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ABSTRACT
We introduce end-to-end support of co-existing schema ver-
sions within one database. While it is state of the art to
run multiple versions of a continuously developed application
concurrently, it is hard to do the same for databases. In order
to keep multiple co-existing schema versions alive—which are
all accessing the same data set—developers usually employ
handwritten delta code (e.g. views and triggers in SQL).
This delta code is hard to write and hard to maintain: if a
database administrator decides to adapt the physical table
schema, all handwritten delta code needs to be adapted as
well, which is expensive and error-prone in practice. In this
paper, we present InVerDa: developers use the simple bidi-
rectional database evolution language BiDEL, which carries
enough information to generate all delta code automatically.
Without additional effort, new schema versions become im-
mediately accessible and data changes in any version are
visible in all schema versions at the same time. InVerDa
also allows for easily changing the physical table design with-
out affecting the availability of co-existing schema versions.
This greatly increases robustness (orders of magnitude less
lines of code) and allows for significant performance opti-
mization. A main contribution is the formal evaluation that
each schema version acts like a common full-fledged database
schema independently of the chosen physical table design.
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1. INTRODUCTION
Database management systems (DBMSes) lack proper sup-

port for co-existing schema versions within the same database.
With today’s realities in information system development
and deployment—namely agile development methods, code
refactoring, short release cycles, stepwise deployment, vary-
ing update adoption time, legacy system support, etc.—such
support becomes increasingly desirable. Tools such as GIT,
SVN, and Maven allow to maintain multiple versions of one
application and deploy several of these versions concurrently.
The same is hard for database systems, though. In enterprise
information systems, databases feed hundreds of subsystems
across the company domain, connecting decades-old legacy
systems with brand new web front ends or innovative ana-
lytics pipelines [4]. These subsystems are typically run by
different stakeholders, with different development cycles and
different upgrade constraints. Typically, adopting changes to
a database schema—if even possible on the client-side—will
stretch out over time. Hence, the database schema versions
these subsystems expect have to be kept alive on the database
side to continuously serve them. Co-existing schema versions
are an actual challenge in information systems developers
and database administrators (DBAs) have to cope with.

Unfortunately, current DBMSes do not support co-existing
schema versions properly and essentially force developers to
migrate a database completely in one haul to a new schema
version. Keeping old schema versions alive to continue serv-
ing all database clients independent of their adoption time
is costly. Before and after a one-haul migration, manually
written and maintained delta code is required. Delta code is
any implementation of propagation logic to run an applica-
tion with a schema version differing from the version used
by the database. Delta code may comprise view and trigger
definitions in the database, propagation code in the database
access layer of the application, or ETL jobs for update propa-
gation for a database replicated in different schema versions.
Data migration accounted for 31 % of IT project budgets in
2011 and co-existing schema versions take an important part
in that [12]. In short, handling co-existing schema versions
is very costly and error-prone and forces developers into less
agility, longer release cycles, riskier big-bang migration, etc.
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Database Evolution Language 7 7 X X X 7 X
Relationally Complete X X 7 7 X 7 X
Co-Existing Schema Versions 7 7 7 (X) 7 X X
- Forward Query Rewriting 7 X X X 7 X X
- Backward Query Rewriting 7 7 7 7 7 X X
- Forward Migration 7 X X X X X X
- Backward Migration 7 7 7 7 7 X X
Guaranteed Bidirectionality 7 7 7 7 7 X X

Table 1: Contribution and Distinction from Related Work.

In this paper, we present the Database Evolution Language
(DEL) BiDEL (Bidirectional DEL). BiDEL provides simple
but powerful bidirectional Schema Modification Operations
(SMOs) that define the evolution of both the schema and the
data from one schema version to a new one. Bidirectional-
ity is the unique feature of BiDEL’s SMOs and the central
concept to facilitate co-existing schema versions by allowing
full access propagation between all schema versions. BiDEL
builds upon SMOs of existing monodirectional DELs [5, 9]
and extends them, thus they become bidirectional. With a
formal evaluation of bidirectionality, we guarantee that
the propagation of read and write operations on any schema
version to all other schema versions works always correctly.

As a proof of concept for BiDEL, we present InVerDa [10]
(Integrated Versioning of Databases). InVerDa is an ex-
tension to relational DBMSes to enable true support for
co-existing schema versions based on BiDEL. It allows a sin-
gle database to have multiple co-existing schema versions that
are all accessible at the same time. Specifically, InVerDa
introduces two powerful functionalities to a DBMS.

For application developers, InVerDa offers a Database
Evolution Operation that executes a BiDEL-specified
evolution from an existing schema version to a new version.
New schema versions become immediately available. Appli-
cations can read and write data through any schema version;
writes in one version are reflected in all other versions. Each
schema version itself appears to the user like a full-fledged
single-schema database. The InVerDa Database Evolution
Operation generates all necessary delta code, more precisely
views and triggers within the database, so applications can
read and write those views as usual, i.e., the complete access
propagation between all schema versions is implemented with
one click of a button. InVerDa greatly simplifies evolution
tasks, since the developer has to write a BiDEL script only.

For DBAs, InVerDa offers a single-line Database Mi-
gration Operation to configure the primarily materialized
schema version. If the workload mix changes, because e.g.
most client applications use a new version, the DBA easily
changes the materialization without affecting the availability
of any schema version and without a developer being involved.
Thanks to BiDEL’s bidirectionality, InVerDa already has
all required information to migrate the affected data and to
regenerate all delta code—not a single line of code is required
from the developer. Without InVerDa such an optimization
requires to rewrite all affected delta code manually.

InVerDa generates views and triggers as delta code. Other
implementations of BiDEL are very well imaginable, e.g.
generation of ETL jobs or application-side propagation logic.
However, we are convinced that a functional extension to
database systems is the most appealing approach.

BiDEL and InVerDa are not the first attempts to support
schema evolution. For practitioners, valuable tools, such as
Liquibase, Rails Migrations, and DBmaestro Teamwork, help
to manage schema versions outside the DBMS and generate
SQL scripts for migrating to a new schema version. They
mitigate data migration costs, but focus on schema evolution
and support for co-existing schemas is very limited.

For research, Table 1 classifies related work regarding sup-
port for co-existing schema versions and highlights the contri-
butions of BiDEL and InVerDa. Meta Model Management
helps handling multiple schema versions “after the fact” by
allowing to match, diff, and merge existing schemas to derive
mappings between these schemas [3]. The derived mappings
are expressed with relational algebra and can be used to
rewrite old queries or to migrate data forwards—not back-
wards, though. In contrast, the inspiring PRISM/PRISM++
proposes to let the developer specify the evolution with SMOs
“before the fact” to a derived new schema version [5]. PRISM
proposes an intuitive and declarative DEL that documents
the evolution and implicitly allows migrating data forwards
and rewriting queries from old to new schema versions. As an
extension, PRIMA [13] takes a first step towards co-existing
schema versions by propagating write operations forwards
and read operations backwards along the schema version
history, but not vice versa. CoDEL [9] slightly extends the
PRISM DEL to a relationally complete DEL. BiDEL now
extends CoDEL to be bidirectional while maintaining rela-
tional completeness. According to our evaluation, BiDEL
SMOs are just as compact as PRISM SMOs and thereby or-
ders of magnitude shorter than SQL. To our best knowledge,
there is no bidirectional DEL nor a comprehensive solution
for co-existing schema versions so far. Symmetric relational
lenses [11] define abstract formal conditions that mapping
functions need to satisfy in order to be bidirectional. How-
ever, they do not specify any concrete mapping as specific as
the semantics of SMOs required to form a DEL. To our best
knowledge BiDEL is the first DEL with SMOs intentionally
designed and formally evaluated to fulfill the symmetric lense
conditions and InVerDa is the first approach to implement
such a bidirectional DEL in a relational DBMS. In sum, the
contributions of this paper are:

Formally evaluated, bidirectional DEL: We introduce
syntax and semantics of BiDEL and formally validate
its bidirectionality by showing that its SMOs fulfill the
symmetric lense conditions. BiDEL greatly supports
developers and DBAs. In our examples, BiDEL requires
significantly (up to 359 x) less code than evolutions and
migrations manually written in SQL. (Sections 4 and 5)

Co-existing schema versions: InVerDa’s Database Evo-
lution Operation automatically generates delta code from
BiDEL-specified schema evolutions to allow reads and
writes on all co-existing schema versions, each providing
an individual view on the same dataset. The delta code
generation is really fast (<1 s) and query performance is
comparable to hand-written delta code. (Section 6)

Logical data independence: InVerDa’s Database Migra-
tion Operation makes manual schema migrations obso-
lete. It triggers the physical data movement as well as the
adaptation of all involved delta code and allows the DBA
to optimize the physical table schema of the database
independently from the schema evolution, which yields
significant performance improvements. (Section 7)



Task author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

Todo author task
3 Ann Write paper
4 Ben Clean room

Task task prio author
1 Organize party 3 5
2 Learn for exam 2 6
3 Write paper 1 5
4 Clean room 1 6

Author name
5 Ann
6 Ben

TasKy

Do!
TasKy2

CREATE SCHEMA VERSION Do!
FROM TasKy WITH
SPLIT TABLE Task INTO Todo

WITH prio=1;
DROP COLUMN prio FROM Todo

DEFAULT 1;

CREATE SCHEMA VERSION TasKy2 FROM TasKy
WITH
DECOMPOSE TABLE task INTO task(task,prio),

author(author) ON FOREIGN KEY author;
RENAME COLUMN author IN author TO name;

Task author task prio
1 Ann Organize party 3
2 Ben Learn for exam 2
3 Ann Write paper 1
4 Ben Clean room 1

Todo author task
3 Ann Write paper
4 Ben Clean room Task task

1 Organize party
2 Learn for exam
3 Write paper
4 Clean room

TasKy

Do! TasKy2

CREATE SCHEMA VERSION Do!
FROM TasKy WITH
SPLIT TABLE Task INTO Todo

WITH prio=1;
DROP COLUMN prio FROM Todo

DEFAULT 1;

CREATE SCHEMA VERSION 
TasKy WITH
DECOMPOSE TABLE task 

author(author) ON FOREIGN KEY 
RENAME COLUMN author 

Figure 1: TasKy Example.

We introduce InVerDa from a user perspective in Sec-
tion 2 and discuss its architecture in Section 3. In Section 4,
we present BiDEL and formally evaluate its bidirectionality
in Section 5. In Sections 6 and 7, we sketch how to generate
delta code and change the materialization schema. Finally,
we evaluate InVerDa in Section 8, discuss related work in
Section 9, and conclude the paper in Section 10.

2. USER PERSPECTIVE ON INVERDA

In the following, we introduce the co-existing schema ver-
sion support by InVerDa using the example of a simple task
management system called TasKy (cf. Figure 1). TasKy is a
desktop application which is backed by a central database.
It allows users creating new tasks as well as listing, updating,
and deleting them. Each task has an author and a prior-
ity. Tasks with priority 1 are the most urgent ones. The
first release of TasKy stores all its data in a single table
Task(author,task,prio). TasKy has productive go-live and
users begin to feed the database with their tasks.

Developer: TasKy gets widely accepted and after some
weeks it is extended by a third party phone app called Do!
to list most urgent tasks. However Do! expects a different
database schema than TasKy is using. The Do! schema
consists of a table Todo(author,task) containing only tasks
of priority 1. Obviously, the initial schema version needs to
stay alive for TasKy, which is broadly installed. InVerDa
greatly simplifies the job as it handles all the necessary delta
code for the developer. The developer merely executes the
BiDEL script for Do! as shown in Figure 1, which instructs
InVerDa to derive schema Do! from schema TasKy by
splitting a horizontal partition from Task with prio=1 and
dropping the priority column. Executing the script creates a
new schema including the view Todo as well as delta code for
propagating data changes. When a new entry is inserted in
Todo, this will automatically insert a corresponding task with
priority 1 to Task in TasKy. Equally, updates and deletions
are propagated back to the TasKy schema. Pioneering work
like PRIMA allows to create the version Do! as well, however
the DEL is not bidirectional, hence write operations are only
propagated from TasKy to Do! but not vice versa.

For the next release TasKy2, it is decided to normalize
the table Task into Task and Author. For a stepwise roll-
out of TasKy2, the old schema of TasKy has to remain alive
until all clients have been updated. Again, InVerDa does
the job. When executing the BiDEL script as shown in
Figure 1, InVerDa creates the schema version TasKy2 and

CREATE SCHEMA VERSION namenew [FROM nameold]
WITH SMO1; . . . SMOn;

DROP SCHEMA VERSION versionn;

CREATE TABLE R(c1,...,cn)
DROP TABLE R
RENAME TABLE R INTO R′

RENAME COLUMN r IN Ri TO r′

ADD COLUMN a AS f(r1,...,rn) INTO Ri

DROP COLUMN r FROM Ri DEFAULT f(r1,...,rn)
DECOMPOSE TABLE R INTO S(s1, . . . , sn)

[, T(t1, . . . , tm) ON (PK|FK fk|cond)]
[OUTER] JOIN TABLE R, S INTO T ON (PK|FK fk|cond)
SPLIT TABLE T INTO R WITH cR [, S WITH cS ]
MERGE TABLE R (cR), S (cS) INTO T

Figure 2: Syntax of BiDEL SMOs.

decomposes the table version Task to separate the tasks from
their authors while creating a foreign key to maintain the
dependency. Additionally, the column author is renamed to
name. InVerDa generates delta code to make the TasKy2
schema immediately available. Write operations to any of the
three schema versions are propagated to all other versions.

DBA: The initially materialized tables are the targets of
create table SMOs. All other table versions are implemented
with the help of delta code. The delta code introduces an
overhead on read and write accesses to new schema versions.
The more SMOs are between schema versions, the more
delta code is involved and the higher is the overhead. In
our example, the schema versions TasKy2 and Do! have
delta code towards the physical table Task. Some weeks after
releasing TasKy2 the majority of the users has upgraded to
the new version. TasKy2 comes with its own phone app, so
the schemas TasKy and Do! are still accessed but merely
by a minority of users. It seems appropriate to migrate
data physically to the table versions of the TasKy2 schema,
now. Traditionally, developers would write a migration script,
which moves the data and implements new delta code. All
that accumulates to some hundred lines of code, which need
to be tested intensively in order to prevent it from messing
up our data. With InVerDa, the DBA writes a single line:

MATERIALIZE 'TasKy2';

Upon this statement, InVerDa transparently runs the phys-
ical data migration to schema TasKy2, maintaining transac-
tion guarantees, and updates the involved delta code of all
schema versions. There is no need to involve any developer.
All schema versions stay available; read and write operations
are merely propagated to a different set of physical tables,
now. Again, these features are facilitated by our bidirec-
tional BiDEL; other approaches either have to materialize
all schema versions and provide only forward propagation
of data (PRIMA) or have to materialize the latest version
and stop serving the old version (PRISM). In sum, InVerDa
allows the user to continuously use all schema versions, the
developer to continuously develop the applications, and the
DBA to independently optimize the physical table schema.

3. INVERDA ARCHITECTURE
InVerDa simply builds upon existing relational DBMSes.

It adds schema evolution functionality and support for co-
existing schema versions. InVerDa functionality is exposed
to users via two interfaces: (1) BiDEL (bidirectional database
evolution language) and (2) migration commands.



BiDEL provides a comprehensive set of bidirectional
SMOs to create a new schema version either from scratch or
as an evolution from a given schema version. SMOs evolve
source tables to target tables. Each table version is created by
one incoming SMO and evolved by arbitrarily many outgoing
SMOs. Specifically, BiDEL SMOs allow to create or drop or
rename tables and columns, (vertically) decompose or join
tables, and (horizontally) split or merge tables (Syntax in
Figure 2, general semantics in [7, 9], bidirectional semantics
in Section 4). We restrict the considered expressiveness of
BiDEL to the relational algebra; the evolution of further
artifacts like constraints [5] and functions is promising future
work. BiDEL is the youngest child in an evolution of DELs:
PRISM [7] is a practically comprehensive DEL that couples
schema and data evolution, CoDEL [9] extended PRISM
to be relationally complete, and BiDEL extends CoDEL to
be bidirectional. As a prerequisite for co-existing schema
versions, the unique feature of BiDEL SMOs is bidirection-
ality. Essentially, the arguments of each BiDEL SMO gather
enough information to facilitate full propagation of reads
and writes between schema versions in both directions, for-
ward propagation from the old to the new version as well
as backward propagation from the new to the old version.
For instance, DROP COLUMN requires a function f(r1, . . . , rn)
that computes the value for the dropped column if a tuple,
inserted in the new schema version, is propagated back to
an old schema version. Finally, BiDEL allows dropping un-
necessary schema versions, which drops the schema version
itself but maintains the data if still needed in other versions.

InVerDa’s migration commands allow for changing the
physical data representation. By default, data is materialized
in the source schema version. Assuming a table is split in a
schema evolution step, the data remains physically unsplit.
With a migration command the physical data representation
of this SMO instance can be changed so that the data is
also physically split. Within this work, we focus on non-
redundant materialization which means the data is stored
either on the source or the target side of the SMO but
not on both. Migration commands are very simple. They
either materialize a set of table versions or a complete schema
version. The latter is merely a convenience command allowing
to materialize multiple table versions in one step.

In our prototypical implementation [10], InVerDa creates
the co-existing schema versions with views and triggers in a
common relational DBMS. InVerDa interacts merely over
common DDL and DML statements, data is stored in regular
tables, and database applications use the DBMS’s standard
query engine. For data accesses of database applications, only
the generated views and triggers are used and no InVerDa
components are involved. The employed triggers can lead to
a cascaded execution, but in a controlled manner as there are
no cycles in the version history. Thanks to this architecture,
InVerDa easily utilizes existing DBMS components such as
physical data storage, indexing, transaction handling, query
processing, etc. without reinventing the wheel.

Figure 3 outlines the principle components of an InVerDa-
equipped DBMS. As can be seen, InVerDa adds three com-
ponents to the DBMS: (1) the delta code generation creates
views and triggers to expose schema versions based on the
current physical data representation. Delta code generation
is either triggered by a developer issuing BiDEL commands
to create a new schema version or by the DBA issuing migra-
tion commands to change the physical data representation.

schema version catalog

migration
execution
(Sec. 7)

delta code
generation
(Sec. 6)

uses uses

DBA developer

migration
commands

BiDEL
(Sec. 4 & 5)

schema v1 schema vn

· · ·
createstriggers

database applications

DQL DML DQL DML

query engine

physical storage

· · ·

migrates

accesses accesses

InVerDa components traditional DBMS components

Figure 3: InVerDa integration into DBMS.

The delta code consists of standard commands of the DBMS’s
query engine. (2) the migration execution orchestrates the
actual migration of data from one physical representation to
another and the adaptation of the delta code. The data mi-
gration is done with the help of query engine capabilities. (3)
the schema version catalog maintains the genealogy of schema
versions: It is the history of all schema versions including all
table versions as well as the SMO instances and their mate-
rialization state. Figure 4 shows the schema version catalog
for our TasKy example with the initial materialization.

When developers execute BiDEL scripts, the respective
SMO instances and table versions are registered in the schema
version catalog. The schema version catalog maintains refer-
ences to tables in the physical storage that hold the payload
data and to auxiliary tables that hold otherwise lost informa-
tion of the not necessarily information preserving SMOs. The
materialization states of the SMOs, which can be changed
by the DBA through migration commands, determine which
data tables and auxiliary tables are physically present and
which are not. InVerDa uses the schema version catalog to
generate delta code for new schema versions or for changed
physical table schemas. Data accesses of applications are
processed by the generated delta code within the DBMS’s
query engine. When a developer drops an old schema version
that is not used any longer, the schema version is removed
from the catalog. However, the respective SMOs are only
removed from the catalog in case they are no longer part of
an evolution that connects two remaining schema versions.

The schema version catalog is the central knowledge base
for all schema versions and the evolution between them. To
this end, the catalog stores the genealogy of schema versions
by means of a directed acyclic hypergraph (T,E). Each
vertex t ∈ T represents a table version. Each hyperedge
e ∈ E represents one SMO instance, i.e., one table evolution
step. An SMO instance e = (S, T ) evolves a set of source table
versions S into a set of target table versions T . Additionally,
the schema version catalog stores for every SMO instance
the SMO type (split, merge, etc.), the parameter set, and
its state of materialization. Each schema version is a subset
of all table versions in the system. Schema versions share
a table version if the table evolves in-between them. At
evolution time, InVerDa uses the catalog to generate delta
code that makes all schema versions accessible. At query time,
the generated delta code itself is executed by the existing
DBMS’s query engine—outside InVerDa components.



Task

Table Version in Phy. Storage

SPLIT

Todo

Table Version

DROP COLUMNTodo

DECOMPOSE

SMO instance

TaskAuthor

RENAME COLUMN Author

TasKy
Schema Version

Do!

TasKy2

Figure 4: Example of schema version catalog.

4. BIDEL - BIDIRECTIONAL SMOS

BiDEL’s unique feature is the bidirectional semantics of its
SMOs, which is the basis for InVerDa’s co-existing schema
versions. We highlight the design principles behind BiDEL
SMOs and formally validate their bidirectionality. All BiDEL
SMOs follow the same design principles. Without loss of
generality, the SPLIT SMO is used as a representative example
in this section to explain the concepts. The remaining SMOs
are introduced in Appendix B.

Figure 5 illustrates the principle structure of a single SMO
instance resulting from the sample statement

SPLIT TABLE T INTO R WITH cR, S WITH cS

which horizontally splits a source table T into two target
tables R and S based on conditions cR and cS . Assuming
both schemas are materialized, reads and writes on both
schema versions can simply be delegated to the correspond-
ing data tables TD, RD, and SD, respectively. However,
InVerDa materializes data non-redundantly on one side of
the SMO instance, only. If the data is physically stored on
the source side of an SMO instance, the SMO instance is
called virtualized ; with data stored on the target side it is
called materialized. In any case, reads and writes on the
unmaterialized side are mapped to the materialized side.

The semantics of each SMO is defined by two functions
γtgt and γsrc which describe precisely the mapping from the
source side to the target side and vice versa, respectively.
Assuming the target side of SPLIT is materialized, all reads
on T are mapped by γsrc to reads on RD and SD; and writes
on T are mapped by γtgt to writes on RD and SD. While the
payload data of R, S, and T is stored in the physical tables
RD, SD, and TD, the tables R−, S+, S−, R∗, S∗, and T ′ are
auxiliary tables for the SPLIT SMO to prevent information
loss. Note that the semantics of SMOs is complete, if reads
and writes on both source and target schema work correctly
regardless on which of both sides the data is physically stored.
This basically means that each schema version acts like a
full-fledged database schema; however it does not enforce
that data written in any version is also fully readable in other
versions. In fact, BiDEL ensures this for all SMOs except of
those that create redundancy—in these cases the developer
specifies a preferred replica beforehand.

Obviously, there are different ways of defining γtgt and γsrc;
in this paper, we propose one way that systematically covers
all potential inconsistencies and is bidirectional. We aim at a
non-redundant materialization, which also includes that the
auxiliary tables merely store the minimal set of required aux-
iliary information. Starting from the basic semantics of the
SMO—e.g. the splitting of a table—we incrementally detect
inconsistencies that contradict the bidirectional semantics
and introduce respective auxiliary tables. The proposed rule
sets can serve as a blueprint, since they clearly outline which
information needs to be stored to achieve bidirectionality.

γsrc γtgt

T

TD

S+R− S−

R∗ S∗

R

S

RD SD

T ′

source schema vi target schema vi+1

read write

SPLIT

schema catalog

views
&

triggers

data
tables

auxiliary
tables

s
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h
e
m

a
s

v
e
r
s
io
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y
s
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a
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t
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a
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e

alternative
materializations

Figure 5: Mapping functions of single SPLIT SMO.

To define γtgt and γsrc, we use Datalog—a compact and
solid formalism that facilitates both a formal evaluation of
bidirectionality and easy delta code generation. Precisely, we
use Datalog rule templates instantiated with the parameters
of an SMO instance. For brevity of presentation, we use some
extensions to the standard Datalog syntax: For variables,
small letters represent single attributes and capital letters
lists of attributes. For equality predicates on attribute lists,
both lists need to have the same length and same content,
i.e. for A = (a1, . . . , an) and B = (b1, . . . , bm), A = B holds if
n = m∧a1 = b1∧. . .∧an = bn. All tables have an attribute p,
an InVerDa-managed identifier to uniquely identify tuples
across versions. Additionally, p ensures that the multiset
semantics of a relational database fits with the set semantics
of Datalog, as the unique key p prevents equal tuples in one
relation. For a table T we assume T (p, ) and ¬T (p, ) to be
safe predicates since any table can be projected to its key.

For the exemplary SPLIT, let’s assume this SMO instance
is materialized, i.e. data is stored on the target side, and let’s
consider the γtgt mapping function first. SPLIT horizontally
splits a table T from the source schema into two tables R
and S in the target schema based on conditions cR and cS :

R(p,A)← T (p,A), cR(A) (1)

S(p,A)← T (p,A), cS(A) (2)

The conditions cR and cS can be arbitrarily set by the user
so that Rule 1 and Rule 2 are insufficient wrt. the desired
bidirectional semantics, since the source table T may contain
tuples neither captured by cR nor by cS . In order to avoid
inconsistencies and make the SMO bidirectional, such tuples
are stored on the target side in the auxiliary table T ′:

T ′(p,A)← T (p,A),¬cR(A),¬cS(A) (3)

Let’s now consider the γsrc mapping function for recon-
structing T while the target side is still considered to be
materialized. Reconstructing T from the target side is essen-
tially a union of R, S, and T ′. Nevertheless, cR and cS are
not necessarily disjoint. One source tuple may occur as two
equal but independent instances in R and S. We call such
two instances twins. Twins can be updated independently
resulting in separated twins, i.e. two tuples—one in R and
one in S—with equal key p but different value for the other
attributes. To resolve this ambiguity and make the SMO
bidirectional, we consider the first twin in R to be the primus
inter pares and define γsrc of SPLIT to propagate back all
tuples in R as well as those tuples in S not contained in R:

T (p,A)← R(p,A) (4)

T (p,A)← S(p,A),¬R(p, ) (5)

T (p,A)← T ′(p,A) (6)



The Rules 1–6 define sufficient semantics for SPLIT as long
as the target side is materialized.

Let’s now assume the SMO instance is virtualized, i.e. data
is stored on the source side, and let’s keep considering the γsrc
mapping function. Again, R and S can contain separated
twins—unequal tuples with equal key p. According to Rule 5,
T stores only the separated twin from R. To avoid losing the
other twin in S, it is stored in the auxiliary table S+:

S+(p,A)← S(p,A), R(p,A′), A 6= A′ (7)

Accordingly, γtgt has to reconstruct the separated twin in
S from S+ instead of T (concerns Rule 2). Twins can also
be deleted independently resulting in a lost twin. Given the
data is materialized on the source side, a lost twin would be
directly recreated from its other twin via T . To avoid this
information gain and keep lost twins lost, γsrc keeps the keys
of lost twins from R and S in auxiliary tables R− and S−:

R−(p)← S(p,A),¬R(p, ), cR(A) (8)

S−(p)← R(p,A),¬S(p, ), cS(A) (9)

Accordingly, γtgt has to exclude lost twins stored in R−

from R (concerns Rule 1) and those in S− from S (concerns
Rule 2). Twins result from data changes issued to the target
schema containing R and S which can also lead to tuples
that do not meet the conditions cR resp. cS . In order to
ensure that the reconstruction of such tuples is possible
from a materialized table T , auxiliary tables R∗ and S∗ are
employed for identifying those tuples using their identifiers
(concerns Rules 1 and 2).

S∗(p)← S(p,A),¬cS(A) (10)

R∗(p)← R(p,A),¬cR(A) (11)

The full rule sets of γtgt respectively γsrc are now bidirectional
and defined as follows:

γtgt :

R(p,A)← T (p,A), cR(A),¬R−(p) (12)

R(p,A)← T (p,A), R∗(p) (13)

S(p,A)← T (p,A), cS(A),¬S−(p),¬S+(p, ) (14)

S(p,A)← S+(p,A) (15)

S(p,A)← T (p,A), S∗(p),¬S+(p, ) (16)

T ′(p,A)← T (p,A),¬cR(A),¬cS(A),¬R∗(p),¬S∗(p) (17)

γsrc :

T (p,A)← R(p,A) (18)

T (p,A)← S(p,A),¬R(p, ) (19)

T (p,A)← T ′(p,A) (20)

R−(p)← S(p,A),¬R(p, ), cR(A) (21)

R∗(p)← R(p,A),¬cR(A) (22)

S+(p,A)← S(p,A), R(p,A′), A 6= A′ (23)

S−(p)← R(p,A),¬S(p, ), cS(A) (24)

S∗(p)← S(p,A),¬cS(A) (25)

The semantics of all other BiDEL SMOs are defined in
a similar way, see Appendix B. This precise definition of
BiDEL’s SMOs, is the basis for the formal validation of their
bidirectionality.

5. FORMAL EVALUATION OF BIDEL’s
BIDIRECTIONALITY

BiDEL’s SMOs are bidirectional, because, no matter
whether the data is (1) materialized on the source side (SMO
is virtualized) or (2) materialized on the target side (SMO
is materialized), both sides behave like a full-fledged single-
schema database. To formally evaluate this claim, we con-
sider the two cases (1) and (2) independently. Let’s start
with case (1); the data is materialized on the source side.
For a correct target-side propagation, the data Dtgt at the
target side has to be mapped by γsrc to the data tables and
auxiliary tables at the source side (write) and mapped back
by γtgt to the data tables on the target side (read) without
any loss or gain visible in the data tables at the target side.
Similar conditions have already been defined for symmetric
relational lenses [11]—given data at the target side, storing
it at the source side, and mapping it back to target should
return the identical data at the target side. For the second
case (2) it is vice versa. Formally, an SMO has bidirectional
semantics if the following holds:

Dtgt = γdata
tgt (γsrc(Dtgt)) (26)

Dsrc = γdata
src (γtgt(Dsrc)) (27)

Data tables that are visible to the user need to match these
bidirectionality conditions. As indicated by the index γdata,
we project away potentially created auxiliary tables; however,
they are always empty except for SMOs that calculate new
values: e.g. adding a column requires to store the calculated
values when data is stored at the source side to ensure re-
peatable reads. The bidirectionality conditions are shown by
applying and simplifying the Datalog rule sets that define
the mappings γsrc and γtgt. We label the original relations
to distinguish them from the resulting relation, apply γsrc
and γtgt in the order according to Condition 26 or 27, and
compare the outcome to the original relation. It has to be
identical. As neither the rules for a single SMO nor the
version genealogy have cycles, there is no recursion at all,
which simplifies evaluating the combined Datalog rules.

In the following, we introduce some basic notion about
Datalog rules as basis for the formal evaluation. A Datalog
rule is a clause of the form H ← L1, . . . , Ln with n ≥ 1
where H is an atom denoting the rule’s head, and L1, . . . , Ln

are literals, i.e. positive or negative atoms, representing its
body. For a given rule r, we use head(r) to denote its head
H and body(r) to denote its set of body literals L1, . . . , Ln.
In the mapping rules defining γsrc and γtgt, every head(r)
is of the form qr(p, Y ) where qr is the derived predicate, p
is the InVerDa-managed identifier, and Y is a potentially
empty list of variables. Further, we use pred(r) to refer to
the predicate symbol of head(r). For a set of rules R, Rq

is defined as {r | r ∈ R ∧ pred(r) = q}. For a body literal L,
we use pred(L) to refer to the predicate symbol of L and
vars(L) to denote the set of variables occurring in L. In
the mapping rules, every literal L ∈ body(r) is of the form
either qri (p, Y r

i ,X
r
i ) or cr(Y r

i ,X
r
i ), where Y r

i ⊂ Y are the
variables occurring in L and head(r) and Xr

i are the variables
occurring in L but not in head(r). Generally, we use capital
letters to denote multiple variables. For a set of literals K,
vars(K) denotes

⋃
L∈K vars(L). The following lemmas are

used for simplifying a given rule set R into a rule set R′ such
that R′ derives the same facts as R.



Lemma 1 (Deduction). Let L ≡ qr(p, Y ) be a literal

in the body of a rule r. For a rule s ∈ Rpred(L) let rn(s, L) be
rule s with all variables occurring in the head of s at positions
of Y variables in L be renamed to match the corresponding
Y variable and all other variables be renamed to anything
not in vars(body(r)). If L is

1. a positive literal, s can be applied to r to get rule set r(s)
of the form {head(r)← body(r) \ {L} ∪ body(rn(s, L))}.

2. a negative literal, s can be applied to r to get rule set r(s) =
{head(r)← body(r) \ {L} ∪ t(K) | K ∈ body(rn(s, L)))}
with either t(K) = {¬qsi (p, Y s

i , )} if K ≡ qsi (p, Y s
i , X

s
i ) or

t(K) = {qsj (p, Y s
j ,X

s
j ) | qsj (p, Y s

i ,X
s
j ) ∈ body(rn(s, L)) ∧

Xs
j ∩Xs

i 6= ∅} ∪ {cr(Y s
i , X

s
i )} if K ≡ cr(Y s

i , X
s
i ).1

For a given p, let r be every rule in R having a literal
L ≡ p(X,Y ) in its body. Accordingly, R can be simplified by
replacing all rules r and all s ∈ Rp with all r(s) applications
to R \ ({r} ∪ Rp) ∪ (

⋃
s∈Rpred(L) r(s)).

Lemma 2 (Empty Predicate). Let r ∈ R be a rule, L
be a literal in the body L ∈ body(r) and the relation pred(L)
is known to be empty. If L is a positive literal, r can be
removed from R. If L is a negative literal, r can be simplified
to head(r)← body(r) \ {L}.

Lemma 3 (Tautology). Let r, s ∈ R be rules and L
and K be literals in the bodies of r and s, respectively, where r
and s are identical except for L and K, i.e. head(r) = head(s)
and body(r) \ {L} = body(s) \ {K}, or can be renamed to be
so. If K ≡ ¬L, r can be simplified to head(r)← body(r)\{L}
and s can be removed from R.

Lemma 4 (Contradiction). Let r ∈ R be a rule and
L and K be literals in its body L,K ∈ body(r). If K ≡ ¬L,
r can be removed from R.

Lemma 5 (Unique Key). Let r ∈ R be a rule and
q(p,X) and q(p, Y ) be literals in its body. Since, by defini-
tion, p is a unique identifier, r can be modified to head(r)←
body(r) ∪ {X = Y }.

In this paper, we use these lemmas to show bidirectionality
for the materialized SPLIT SMO in detail. Hence, Equa-
tion 27 needs to be satisfied. Writing data TD from source to
target-side results in the mapping γtgt(TD). With target-side
materialization all source-side auxiliary tables are empty.
Thus, γtgt(TD) can be simplified with Lemma 2:

R(p,A)← TD(p,A), cR(A) (28)

S(p,A)← TD(p,A), cS(A) (29)

T ′(p,A)← TD(p,A),¬cR(A),¬cS(A) (30)

Reading the source-side data back from R, S, and T ′ to T
adds the rule set γsrc (Rule 18–25) to the mapping. Using
Lemma 1, the mapping γsrc(γtgt(TD)) simplifies to:

T (p,A)←TD(p,A), cR(A) (31)

T (p,A)←TD(p,A), cS(A),¬TD(p,A) (32)

T (p,A)←TD(p,A), cS(A),¬cR(A) (33)

T (p,A)←TD(p,A),¬cS(A),¬cR(A) (34)

R−(p)←TD(p,A), cS(A),¬TD(p,A), cR(A) (35)

R−(p)←TD(p,A), cS(A),¬cR(A), cR(A) (36)

R∗(p)←TD(p,A), cR(A),¬cR(A) (37)

1Correctness can be shown with help of first order logic.

S+(p,A)←TD(p,A), cS(A), TD(p,A′), cR(A′), A 6=A′ (38)

S−(p)←TD(p,A), cR(A),¬TD(p,A), cS(A) (39)

S−(p)←TD(p,A), cR(A),¬cS(A), cS(A) (40)

S∗(p)←TD(p,A), cS(A),¬cS(A) (41)

With Lemma 4, we omit Rule 32 as it contains a contradiction.
With Lemma 3, we reduce Rules 33 and 34 to Rule 43 by
removing the literal cS(A). The resulting rules for T

T (p,A)← TD(p,A), cR(A) (42)

T (p,A)← TD(p,A),¬cR(A) (43)

can be simplified again with Lemma 3 to

T (p,A)← TD(p,A) . (44)

For Rule 38, Lemma 5 implies A = A′, so this rule can be
removed based on Lemma 4. Likewise, the Rules 36–41 have
contradicting literals on TD, cR, and cS respectively so that
Lemma 4 applies here as well. The result clearly shows that
data TD in Dsrc is mapped by γsrc(γtgt(Dsrc)) to the target
side and back to Dsrc without any information loss or gain:

γsrc(γtgt(Dsrc)) : T (p,A)← TD(p,A) (45)

So, Dsrc = γsrc(γtgt(Dsrc)) holds. Remember that the aux-
iliary tables only exist on the materialized side of the SMO
(target in this case). Hence, it is correct that there are no
rules left producing data for the source-side auxiliary. The
same can be done for Equation 26 as well (Appendix A). As
expected, the simplification of γtgt(γsrc(Dtgt)) results in

γtgt(γsrc(Dtgt)) : R(p,A)← RD(p,A) (46)

S(p,A)← SD(p,A) (47)

This formal evaluation works for the remaining BiDEL
SMOs, as well (Appendix B). BiDEL’s SMOs ensure that
given data at any schema version Vn that is propagated and
stored at a direct predecessor Vn−1 or direct successor schema
version Vn+1 can always be read completely and correctly in
Vn. To our best knowledge, we are the first to design a set of
powerful SMOs and validate their bidirectionality according
to the criteria of symmetric relational lenses.

Write operations: Bidirectionality also holds after
write operations: When updating a not-materialized schema
version, this update is propagated to the materialized schema
in a way that it is correctly reflected when reading the up-
dated data again. Given a materialized SMO, we apply a
write operation ∆src(Dsrc) to given data on the source side.
∆src(Dsrc) can both insert and update and delete data. Ini-
tially, we storeDsrc at the target side usingDtgt = γtgt(Dsrc).
To write at the source side, we have to temporarily map
back the data to the source with γdata

src (Dtgt), apply the
write ∆src, and map the updated data back to target with
D′tgt = γtgt(∆src(γ

data
src (Dtgt))). Reading the data from the

updated target γdata
src (D′tgt) has to be equal to applying the

write operation ∆src(Dsrc) directly on the source side.

∆src(Dsrc) = γdata
src (γtgt(∆src(γ

data
src (γtgt(Dsrc))))) (48)

We have already shown that D = γdata
src (γtgt(D)) holds for

any data D at the target side, so that Equation 48 reduces
to ∆src(Dsrc) = ∆src(Dsrc). Hence writes are correctly
propagated through the SMOs. The same holds vice versa
for writing at the target-side of virtualized SMOs:

∆tgt(Dtgt) = γdata
tgt (γsrc(∆tgt(γ

data
tgt (γsrc(Dtgt))))) (49)
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Figure 6: Three different cases in delta code generation.

Chains of SMOs: Further, the bidirectionality of
BiDEL SMOs also holds for chains of SMOs: smo1, . . . smon,
where γi,src/tgt is the respective mapping of smoi. Analogous
to symmetric relational lenses [11], there are no side-effects
between multiple BiDEL SMOs. So, BiDEL’s bidirectional-
ity is also guaranteed along chains of SMOs:

Dtgt = γdata
n,tgt(. . . γ1,tgt(γ1,src(. . . γn,src(Dtgt)))) (50)

Dsrc = γdata
1,src(. . . γn,src(γn,tgt(. . . γ1,tgt(Dsrc)))) (51)

This bidirectionality ensures logical data independence, since
any schema version can now be read and written without
information loss or gain, no matter where the data is actually
stored. The auxiliary tables keep the otherwise lost informa-
tion and we have formally validated their feasibility. With
the formal guarantee of bidirectionality—also along chains of
SMOs and for write operations—we have laid a solid formal
foundation for InVerDa’s delta code generation.

6. DELTA CODE GENERATION
To make a schema version available, InVerDa trans-

lates the γsrc and γtgt mapping functions into delta code—
specifically views and triggers. Views implement delta code
for reading; triggers implement delta code for writing. In a
schema versions genealogy, a single table version is the target
of one SMO instance and the source for a number of SMO
instances. The delta code for a specific table version depends
on the materialization state of the table’s adjacent SMOs.

To determine the right rule sets for delta code generation,
consider the schema genealogy in Figure 6. Table version Ti

is materialized, hence the two subsequent SMO instances,
i− 1 and i store their data at the target side (materialized),
while the two subsequent SMO instances, i + 1 and i + 2
are set to source-side materialization (virtualized). Without
loss of generality, three cases for delta code generation can
be distinguished, depending on the direction a specific table
version needs to go for to reach the materialized data.

Case 1 – local: The incoming SMO is materialized and all
outgoing SMOs are virtualized. The data of Ti is stored
in the data table Di and is directly accessible.

Case 2 – forwards: The incoming SMO and one outgoing
SMO are materialized. The data of Ti−1 is stored in
newer versions along the schema genealogy, so data access
is propagated with γsrc (read) and γtgt (write) of SMOi.

Case 3 – backwards: The incoming SMO and all outgoing
SMOs are virtualized. The data of Ti+1 is stored in older
versions along the schema genealogy, so data access is
propagated with γtgt (read) and γsrc (write) of SMOi+1.

𝑅 𝑝, 𝑋 ← 𝑃1 𝑌1 , …𝑃𝑛 𝑌𝑛 , 𝑎1 = 𝑓1 𝐴1 , … 𝑎𝑝 = 𝑓𝑝 𝐴𝑝 , 𝑐𝑜𝑛𝑑1, … 𝑐𝑜𝑛𝑑𝑜, ¬𝑁1 𝑍1 , …¬𝑁𝑚 𝑍𝑚

CREATE VIEW R AS 
SELECT 𝒑, 𝒙𝟏, … 𝒙𝒙
FROM (

SELECT 𝒑, 𝒙𝟏, …𝒙𝒋,

𝒇𝟏 𝑨𝟏 𝑨𝑺 𝒂𝟏, … 𝒇𝒑 𝑨𝒑 𝑨𝑺 𝒂𝒑
FROM 𝑷𝟏, …𝑷𝒏

WHERE 𝑷𝟏. 𝒚
𝟏 = 𝑷𝟐. 𝒚

𝟏 AND … AND 𝑷𝒊. 𝒚
𝒌 = 𝑷𝒋. 𝒚

𝒍

AND 𝒄𝒐𝒏𝒅𝟏, … 𝒄𝒐𝒏𝒅𝒐
AND NOT EXISTS (

select * from 𝑵𝟏

where 𝑵𝟏. 𝒛
𝟏 = 𝑷𝟏. 𝒚

𝟏 AND … 

AND 𝑵𝟏. 𝒛
𝒌 = 𝑷𝒋. 𝒚

𝒍

) AND NOT EXISTS (…)
) UNION (
…

𝑅 𝑝, 𝑋 ← . . .

∀ 𝑖, 𝑗 ∈ 𝑖, 𝑗 𝑖 ≠ 𝑗; 1 ≤ 𝑖, 𝑗 ≤ 𝑛 :
∀𝑦 ∈ 𝑌𝑖 ∩ 𝑌𝑗 ∶ "𝑃𝑖 . 𝑦 = 𝑃𝑗 . 𝑦"

For each 𝑁𝑖: ∀𝑗 ∈ 𝑗 1 ≤ 𝑗 ≤ 𝑛 :
∀𝑦 ∈ 𝑍𝑖 ∩ 𝑌𝑗 ∶ "𝑁𝑖 . 𝑦 = 𝑃𝑗 . 𝑦"

∀𝑥𝑖∈ 𝑋\A: "𝑥𝑖"

Figure 7: SQL generation from Datalog rules.

In Case 1, delta code generation is trivial. In Case 2
and 3, InVerDa essentially translates the Datalog rules
defining the relevant mapping functions into view and trigger
definitions. Figure 7 illustrates the general pattern of the
translation of Datalog rules to a view definition. As a single
table can be derived by multiple rules, e.g. Rule 18–20, a
view is a union of subqueries each representing one of the
rules. For each subquery, InVerDa lists all attributes of
the rule head in the select clause. Within a nested subselect
these attributes are either projected from the respective table
version or derived by a function. All positive literals referring
to other table versions or auxiliary tables are listed in the from
clause. Further, InVerDa adds for all attributes occurring
in multiple positive literals respective join conditions to the
where clause. Finally, conditions, such as cS(X), and negative
literals, which InVerDa adds as a NOT EXISTS(<subselect
for the literal>) condition, complete the where-clause.

For writing, InVerDa generates three triggers on each
table version: for inserts, deletes, and updates. To not
recompute all data of the materialized side after each write
operation at the not-materialized side of an SMO, InVerDa
adopts an update propagation technique for Datalog rules [2]
that results in minimal write operations. For instance, an
insert operation ∆+

T (p,A) on the table version T propagated
back to the source side of a materialized SPLIT SMO results
in the following update rules:

∆+
R(p,A)← ∆+

T (p,A),new cR(A), old ¬R(p,A) (52)

∆+
S (p,A)← ∆+

T (p,A),new cS(A), old ¬S(p,A) (53)

∆+
T ′ (p,A)← ∆+

T (p,A),new ¬cR(A),¬cS(A), old ¬T ′(p,A) (54)

The propagation can handle multiple write operations at the
same time and distinguishes between old and new data, which
represents the state before and after applying other write
operations. The derived update rules match the intuitive
expectations: The inserted tuple is propagated to R or to S
or to T ′ given it satisfies either cR or cS or none of them. The
additional conditions on the old literals ensure minimality by
checking whether the tuple already exists. To generate trigger
code from the update rule, InVerDa applies essentially the
same algorithm as for view generation.

Writes performed by a trigger on a table version further
trigger the propagation along the schema genealogy to the
other table versions as long as the respective update rules
deduce write operations, i.e. as long as some data is physically
stored with a table version either in the data table or in
auxiliary tables. With the generated delta code, InVerDa
propagates writes on any schema version to every other co-
existing schema version in a schema genealogy.



M P

∅ {Task-0}
{SPLIT} {Task-0}
{SPLIT, DROP COLUMN} {Todo-1}
{DECOMPOSE} {Task-1, Author-0}
{DECOMPOSE, RENAME} {Task-1, Author-1}

Table 2: Possible materialization schemas and the corre-
sponding physical table schema in the TasKy example.

7. MIGRATION PROCEDURE
The materialization states of all SMO instances in a schema

genealogy form the materialization schema. The materializa-
tion schema determines the physical table schema, i.e. which
table versions are directly stored in physical storage. For
the TasKy example—Figure 1—this entails five different pos-
sible materialization schemas M , each implying a different
physical table schema P as shown in Table 2.

The materialization schema has huge impact on the per-
formance of a given workload. Workload changes such as
increased usage of newer schema versions demand adapta-
tions of the materialization schema. InVerDa facilitates such
an adaptation with a foolproof migration command. The
migration command allows moving data non-redundantly
along the schema genealogy to those table versions where
the given workload causes the least overhead for propagating
reads and writes. Initially, all SMOs except of the create
table SMOs are virtualized, i.e. only initially created table
versions are in the physical table schema. A new material-
ization schema is derived from a given valid materialization
schema by changing the materialization state of selected
SMO instances. Formally, two conditions must hold for a
materialization schema to be valid. For an SMO s, we denote
the source table versions as src(s). For each table version
t we denote the incoming SMO with in(t) and the set of
outgoing SMOs with out(t). A materialization is valid iff:

∀s∈M ∀t∈src(s) (in(t) ∈M) (55)

∀s∈M ∀t∈src(s) @o∈(out(t)\{s}) (o ∈M) (56)

The first condition ensures that all source table versions are
in the materialization schema. The second condition ensures
that no source table version is already taken by another
materialized SMO.

In the migration command, the DBA lists the table versions
that should be materialized. For instance:

MATERIALIZE 'TasKy2.task', 'TasKy2.author';

InVerDa determines with the schema version catalog the
corresponding materialization schema and checks, whether it
is valid according to the conditions above. If valid, InVerDa
automatically creates the new physical tables including aux-
iliary tables in the physical storage, migrates the data, regen-
erates all necessary delta code, and deletes all old physical
tables. The actual data migration relies on the same SQL
generation routines as used for view generation. From a user
perspective, all schema versions still behave the same after a
migration. However, any data access is now propagated to the
new physical table schema resulting in a better performance
for schema versions that are evolution-wise close to this new
physical schema. This migration is triggered by one single
line of code, so adaptation to the current workload becomes
a comfortable thing to do for database administrators.

InVerDa Initially Evolution Migration

Lines of Code 1 3 1
Statements 1 3 1
Characters 54 152 19

SQL (Ratio) Initially Evolution Migration

Lines of Code 1 (×1.00) 359 (×119.67) 182 (×182.00)
Statements 1 (×1.00) 148 (×49.33) 79 (×79.00)
Characters 54 (×1.00) 9477 (×62.35) 4229 (×222.58)

Table 3: Ratio between SQL and InVerDa delta code.

8. EVALUATION
InVerDa brings huge advantages for software systems by

decoupling the different goals of different stakeholders. Users
can continuously access all schema versions, while developers
can focus on the actual continuous implementation of the
software without caring about former versions. Above all, the
DBA can change the physical table schema of the database
to optimize the overall performance without restricting the
availability of the co-existing schema versions or invalidating
the developers’ code. In Section 8.1, we show how InVerDa
reduces the length and complexity of the code to be writ-
ten by the developer and thereby yields more robust and
maintainable solutions. InVerDa automatically generates
the delta code based on the discussed Datalog rules. In Sec-
tion 8.2, we measure the overhead of accessing data through
InVerDa’s delta code compared to a handwritten SQL im-
plementation of co-existing schema versions and show that it
is reasonable. In Section 8.3, we show that the possibility to
easily adapt the physical table schema to a changed workload
outweighs the small overhead of InVerDa’s automatically
generated delta code. Materializing the data according to the
most accessed version speeds up the data access significantly.

Setup: For the measurements, we use three different data
sets to gather a holistic idea of InVerDa’s characteristics.
We use (1) our TasKy example as a middle-sized and compre-
hensive scenario, (2) 171 schema versions of Wikimedia [7] as
a long real-world scenario, and (3) short synthetic scenarios
for all possible combinations of two SMOs. We measure
single thread performance of a PostgreSQL 9.4 database
with co-existing schema versions on a Core i7 machine with
2,4GHz and 8GB memory.

8.1 Simplicity and Robustness
Most importantly, we show that InVerDa unburdens

developers by rendering the expensive and error-prone task
of manually writing delta code unnecessary. We show this
using both the TasKy example and Wikimedia.

TasKy: We implement the evolution from TasKy to TasKy2
with handwritten and hand-optimized SQL and compare this
code to the equivalent BiDEL statements. We manually im-
plemented (1) creating the initial TasKy schema, (2) creating
the additional schema version TasKy2 with the respective
views and triggers, and (3) migrating the physical table
schema to TasKy2 and adapting all existing delta code. This
handwritten SQL code is much longer and much more com-
plex than achieving the same goal with BiDEL. Table 3 shows
the lines of code (LOC) required with SQL and BiDEL, re-
spectively, as well as the ratio between these values. As there
is no general coding style for SQL, LOC is a rather vague
measure. We also include the number of statements and the
number of characters (consecutive white-space characters



SMO occurrences

CREATE TABLE 42
DROP TABLE 10
RENAME TABLE 1
ADD COLUMN 95
DROP COLUMN 21

SMO occurrences

RENAME COLUMN 36
JOIN 0
DECOMPOSE 4
MERGE 2
SPLIT 0

Table 4: Used SMOs in Wikimedia database evolution.

counted as one) as more objective measures to get a clear
picture. Obviously, creating the initial schema is equally
complex for both approaches. However, evolving to the new
schema version TasKy2 and migrating the data accordingly
requires 359 and 182 lines of SQL code respectively, while we
can express the same with 3 and 1 lines with BiDEL. More-
over, the SQL code is also more complex, as indicated by the
average number of character per statement. While BiDEL
is working exclusively on the visible schema versions, with
handwritten SQL developers also have to manage auxiliary
tables, triggers, etc.

The automated delta code generation does not only elimi-
nate the error-prone and expensive manual implementation,
but it is also reasonably fast. Creating the initial TasKy took
154 ms on our test system. The evolution to TasKy2, which
includes two SMOs, requires 230 ms for both the generation
and execution of the evolution script. The same took 177 ms
for Do!. Please note that the complexity of generating and
executing evolution scripts depends linearly on the number
of SMOs N and the number of untouched table versions
M . The complexity is O(N + M), since we generate the
delta code for each SMO locally and exclusively work on
the neighboring table versions. This principle protects from
additional complexity in longer chains of SMOs. The same
holds for the complexity of executing migration scripts. It is
O(N) since InVerDa merely moves the data and updates
the delta code for the materialized SMOs stepwise.

Wikimedia: Even long evolutions can be easily modeled
with BiDEL. To show this, we implement 171 schema ver-
sions of the Wikimedia [7], so data that is written in any of
these schema versions, is also visible in all 170 other schema
versions. BiDEL proved to be capable of providing the
database schema in each version exactly according to the
benchmark and migrating the data accordingly. In Table 4,
we summarize how often each SMO has been used in the
211 SMOs long evolution. Even though simple SMOs, like
adding and removing tables/columns, are clearly dominating—
probably due to the restricted database evolution support of
current DBMSes—there are more complex evolutions includ-
ing the other SMOs as well. Hence, there is a need for more
sophisticated database evolution support and BiDEL shows
to be feasible.
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8.2 Overhead of Generated Delta Code
InVerDa’s delta code is generated from Datalog rules and

aims at a general and solid solution. So far, our focus is on
the correct propagation of data access on multiple co-existing
schema versions. We expect the database optimizer to find
a fast execution plan, however, there will be an overhead of
InVerDa compared to hand-optimized SQL.
TasKy: In Figure 8, we use the previously presented TasKy

example with 100 000 tasks and compare the performance
of InVerDa generated delta code to the handwritten one.
There are two aspects to observe. First, the hand-optimized
delta code causes slightly less (up to 4 %) overhead than
the generated one. Considering the difference in length and
complexity of the code (359 x LOC for the evolution), a per-
formance overhead of 4 % in average is more than reasonable
for most users. Second, the materialization significantly in-
fluences the actual performance. Reading the data in the
materialized version is up to twice as fast as accessing it from
the respective other version in this scenario. For the write
workload (insert new tasks), we observe again a reasonably
small overhead compared to handwritten SQL. Interestingly,
the evolved materialization is always faster because the initial
materialization requires to manage an additional auxiliary
table for the foreign key relationship. A DBA can optimize
the overall performance for a given workload by adapting the
materialization, which is a very simple task with InVerDa.
An advisor tool supporting the optimization task is very well
imaginable, but out of scope for this paper.

8.3 Benefit of Flexible Materialization
Adapting the physical table schema to the current work-

load is hard with handwritten SQL, but almost for free with
InVerDa (1 LOC instead of 182 in our TasKy example).
Let’s assume a development team spares the effort for rewrit-
ing delta code and works with a fixed materialization.

TasKy: Again, we use the TasKy example with 100 000
tasks. Figure 9 shows the accumulated propagation overhead
for handwritten SQL with the two fixed materializations and



(a) Materializations for TasKy Mix. (b) Materializations for TasKy Read. (c) Materializations for TasKy Write.

Figure 11: Different workloads on all possible materialization of TasKy.

for InVerDa with an adaptive materialization. Assume,
over time the workload changes from 0 % access to TasKy2
and 100 % to TasKy to the opposite 100 % and 0 % according
to the Technology Adoption Life Cycle. The adoption is
divided into 1000 time slices where 1000 queries are executed
respectively. The workload mixes 50 % reads, 20 % inserts,
20 % updates, and 10 % deletes. As soon as the evolved
materialization is faster for the current workload mix, we
instruct InVerDa to change the materialization. As can be
seen, InVerDa facilitates significantly better performance—
including migration cost—than a fixed materialization.

This effect increases with the length of the evolution, since
InVerDa can also materialize intermediate stages of the
evolution history. Assume, all users use exclusively the
mobile phone app Do!; but as TasKy2 gets released users
switch to TasKy2 which comes with its own mobile app. In
Figure 10, we simulate the accumulated overhead for either
materializing one of the three schema versions or for a flexible
materialization. The latter starts at Do!, moves to TasKy
after several users started using TasKy2, and finally moves to
TasKy2 when the majority of users did so. Again, InVerDa’s
flexible materialization significantly reduces the overhead for
data propagation without any interaction of a developer.

The DBA can choose between multiple materialization
schemas. The number of valid materialization schemas
greatly depends on the actual structure of the evolution. The
lower bound is a linear sequence of depending SMOs, e.g. one
table with N ADD COLUMN SMOs has N valid materializations.
The upper bound are N independent SMOs, each evolving
another table, with 2N valid materializations. Specifically,
the TasKy example has five valid materializations.

Figure 11 shows the data access performance on the three
schema versions for each of the five materialization schema.
The materialization schemas are represented as the lists of
SMOs that are materialized. We use abbreviations for SMOs:
e.g. [D,RC] on the very right corresponds to schema version
TasKy2 since both the decompose SMO (D) and the rename
column SMO (RC) are materialized. The initial materializa-
tion is in the middle, while e.g. the materialization according
to Do! is on the very left. The workload mixes 50 % reads,
20 % inserts, 20 % updates, 10 % deletes in Figure 11a, 100 %
reads in Figure 11b, and 100 % inserts in Figure 11c on the
depicted schema versions. Again, the measurements show
that accesses to each schema version are fastest when its
respective table versions are materialized, i.e. when the phys-
ical table schema fits the accessed schema version. However,
there are differences in the actual overhead, so the globally
optimal materialization depends on the workload distribution
among the schema version. E.g. writing to TasKy2 is 49
times faster when the physical table schema matches TasKy2
instead of Do!. This gain increases with every SMO, so for
longer evolutions with more SMOs it will be even higher.

Wikmedia: The benefits of the flexible materialization
originate from the increased performance when accessing data
locally without the propagation through SMOs. We load our
Wikimedia with the data of Akan Wiki in schema version
v16524 (109th version) with 14 359 pages and 536 283 links.
We measure the read performance for the template queries
from [7] both in schema version v04619 (28th version) and
v25635 (171th version). The chosen materializations match
version v01284 (1st), v16524 (109th), and v25635 (171th)
respectively. In Figure 12, a great performance difference of
up to two orders of magnitude is visible, so there is a huge
optimization potential. We attribute this asymmetry to the
dominance of add column SMOs, which need an expensive
join with an auxiliary table to propagate data forwards, but
only in a cheap projection to propagate backwards.

All possible evolutions with two SMOs: To show
that it is always possible to gain a better performance by
optimizing the materialization, we conduct a micro bench-
mark on all possible evolutions with two SMOs—except of
creating and dropping tables as well as renaming columns
and tables, since they have no relevant performance overhead
in the first place. We show that there is always a performance
benefit when accessing data locally compared to propagat-
ing it through SMOs and we disprove that InVerDa might
add complexity to the data access, so two SMOs do not
impact each other negatively. We generate evolutions with
two SMOs and three schema versions: 1st version – 1st SMO
– 2nd version – 2nd SMO – 3rd version. The second version
always contains a table R(a, b, c); the number of generated
tuples in this table is the x-axis of the charts. In Figure 13,
we exemplarily consider all the combinations with add col-
umn as 2nd SMO, since this is the most common one. Again,
accessing data locally is up to twice as fast as propagating
it through an SMO, so the optimization potential exists in
all scenarios. The average speedup over all SMOs is 2.1.
We calculate the expected performance for the combination
of both SMOs as the sum of both query execution times
minus reading data locally at the 2nd schema version. This
is reasonable since the data for the 2nd SMO is already in
memory after executing the 1st one. Figure 13 shows that
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Figure 12: Optimization potential for Wikimedia.



Figure 13: Scaling behavior of the ADD COLUMN SMO.

the measured time for propagating the data through two
SMOs is always in the same range as the calculated com-
bination of the overhead of the two SMOs individually, so
we showed that there is great optimization potential for all
combinations of those SMOs and we can safely use it without
fearing additional overhead when combining SMOs. This
holds for all pairs of SMOs: on average the measured time
differs only 6.3 % from the calculated one. In sum, InVerDa
enables the DBA to easily adapt the materialization schema
to a changing workload and to significantly speed up query
processing without hitting other stakeholders’ interests.

9. RELATED WORK
Both the database evolution [14] and co-existing schema

versions [16] are well recognized in database research. For
database evolution, existing approaches increase comfort and
efficiency, for instance by defining a schema evolution aware
query language [15] or by providing a general framework
to describe database evolution in the context of evolving
applications [8]. With Meta Model Management 2.0 [3],
Phil Bernstein et al. introduced a comprehensive tooling
to i.a. match, merge, and diff given schema versions. The
resulting mappings couple the evolution of both the schema
and the data just as our SMOs do; however, the difference is
that mappings are derived from given schema versions while
InVerDa takes developer-specified mappings and derives
the new schema version. Currently, PRISM [5] appears to
provide the most advanced database evolution tool with an
SMO-based DEL. PRISM was introduced in 2008 and focused
on the plain database evolution [6]. Later, PRISM++ added
constraint evolution and update rewriting [5].

These existing works provide a great basis for database evo-
lution and InVerDa builds upon them to add logical data
independence and co-existence of schema versions,
which basically requires bidirectional transformations [17].
Particularly, symmetric relational lenses lay a foundation to
describe read and write accesses along a bidirectional map-
ping [11]. For InVerDa, we adapt this idea to bidirectional
SMOs. Another extension of PRISM++ takes a first step
towards co-existing schema versions by answering queries

on former schema versions w.r.t. to the current data [13],
however, InVerDa also covers write operations on those for-
mer schema versions. There are multiple systems also taking
this step, however, the DELs are usually rather limited or
work on different meta models like data warehouses [1]. The
ScaDaVer system [18] allows additive and subtractive SMOs
on the relational model, which simplifies bidirectionality and
hence it is a great starting point towards more powerful
DELs. BiDEL also covers restructuring SMOs and is based
on established DELs [5, 9]. To the best of our knowledge,
we are the first to realize end-to-end support for co-existing
schema versions based on such powerful DELs.

10. CONCLUSIONS
Current DBMSes do not support co-existing schema ver-

sions properly, forcing developers to manually write complex
and error-prone delta code, which propagates read/write
accesses between schema versions. Moreover, this delta code
needs to be adapted manually whenever the DBA changes the
physical table schema. InVerDa greatly simplifies creating
and maintaining co-existing schema versions for developers,
while the DBA can freely change the physical table schema.
For this sake, we have introduced BiDEL, an intuitive bidi-
rectional database evolution language that carries enough
information to generate all the delta code automatically. We
have formally validated BiDEL’s bidirectionality making it a
sound and robust basis for InVerDa. In our evaluation, we
have shown that BiDEL scripts are significantly shorter than
handwritten SQL scripts (359 x). The performance overhead
caused by the automatically generated delta code is very low
but the freedom to easily change the physical table schema is
highly valuable: we can greatly speed up query processing by
matching the physical table schema to the current workload.
In sum, InVerDa finally enables agile—but also robust and
maintainable—software development for information systems.
Future research topics are (1) zero-downtime migrations, (2)
efficient physical table schemas e.g. with redundancy, (3)
self-managed DBMSes continuously adapting the physical
table schema to the current workload, and (4) optimized
delta code within a database system instead of triggers.



11. REFERENCES
[1] M. Arora and A. Gosain. Article: Schema Evolution for

Data Warehouse: A Survey. International Journal of
Computer Applications, 22(5):6–14, 2011.

[2] A. Behrend, U. Griefahn, H. Voigt, and P. Schmiegelt.
Optimizing continuous queries using update
propagation with varying granularities. In SSDBM ’15,
pages 1–12, New York, USA, jun 2015. ACM Press.

[3] P. A. Bernstein and S. Melnik. Model management 2.0.
In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data -
SIGMOD ’07, page 1, New York, New York, USA, 2007.
ACM Press.

[4] M. L. Brodie and J. T. Liu. Keynote: The Power and
Limits of Relational Technology In the Age of
Information Ecosystems. In OTM’10, pages 2–3, 2010.

[5] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Automating the database schema evolution process.
VLDB Journal, 22(1):73–98, dec 2013.

[6] C. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the PRISM workbench.
VLDB Endowment, 1(1):761–772, aug 2008.

[7] C. Curino, L. Tanca, H. J. Moon, and C. Zaniolo.
Schema evolution in wikipedia: toward a web
information system benchmark. In ICEIS, pages
323–332, 2008.

[8] E. Domı́nguez, J. Lloret, Á. L. Rubio, and M. a.
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APPENDIX
A. BIDIRECTIONALITY OF SPLIT

In this paper (Section 5), we merely showed one of the two
bidirectionality conditions for the SPLIT SMO to explain the
concept. As a reminder, the two conditions are:

Dtgt = γdata
tgt (γsrc(Dtgt)) (57)

Dsrc = γdata
src (γtgt(Dsrc)) (58)

We have already shown Condition 58, so we do the same for
Condition 57, now.

Writing data RD and SD from the target-side to the source-
side is done with the mapping γsrc(RD, SD). With source-
side materialization all target-side auxiliary tables are not
required, so we apply Lemma 2 to obtain:

γsrc(RD,SD) :

T (p,A)←RD(p,A) (59)

T (p,A)←SD(p,A),¬RD(p, ) (60)

R−(p)←SD(p,A),¬RD(p, ), cR(A) (61)

R∗(p)←RD(p,A),¬cR(A) (62)

S+(p,A)←SD(p,A), RD(p,A′), A 6= A′ (63)

S−(p)←RD(p,A),¬SD(p, ), cS(A) (64)

S∗(p)←SD(p,A),¬cS(A) (65)

Reading the target-side data back from the source-side adds
the rule set γtgt (Rule 12–17) to the mapping. Using Lemma 1,
the mapping γtgt(γsrc(TD)) extends to:

γtgt(γsrc(RD,SD)) :

R(p,A)←RD(p,A), cR(A),¬SD(p, ) (66)

R(p,A)←RD(p,A), cR(A), RD(p, ) (67)

R(p,A)←RD(p,A), cR(A), SD(p,A′),¬cR(A′) (68)

R(p,A)←RD(p,A), RD(p,A),¬cR(A) (69)

R(p,A)←SD(p,A),¬RD(p, ), cR(A),¬SD(p,A) (70)

R(p,A)←SD(p,A),¬RD(p, ), cR(A),RD(p, ) (71)

R(p,A)←SD(p,A),¬RD(p, ), cR(A),¬cR(A) (72)

R(p,A)←SD(p,A),¬RD(p, ),RD(p,A),¬cR(A) (73)

S(p,A)←RD(p,A), cS(A),¬RD(p,A),¬SD(p, ) (74)

S(p,A)←RD(p,A), cS(A),¬RD(p,A),¬RD(p, ) (75)

S(p,A)←RD(p,A), cS(A),¬RD(p,A),

SD(p,A′), RD(p,A), A′ = A (76)

S(p,A)←RD(p,A), cS(A),SD(p, ),¬SD(p, ) (77)

S(p,A)←RD(p,A), cS(A), SD(p, ),¬RD(p, ) (78)

S(p,A)←RD(p,A), cS(A), SD(p, ),

SD(p,A′), RD(p,A), A′ = A (79)

S(p,A)←RD(p,A), cS(A),¬cS(A),¬SD(p, ) (80)

S(p,A)←RD(p,A), cS(A),¬cS(A),¬RD(p,A) (81)

S(p,A)←RD(p,A), cS(A),¬cS(A),

SD(p,A′), RD(p,A), A′ = A (82)



S(p,A)←SD(p,A),¬RD(p, ), cS(A),¬RD(p, ),

¬SD(p, ) (83)

S(p,A)←SD(p,A),¬RD(p, ), cS(A),¬RD(p, ),

¬RD(p, ) (84)

S(p,A)←SD(p,A),¬RD(p, ), cS(A),¬RD(p, ),

SD(p,A),RD(p,A′′), A = A′′ (85)

S(p,A)←SD(p,A),¬RD(p, ), cS(A), SD(p, ),

¬SD(p, ) (86)

S(p,A)←SD(p,A),¬RD(p, ), cS(A), SD(p, ),

¬RD(p, ) (87)

S(p,A)←SD(p,A),¬RD(p, ), cS(A), SD(p, ),

SD(p,A),RD(p,A′′), A = A′′ (88)

S(p,A)←SD(p,A),¬RD(p, ), cS(A), RD(p,A′),

cS(A′),¬SD(p, ) (89)

S(p,A)←SD(p,A),¬RD(p, ), cS(A),RD(p,A′),

cS(A′),¬RD(p, ) (90)

S(p,A)←SD(p,A),¬RD(p, ), cS(A),RD(p,A′),

cS(A′), SD(p,A), RD(p,A′′), A = A′′ (91)

S(p,A)←SD(p,A), RD(p,A′), A 6= A′ (92)

S(p,A)←RD(p,A),SD(p,A),¬cS(A),¬SD(p, ) (93)

S(p,A)←RD(p,A), SD(p,A),¬cS(A),¬RD(p, ) (94)

S(p,A)←RD(p,A), SD(p,A),¬cS(A),

SD(p,A), RD(p,A), A = A (95)

S(p,A)←SD(p,A),¬RD(p, ), SD(p,A),¬cS(A),

¬SD(p, ) (96)

S(p,A)←SD(p,A),¬RD(p, ), SD(p,A),¬cS(A),

¬RD(p, ) (97)

S(p,A)←SD(p,A),¬RD(p, ), SD(p,A),¬cS(A),

SD(p,A),RD(p,A′), A = A′) (98)

T ′(p,A)←RD(p,A),¬cR(A),¬cS(A),¬RD(p, ),

¬SD(p, ) (99)

T ′(p,A)←RD(p,A),¬cR(A),¬cS(A),¬RD(p, ),

SD(p,A′), cS(A′) (100)

T ′(p,A)←RD(p,A),¬cR(A),¬cS(A), RD(p,A),

cR(A),¬SD(p, ) (101)

T ′(p,A)←RD(p,A),¬cR(A),¬cS(A), RD(p,A),

cR(A), SD(p,A′′), cS(A′′) (102)

T ′(p,A)←SD(p,A),¬RD(p, ),¬cR(A),¬cS(A),

¬RD(p, ),¬SD(p, ) (103)

T ′(p,A)←SD(p,A),¬RD(p, ),¬cR(A),¬cS(A),

¬RD(p, ), SD(p,A), cS(A)) (104)

T ′(p,A)←SD(p,A),¬RD(p, ),¬cR(A),¬cS(A),

RD(p,A′), cR(A′),¬SD(p, ) (105)

T ′(p,A)←SD(p,A),¬RD(p, ),¬cR(A),¬cS(A),

RD(p,A′), cR(A′), SD(p,A′′), cS(A′′) (106)

Using Lemma 4 we remove all rules that have contradicting
literals (marked bold). Particularly, there remains no rule for
T ′ as expected. Further, we remove duplicate literals within
the rules, so we obtain the simplified rule set:

R(p,A)←RD(p,A), cR(A),¬SD(p, ) (107)

R(p,A)←RD(p,A), cR(A) (108)

R(p,A)←RD(p,A), cR(A), SD(p,A′),¬cR(A′) (109)

R(p,A)←RD(p,A),¬cR(A) (110)

S(p,A)←SD(p,A), RD(p,A), cS(A) (111)

S(p,A)←SD(p,A),¬RD(p, ), cS(A) (112)

S(p,A)←SD(p,A),¬RD(p, ), cS(A) (113)

S(p,A)←SD(p,A), RD(p,A′), A 6= A′ (114)

S(p,A)←SD(p,A), RD(p,A),¬cS(A) (115)

S(p,A)←SD(p,A),¬RD(p, ),¬cS(A) (116)

Rule 111 is derived from Rule 79 by applying the equivalence
of A and A′ to the remaining literals. Let’s now focus on the
rules for R. Rules 107 and 109 are subsumed by Rule 108,
since they contain the identical literals as Rule 108 plus
additional conditions. Lemma 3 allows us to further reduce
Rules 108 and 110, so we achieve that all tuples in R survive
one round trip without any information loss or gain:

R(p,A)←RD(p,A) (117)

We also reduce the rules for S. Rule 113 can be removed,
since it is equal to Rule 112. With Lemma 3, Rules 112
and 116 as well as Rules 111 and 115 can be combined
respectively. This results in the following rules for S:

S(p,A)←SD(p,A), RD(p,A) (118)

S(p,A)←SD(p,A),¬RD(p, ) (119)

S(p,A)←SD(p,A), RD(p,A′), A 6= A′ (120)

Rules 118 and 120 basically state that the payload data in
R (A and A′ respectively) is either equal to or different from
the payload data in S for the same key p. When we rewrite
Rule 118 to:

S(p,A)←SD(p,A), RD(p,A′), A = A′ (121)

we can apply Lemma 3 to obtain the two rules:

S(p,A)←SD(p,A), RD(p, ) (122)

S(p,A)←SD(p,A),¬RD(p, ) (123)

With the help of Lemma 3, we reduce γtgt(γsrc(RD, SD)) to

R(p,A)←RD(p,A) (124)

S(p,A)←SD(p,A) (125)

So, both Condition 57 and Condition 58 for the bidirectional-
lity of the split SMO are formally validated by now. Since the
merge SMO is the inverse of the split SMO and uses the exact
same mapping rules vice versa, we also implicitly validated
the bidirectionality of the merge SMO. We can now safely
say: wherever we materialize the data, the mapping rules
always guarantee that each table version can be accessed just
like a regular table—no data will be lost or gained. This is
a strong guarantee and the basis for InVerDa to provide
co-existing schema versions within a single database.



B. REMAINING SMOS

We introduce the syntax and semantics of the remaining
SMOs from Figure 2. Further, we include the results of the
formal evaluation of their bidirectionality. Please note that
creating, dropping, and renaming tables as well as renaming
columns exclusively affects the schema version catalog and
does not include any kind of data evolution, hence there
is no need to define mapping rules for these SMOs. In
Section B.1, we introduce the ADD COLUMN SMO. Since SMOs
are bidirectional, exchanging the rule sets γsrc and γtgt yields
the inverse SMO: DROP COLUMN. There are different extends
for the JOIN and its inverse DECOMPOSE SMO: a join can have
inner or outer semantics and it can be done based on the
primary key, a foreign key, or on an arbitrary condition. As
summarized in Table 5, each configuration requires different
mapping functions, however some are merely the inverse or
variants of others. The inverse of DECOMPOSE is OUTER JOIN
and joining at a foreign key is merely a specific condition.

B.1 Add Column / Drop Column
SMO: ADD COLUMN b AS f(r1,...,rn) INTO R
Inverse: DROP COLUMN b FROM R DEFAULT f(r1,...,rn)
The ADD COLUMN SMO adds a new column b to a table R
and calculates the new values for b according to the given
function f . The inverse DROP COLUMN SMO uses the same
parameters to ensure bidirectionality.

γtgt : R′(p,A, b)← R(p,A), b = fB(p,A),¬B(p, ) (126)

R′(p,A, b)← R(p,A), B(p, b) (127)

γsrc : R(p,A)← R′(p,A, ) (128)

B(p, b)← R′(p, , b) (129)

γsrc(γtgt(RD)) :

R(p,A)← RD(p,A) (130)

B(p, b)← RD(p,A), b = fB(p,A) (131)

γtgt(γsrc(R′D)) :

R′(p,A, b)← R′D(p,A, b) (132)

The auxiliary table B stores the values of the new column
when the SMO is virtualized to ensure bidirectionality. With
the projection to data tables, the SMO satisfies Conditions 57
and 58. For repeatable reads, the table B is also needed
when data is given in the source schema version (Rule 131).

B.2 Decompose on the Primary Key
SMO: DECOMPOSE TABLE R INTO S(A), T(B) ON PK
Inverse: OUTER JOIN TABLE S, T INTO R ON PK
To fill the gaps potentially resulting from the inverse outer
join, we use the null value ωR. The bidirectionality conditions
are satisfied: after one round trip, no data is lost or gained.

γtgt : S(p,A)← R(p,A, ), A 6= ωR (133)

T (p,B)← R(p, , B), B 6= ωR (134)

γsrc : R(p,A,B)← S(p,A), T (p,B) (135)

R(p,A, ωR)← S(p,A),¬T (p, ) (136)

R(p, ωR, B)← ¬S(p, ), T (p,B) (137)

γsrc(γtgt(RD)) : R(p,A,B)← RD(p,A,B) (138)

γtgt(γsrc(SD,TD)) :S(p,A)← SD(p,A) (139)

T (p,B)← TD(p,B) (140)

Decompose Outer Join Inner Join

ON PK B.2 Inverse of B.2 B.5
ON FK B.3 Inverse of B.3 Variant of B.6
ON Cond. B.4 Inverse of B.4 B.6

Table 5: Overview of different Decompose and Join SMOs.

B.3 Decompose on a Foreign Key
SMO: DECOMPOSE TABLE R INTO S(A), T(B) ON FK t
Inverse: OUTER JOIN TABLE S, T INTO R ON FK t
A DECOMPOSE, which creates a new foreign key, needs to
generate new identifiers. Assume we cut away the addresses
from persons stored in one table, we eliminate all duplicates
in the new address table, assign a new identifier to each
address, and finally add a foreign key column to the new
persons table. On every call, the function idT (B) returns a
new unique identifier for the payload data B in table T . In
our implementation, this is merely a regular SQL sequence
and the mapping rules ensure that an already generated
identifier is reused for the same data. In order to guarantee
proper evaluation of these functions, we enforce a sequential
evaluation of the rules by distinguishing between existing
and new data. For a literal L, we use the indexes Lo (old)
and Ln (new) to note the difference, however they have now
special semantics and are evaluated like any other literal in
Datalog. For a DECOMPOSE ON FK, we propose the rule set:

γtgt :

Tn(t, B)← R(p, , B), IDR(p, t) (141)

Tn(t, B)← R(p, , B),¬IDR(p, t),

¬To( , B), t = idT (B) (142)

Tn(t, B)← R( , , B), To(t, B) (143)

S(p,A, t)← R(p,A, ), IDR(p, t) (144)

S(p,A, ω)← R(p,A, ), IDR(p, ω) (145)

S(p,A, t)← R(p,A,B),¬IDR(p, ), Tn(t, B) (146)

γsrc :

R(p,A,B)← S(p,A, t), T (t, B) (147)

R(p,A, ω)← S(p,A, ω) (148)

R(t, ω,B)← ¬S( , , t), T (t, B) (149)

IDR(p, t)← S(p, , t), T (t, ) (150)

IDR(p, ω)← S(p, , ω) (151)

IDR(t, t)← ¬S( , , t), T (t, ) (152)

γsrc(γtgt(RD)) :

R(p,A,B)← RD(p,A,B) (153)

IDR(p, t)← RD(p,A,B), t = idT (B) (154)

γtgt(γsrc(SD,TD)) :

T (t, B)← TD(t, B) (155)

S(p,A, t)← SD(p,A, t) (156)

Projecting the outcomes to the data tables, again satisfies
our bidirectionality Conditions 57 and 58. Hence, no matter
whether the SMO is virtualized or materialized, both the
source and the target side behave like common single-schema
databases. Storing data in R implicitly generates new values
to the auxiliary table IDR, which is intuitive: we need to
store the assigned identifiers for the target version to ensure
repeatable reads on those generated identifiers.



B.4 Decompose on Condition
SMO: DECOMPOSE TABLE R INTO S(A), T(B) ON c(A,B)
Inverse: OUTER JOIN TABLE S, T INTO R ON c(A,B)
To e.g. normalize a table that holds books and authors
(N : M), we can either use two subsequent DECOMPOSE ON
FK to maintain the relationship between books and authors,
or—if the new evolved version just needs the list of authors
and the list of books—we simply split them giving up the
relationship. In the following, we provide rules for the latter
case. Either way we have to generate new identifiers for
both the books and the authors. We use the same identity
generating function as in Section B.3.

γtgt :

Sn(s,A)←R(r, A, ), IDo(r, s, ) (157)

Sn(s,A)←R(r, A, ),¬IDo(r, , ),

A 6= ωR, s = idS(A) (158)

Sn(r, A)←R(r, A, ),¬IDo(r, , ), A = ωR (159)

Tn(t, B)←R(r, , B), IDo(r, , t) (160)

Tn(t, B)←R(r, , B),¬IDo(r, , ),

B 6= ωR, t = idT (B) (161)

Tn(r,B)←R(r, , B),¬IDo(r, , ), B = ωR (162)

IDn(r, s, t)←R(r, A,B), Sn(s,A), Tn(t, B) (163)

R−(s, t)←¬R( , A,B), Sn(s,A),

Tn(t, B), c(A,B) (164)

γsrc :

Ro(r,A,B)←S(s,A), T (t, B), IDo(r, s, t) (165)

Ro(r,A,B)←S(s,A), T (t, B), c(A,B),¬R−(s, t),

¬IDo( , s, t), r = idR(A,B) (166)

IDn(r, s, t)←S(s,A), T (t, B), c(A,B), Ro(r,A,B) (167)

IDn(r, s, t)←IDo(r, s, t) (168)

Rn(r,A,B)←Ro(r,A,B) (169)

Rn(s,A, ωR)←S(s,A),¬IDn( , s, ) (170)

Rn(t, ωR, B)←T (t, B),¬IDn( , , t) (171)

γsrc(γtgt(SD,TD)) :

Rn(r,A,B)←RD(r, A,B) (172)

IDn(r, s, t)←RD(r, A,B),

s = idS(A), t = idT (B) (173)

γtgt(γsrc(RD)) :

S(s,A)←SD(s,A) (174)

T (t, B)←TD(t, B) (175)

ID(r, s, t)←SD(s,A), TD(t, B),

c(A,B), r = idR(A,B) (176)

The bidirectionality Conditions 57 and 58 are satisfied. For
repeatable reads, the auxiliary table ID stores the generated
identifiers independently of the chosen materialization.

B.5 Inner Join on Primary Key
SMO: JOIN TABLE R, S INTO T ON PK
For this join, we merely need one auxiliary table to store
those tuples that do not match with a join partner. Since
both bidirectionality conditions hold in the end, we have
formally shown the bidirectionality of JOIN ON PK.

γtgt : R(p,A,B)← S(p,A), T (p,B) (177)

S+(p,A)← S(p,A),¬T (p, ) (178)

T+(p,B)← ¬S(p, ), T (p,B) (179)

γsrc : S(p,A)← R(p,A, ) (180)

S(p,A)← S+(p,A) (181)

T (p,B)← R(p, , B) (182)

T (p,B)← T+(p,B) (183)

γsrc(γtgt(SD,TD)) :S(p,A)← SD(p,A) (184)

T (p,B)← TD(p,B) (185)

γtgt(γsrc(RD)) : R(p,A,B)← RD(p,A,B) (186)

B.6 Inner Join on Condition
SMO: JOIN TABLE R, S INTO T ON c(A,B)
A join on a condition creates new tuples, so we have to
generate new identifiers as well. We use the notion introduced
in Section B.3 and satisfy the bidirectionality conditions.

γtgt :

Rn(r, A,B)←S(s,A), T (t, B), IDo(r, s, t) (187)

Rn(r, A,B)←S(s,A), T (t, B), c(A,B),¬R−(s, t),

¬IDo( , s, t), r = idR(A,B) (188)

IDn(r, s, t)←S(s,A), T (t, B), c(A,B), Rn(r,A,B) (189)

IDn(r, s, t)←IDo(r, s, t) (190)

S+(s,A)←S(s,A),¬IDn( , s, ) (191)

T+(t, B)←T (t, B),¬IDn( , , t) (192)

γsrc :

Sn(s,A)←R(r, A, ), ID(r, s, ) (193)

Sn(s,A)←R(r, A, ),¬ID(r, s, ), s = idS(A) (194)

Sn(s,A)←S+(s,A) (195)

Tn(t, B)←R(r, , B), ID(r, , t) (196)

Tn(t, B)←R(r, , B),¬ID(r, , t), t = idT (B) (197)

Tn(t, B)←T+(t, B) (198)

ID(r, s, t)←R(r, A,B), Sn(s,A), Tn(t, B) (199)

R−(s, t)←¬R( , A,B), Sn(s,A), Tn(t, B), c(A,B)
(200)

γsrc(γtgt(SD,TD)) :

S(s,A)←SD(s,A) (201)

T (t, B)←TD(t, B) (202)

ID(r, s, t)←SD(s,A), TD(t, B),

c(A,B), r = idR(A,B) (203)

γtgt(γsrc(RD)) :

Rn(r, A,B)←RD(r, A,B) (204)

IDn(r, s, t)←RD(r, A,B),

s = idS(A), t = idT (B) (205)

In sum, BiDEL’s SMOs are formally guaranteed to be
bidirectional: a solid ground for co-existing schema versions.
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