is p-supersolvable. Applying Lemma 6, we conclude that G is p-nilpotent. This contradiction shows that \mathscr{Z}_p is contained in \mathfrak{N}_p , as wanted.

4 Remarks and open questions

One might wonder whether Theorems A and B remain true when, in condition (2) of the theorems, "*c*-embedded in *G* with respect to *P*" is replaced by "*c*-embedded in *P* with respect to *P*". For the case p = 2, the answer is negative, as the following example shows.

Example 7. Let $G := S_4$, the symmetric group of degree 4, and let P be a Sylow 2-subgroup of G. Then P is dihedral of order 8, and we have $N_G(P) = P$. Any subgroup of P with order 2 is either complemented or central in P and thus c-embedded in P with respect to P. However, G is not 2-nilpotent (or, equivalently, not 2-supersolvable).

For the case p = 3, the following example shows that Theorem A does not remain true when "*c*-embedded in *G* with respect to *P*" is replaced by "*c*-embedded in *P* with respect to *P*".

Example 8. Let G be the group indexed in GAP [7] as SmallGroup(216,153). Then G is solvable and hence 3-solvable. Let P be a Sylow 3-subgroup of G. Then $N_G(P)$ is 3-supersolvable, and any subgroup of P with order 3 is complemented or central in P and thus c-embedded in P with respect to P. However, G is not 3-supersolvable.

We were not able to answer the following question.

Question 9. Suppose that p is odd. Does Theorem B remain true when, in condition (2) from Theorem B, "*c*-embedded in *G* with respect to *P*" is replaced by "*c*-embedded in *P* with respect to *P*"?

Using GAP [7], we have checked that there are no counterexamples of order up to 2000.

Wei, Wang and Liu [13] obtained the following characterization of *p*-nilpotent groups: A group *G* with Sylow *p*-subgroup *P* is *p*-nilpotent if and only if every minimal subgroup of $P \cap G^{\mathfrak{N}_p}$ is complemented in *P* and $N_G(P)$ is *p*-nilpotent (see [13, Corollary 2.3]). In a less general form, this had been proved before by Guo and Shum [9, Theorem 2.1]. Note that if the correct answer to Question 9 is positive, then this would generalize both Theorem B and the mentioned result of Wei, Wang and Liu.

Acknowledgements

I am grateful to Professor Adolfo Ballester-Bolinches for drawing my attention to the papers [4] and [6].

References

- [1] M. Asaad: "On *p*-nilpotence of finite groups", J. Algebra 277 (2004), 157–164.
- [2] A. Ballester-Bolinches and M. C. Pedraza-Aguilera: "On minimal subgroups of finite groups", Acta Math. Hungar. 73 (1996), 335–342.
- [3] A. Ballester-Bolinches and X. Guo: "Some results on *p*-nilpotence and solubility of finite groups", J. Algebra 228 (2000), 491–496.
- [4] A. Ballester-Bolinches and R. Esteban-Romero: "On minimal non-supersoluble groups", Rev. Mat. Iberoamericana 23 (2007), 127–142.
- [5] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad: "Products of finite groups", De Gruyter, Berlin/New York (2010).
- [6] A. Ballester-Bolinches, X. Guo, Y. Li and N. Su: "On finite p-nilpotent groups", Monatsh Math 181 (2016), 63–70.
- [7] The GAP Group: "GAP Groups, Algorithms, and Programming", Version 4.11.1 (2021). https://www.gap-system.org.
- [8] D. Gorenstein: "Finite groups", Chelsea Publishing Company, New York (1980).
- [9] X. Guo and K. P. Shum: "The influence of minimal subgroups of focal subgroups on the structure of finite groups", J. Pure Appl. Algebra 169 (2002), 43–50.
- [10] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1967).
- [11] I. M. Isaacs: "Finite Group Theory", Amer. Math. Soc., Providence, RI (2008).
- [12] T. J. Laffey: "A lemma on finite p-groups and some consequences", Proc. Cambridge Philos. Soc. 75 (1974), 133–137.
- [13] H. Wei, Y. Wang and X. Liu: "Some necessary and sufficient conditions for p-nilpotence of finite groups", Bull. Austral. Math. Soc. 68 (2003), 371–378.