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On c-embedded subgroups of finite groups

Julian Kaspczyk∗

Abstract

Let G be a group and H 6 K 6 G. We say that H is c-embedded in G with respect
to K if there is a subgroup B of G such that G = HB and H ∩ B 6 Z(K). Given a
finite group G, a prime number p and a Sylow p-subgroup P of G, we investigate the
structure of G under the assumption that NG(P ) is p-supersolvable or p-nilpotent and
that certain cyclic subgroups of P with order p or 4 are c-embedded in G with respect
to P . New characterizations of p-supersolvability and p-nilpotence of finite groups will
be obtained.
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1 Introduction

All groups in this paper are implicitly assumed to be finite. We use standard notation and
terminology, see for example [10] or [11]. Throughout, p denotes an arbitrary but fixed
prime.

Recall that a group G is said to be p-nilpotent if G has a normal Hall p′-subgroup.
This concept plays an important role in local finite group theory, and many criteria for p-
nilpotence of finite groups can be found in the literature. For example, a well-known theorem
of Burnside asserts that a group G with Sylow p-subgroup P is p-nilpotent if P 6 Z(NG(P )),
or equivalently if P is abelian and NG(P ) is p-nilpotent (see [11, Theorem 5.13]). This
result has been generalized in many directions, and we shall now consider some of these
generalizations.

First let us introduce some notation. Let P be a p-group and i be a positive integer.
Then the subgroup of P generated by all elements x of P with xpi = 1 is denoted by Ωi(P ).
We set Ω(P ) := Ω1(P ) if p is odd and Ω(P ) := Ω2(P ) if p = 2.

In 1974, Laffey [12] published the following generalization of Burnside’s p-nilpotency
criterion: If G is a group and P is a Sylow p-subgroup of G, then G is p-nilpotent if
Ω(P ) 6 Z(P ) and NG(P ) is p-nilpotent (see [12, p. 136]).

In 2000, Ballester-Bolinches and Guo [3] published the following more general result: If G
is a group and P is a Sylow p-subgroup of G, then G is p-nilpotent if Ω(P ∩G′) 6 Z(NG(P ))
(see [3, Theorem 1]). Moreover, they proved that a group G with Sylow 2-subgroup P is
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2-nilpotent if Ω1(P ∩ G′) 6 Z(P ), P is quaternion-free and NG(P ) is 2-nilpotent (see [3,
Theorem 2]). Here, a group is said to be quaternion-free if it has no section isomorphic to
the quaternion group of order 8.

For a non-empty formation F and a group G, we use GF to denote the F-residual of G,
i.e. GF is the smallest normal subgroup of G whose quotient lies in F. As usual, N denotes
the formation of all nilpotent groups.

In 2004, Asaad [1] published the following result, which extends the above-mentioned
results of Ballester-Bolinches and Guo.

Theorem 1. ([1, Theorem 1 (a) ⇔ (b)]) Let P be a Sylow p-subgroup of a group G. If p = 2,
assume that P is quaternion-free. Then the following statements are equivalent:

(1) G is p-nilpotent.

(2) NG(P ) is p-nilpotent and Ω1(G
N ∩ P ∩ P x) 6 Z(P ) for all x ∈ G \NG(P ).

Recall that a group G is said to be p-solvable if any chief factor of G is either a p-group
or a p′-group. A p-solvable group G is called p-supersolvable if every p-chief factor of G
has order p. The formation of all p-supersolvable groups is denoted by Up. Note that every
p-nilpotent group is p-supersolvable. In particular, we have GUp 6 GNp for any group G.

By [13, Theorem 2.2], if P is a Sylow p-subgroup of a group G, then we have P ∩
GN = P ∩ GNp , where Np denotes the formation of all p-nilpotent groups. Therefore, the
nilpotent residual GN can be replaced by the p-nilpotent residual GNp in Theorem 1. In
view of this observation, it is natural to ask whether Theorem 1 still remains true when the
nilpotent residual GN is replaced by the p-supersolvable residual GUp. We will show that GN

cannot only be replaced by GUp, but that it is enough to require in (2) that the normalizer
NG(P ) is p-nilpotent and that every minimal subgroup of GUp ∩ P ∩ P x is central in P or
complemented in G for all x ∈ G \ NG(P ). We will also show that Theorem 1 remains
true if we additionally replace ”p-nilpotent” by ”p-supersolvable” in both statements of the
theorem and furthermore assume G to be p-solvable.

In fact, our results are slightly more general than just stated, and they also deal with
the case that P ∈ Sylp(G) is not quaternion-free when p = 2. In order to state our results
in full generality, we introduce the following definition.

Definition 2. Let G be a group and H 6 K 6 G. Then H is said to be c-embedded in G
with respect to K if there is a subgroup B of G such that G = HB and H ∩B 6 Z(K).

Let G be a group and H 6 K 6 G such that H is c-embedded in G with respect to K,
so that there exists a subgroup B of G with G = HB and H ∩ B 6 Z(K). If H ∩ B = 1
then H is complemented in G, and if H ∩B = H then H is central in K. If 1 < H ∩B < H ,
then H can be described as being between complemented in G and central in K. Note that
if H is a minimal subgroup of G, then H is c-embedded in G with respect to K if and only
if H is complemented in G or central in K.

Having introduced the concept of c-embedded subgroups, we can now state our main
results.

Theorem A. Let P be a Sylow p-subgroup of a p-solvable group G. Then G is p-supersolvable
if and only if the following two conditions are satisfied:
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(1) NG(P ) is p-supersolvable.

(2) For all x ∈ G \ NG(P ), the following hold: Any subgroup of GUp ∩ P ∩ P x with order

p is c-embedded in G with respect to P . Moreover, if p = 2 and GUp ∩ P ∩ P x is not

quaternion-free, any cyclic subgroup of GUp ∩ P ∩ P x with order 4 is c-embedded in G
with respect to P .

The p-solvability condition on G cannot be dropped in Theorem A. For example, the
conditions (1) and (2) from Theorem A are satisfied for G = A5 and p = 5 since a Sylow
5-subgroup of A5 is cyclic of order 5 and has a normalizer of order 10, but A5 is not 5-
supersolvable.

Theorem B. Let P be a Sylow p-subgroup of a group G. Then G is p-nilpotent if and only

if the following two conditions are satisfied:

(1) NG(P ) is p-nilpotent.

(2) For all x ∈ G \ NG(P ), the following hold: Any subgroup of GUp ∩ P ∩ P x with order

p is c-embedded in G with respect to P . Moreover, if p = 2 and GUp ∩ P ∩ P x is not

quaternion-free, any cyclic subgroup of GUp ∩ P ∩ P x with order 4 is c-embedded in G
with respect to P .

2 Preliminaries

In this section, we collect some lemmas needed for the proofs of our main results. The
following well-known result can be deduced from [2, Theorem 1 and Proposition 1].

Lemma 3. Let G be a p-solvable minimal non-p-supersolvable group. Then the following

hold:

(1) GUp is a p-group, GUp has exponent p if p is odd and exponent at most 4 if p = 2.

(2) GUp/Φ(GUp) is a chief factor of G.

Lemma 4. Let G be a p-solvable minimal non-p-supersolvable group, H be a proper subgroup

of GUp and B be a subgroup of G such that G = HB. Then B = G.

Proof. Assume for the sake of contradiction that B is a proper subgroup of G. Let M be a
maximal subgroup of G such that B 6 M . Then GUp 66 M because otherwise G = HB 6 M .
Thus G = MGUp .

We have Φ(GUp) 6 GUp ∩ Φ(G) 6 GUp ∩ M . By Lemma 3(1), GUp is a p-group. Since
GUp/Φ(GUp) is elementary abelian, (GUp ∩M)/Φ(GUp) is normal in GUp/Φ(GUp). So GUp ∩M
is normal in GUp . Since GUp ∩M is also normal in M and since G = MGUp , it follows that
GUp ∩M E G.

As GUp/Φ(GUp) is a chief factor of G by Lemma 3(2), it follows that either GUp ∩M =
Φ(GUp) or GUp ∩ M = GUp. In the latter case, we have H 6 M and so G = HB 6 M , a
contradiction. Thus GUp ∩M = Φ(GUp).

Now we have GUp = GUp ∩ HB = H(GUp ∩ B) 6 H(GUp ∩ M) = HΦ(GUp). Thus
GUp = HΦ(GUp) and so GUp = H . This is a contradiction since H is assumed to be a proper
subgroup of GUp. So we have B = G.
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Lemma 5. Let G be a group and L be a subgroup of G. Then LUp 6 GUp.

Proof. Set L0 := L ∩ GUp. Then L/L0
∼= LGUp/GUp 6 G/GUp. As subgroups of p-

supersolvable groups are p-supersolvable, it follows that L/L0 is p-supersolvable. Thus
LUp 6 L0 6 GUp.

Lemma 6. Let G be a p-supersolvable group and P be a Sylow p-subgroup of G. Suppose

that NG(P ) is p-nilpotent. Then G is p-nilpotent.

Proof. Set G := G/Op′(G). Then G is p-supersolvable and Op′(G) = 1. So G is p-closed by

[5, Lemma 2.1.6]. Consequently P E G, and so G = NG(P ) = NG(P ). Now, since NG(P ) is

p-nilpotent, we have that G = NG(P ) is p-nilpotent. This implies that G is p-nilpotent.

3 Proofs of Theorems A and B

Proof of Theorem A. Let G and P be as in the statement of Theorem A. Assume that
G is p-supersolvable. Then, since subgroups of p-supersolvable groups are p-supersolvable,
we have that NG(P ) is p-supersolvable, whence condition (1) from Theorem A is satisfied.
Also GUp = 1, so that condition (2) from Theorem A is trivially satisfied.

Suppose now that conditions (1) and (2) from Theorem A are satisfied. We have to show
that G is p-supersolvable. To prove this, we assume that G is not p-supersolvable, and we are
going to derive a contradiction from this assumption. Since G is not p-supersolvable, G has
a minimal non-p-supersolvable subgroup, say L. Without loss of generality, we assume that
P ∩ L ∈ Sylp(L). As G is p-solvable, we have that L is p-solvable, and so LUp is a p-group
by Lemma 3(1). In particular LUp 6 P ∩L. In order to obtain the desired contradiction, we
proceed in a number of steps.

1) Any subgroup of LUp with order p is c-embedded in G with respect to P . Moreover, if

p = 2 and LUp is not quaternion-free, any cyclic subgroup of LUp with order 4 is c-embedded

in G with respect to P .

Since NG(P ) is p-supersolvable and L is not p-supersolvable, we have L 66 NG(P ). Let
x ∈ L\NG(P ). Using Lemma 5 and the fact that LUp E L, we see that LUp = LUp ∩ (LUp)x∩
GUp 6 P ∩ P x ∩ GUp. Since condition (2) from Theorem A is satisfied by assumption, it
follows that any subgroup of LUp with order p is c-embedded in G with respect to P .

Assume that p = 2 and that LUp is not quaternion-free. Then P ∩ P x ∩ GUp is not
quaternion-free either, and so the validity of condition (2) from Theorem A implies that any
cyclic subgroup of LUp with order 4 is c-embedded in G with respect to P .

2) If H is a proper subgroup of LUp which is c-embedded in G with respect to P , then

H 6 Z(P ).
Let H be a proper subgroup of LUp such that H is c-embedded in G with respect to P .

Hence there is a subgroup B of G such that G = HB and H ∩B 6 Z(P ). Set B0 := L∩B.
Then L = L ∩ HB = HB0. Lemma 4 implies that L = B0 6 B. So it follows that
H = H ∩ B 6 Z(P ).

3) LUp 6 Z(P ).
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Suppose that LUp has exponent p. Let x ∈ LUp. We show that x ∈ Z(P ). Clearly, we
only need to consider the case x 6= 1. Then |〈x〉| = p. We have |LUp| > p since L would be
p-supersolvable otherwise. Hence 〈x〉 is a proper subgroup of LUp . So 1) and 2) imply that
x ∈ Z(P ). As x was arbitrarily chosen, it follows that LUp 6 Z(P ).

Suppose now that LUp does not have exponent p. Then, by Lemma 3(1), p = 2 and
LU2 has exponent 4. Therefore L is a group appearing in [4, Theorem 9] as a group of
Type 3. In particular, LU2 = P ∩ L is a non-abelian special 2-group, Φ(LU2) 6 Z(L) and
|LU2/Φ(LU2)| = 22m, |Φ(LU2)| 6 2m for some positive integer m.

We claim that LU2 is not quaternion-free. Assume that m = 1. Then |LU2| = 8, and LU2

cannot be dihedral because then LU2/Φ(LU2) would not be a chief factor of L. Consequently
LU2 is isomorphic to the quaternion group of order 8 and in particular not quaternion-
free. Assume now that m > 1. Let R be a maximal subgroup of Φ(LU2). Then LU2/R is
extraspecial of order 22m+1 > 25, and so LU2/R has a section isomorphic to the quaternion
group of order 8 (see [8, Chapter 5, Theorem 5.2]). Hence LU2 is not quaternion-free.

Now let x ∈ LU2 . We show that x ∈ Z(P ). Clearly, we only need to consider the case
x 6= 1. Then |〈x〉| = 2 or 4. Also 〈x〉 is a proper subgroup of LU2 . So 1) and 2) imply that
x ∈ Z(P ). As x was arbitrarily chosen, it follows that LU2 6 Z(P ).

4) The final contradiction.

Set N := NG(L
Up). By 3), we have P 6 CG(L

Up). Since CG(L
Up) E N , the Frattini

argument implies that N = NN (P )CG(L
Up).

Clearly LUp E NN(P ). Let 1 = L0 6 L1 6 · · · 6 Lt = LUp be a part of a chief series of
NN(P ) below LUp, i.e. Li E NN(P ) for all 0 6 i 6 t and Li+1/Li is a chief factor of NN (P )
for all 0 6 i < t. Since NG(P ) is p-supersolvable and NN (P ) 6 NG(P ), we have that NN (P )
is p-supersolvable. Consequently |Li+1/Li| = p for all 0 6 i < t.

For each 0 6 i 6 t, we have CG(L
Up) 6 CG(Li) 6 NG(Li) and henceN = NN(P )CG(L

Up) 6
NG(Li). In particular, we have Li E L for all 0 6 i 6 t. Consequently, each chief factor of L
below LUp has order p. So it follows that L is p-supersolvable. This contradiction completes
the proof.

Proof of Theorem B. Let P be a Sylow p-subgroup of a group G. Assume that G is p-
nilpotent. Then, since subgroups of p-nilpotent groups are p-nilpotent, we have that NG(P )
is p-nilpotent, whence condition (1) from Theorem B is satisfied. Also GUp 6 GNp = 1, so
that condition (2) from Theorem B is trivially satisfied.

Let Y denote the class of all groups G such that condition (2) from Theorem B is satisfied
for any Sylow p-subgroup P of G. Note that if condition (2) from Theorem B is satisfied
for one Sylow p-subgroup of a group G, then it is satisfied for all Sylow p-subgroups of G,
so that G ∈ Y. Let Zp denote the class of all N-groups with p-nilpotent normalizers of
Sylow p-subgroups. To complete the proof of Theorem B, we show that the class Zp is
contained in the class Np of all p-nilpotent groups. Suppose that this is not true, and choose
a non-p-nilpotent Zp-group G of minimal order.

Arguing similarly as in [6, Example 2], we see that Y is subgroup-closed and that X/N ∈
Y whenever X ∈ Y and N is a normal p′-subgroup of X . Applying [6, Theorem A], we
conclude that G is p-solvable.

Let P ∈ Sylp(G). Then NG(P ) is p-nilpotent and hence p-supersolvable as G ∈ Zp,
whence condition (1) from Theorem A is satisfied. Also, condition (2) from Theorem A is
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satisfied since it is identical to condition (2) from Theorem B, which holds as G ∈ Y. So
Theorem A implies that G is p-supersolvable. Applying Lemma 6, we conclude that G is
p-nilpotent. This contradiction shows that Zp is contained in Np, as wanted.

4 Remarks and open questions

One might wonder whether Theorems A and B remain true when, in condition (2) of the
theorems, “c-embedded inG with respect to P” is replaced by “c-embedded in P with respect
to P”. For the case p = 2, the answer is negative, as the following example shows.

Example 7. Let G := S4, the symmetric group of degree 4, and let P be a Sylow 2-subgroup
of G. Then P is dihedral of order 8, and we have NG(P ) = P . Any subgroup of P with
order 2 is either complemented or central in P and thus c-embedded in P with respect to P .
However, G is not 2-nilpotent (or, equivalently, not 2-supersolvable).

For the case p = 3, the following example shows that Theorem A does not remain true
when “c-embedded in G with respect to P” is replaced by “c-embedded in P with respect
to P”.

Example 8. Let G be the group indexed in GAP [7] as SmallGroup(216,153). Then G
is solvable and hence 3-solvable. Let P be a Sylow 3-subgroup of G. Then NG(P ) is 3-
supersolvable, and any subgroup of P with order 3 is complemented or central in P and thus
c-embedded in P with respect to P . However, G is not 3-supersolvable.

We were not able to answer the following question.

Question 9. Suppose that p is odd. Does Theorem B remain true when, in condition (2)
from Theorem B, “c-embedded in G with respect to P” is replaced by “c-embedded in P
with respect to P”?

Using GAP [7], we have checked that there are no counterexamples of order up to 2000.
Wei, Wang and Liu [13] obtained the following characterization of p-nilpotent groups: A

group G with Sylow p-subgroup P is p-nilpotent if and only if every minimal subgroup of
P ∩GNp is complemented in P and NG(P ) is p-nilpotent (see [13, Corollary 2.3]). In a less
general form, this had been proved before by Guo and Shum [9, Theorem 2.1]. Note that
if the correct answer to Question 9 is positive, then this would generalize both Theorem B
and the mentioned result of Wei, Wang and Liu.
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