arXiv:1506.00394v2 [cs.DB] 9 Jul 2015

GraphVista: Interactive Exploration Of Large Graphs

. *
Marcus Paradies

Michael Rudolf

Wolfgang Lehner

Database Systems Group, TU Dresden, Germany
m.paradies@sap.com,
michael.rudolf01@sap.com,
wolfgang.lehner@tu-dresden.de

ABSTRACT

The potential to gain business insights from graph-structured data
through graph analytics is increasingly attracting companies from
a variety of industries, ranging from web companies to traditional
enterprise businesses. To analyze a graph, a user often executes
isolated graph queries using a dedicated interface—a procedural
graph programming interface or a declarative graph query language.
The results are then returned and displayed using a specific visual-
ization technique. This follows the classical ad-hoc Query— Result
interaction paradigm and often requires multiple query iterations
until an interesting aspect in the graph data is identified. This is
caused on the one hand by the schema flexibility of graph data and
on the other hand by the intricacies of declarative graph query lan-
guages. To lower the burden for the user to explore an unknown
graph without prior knowledge of a graph query language, visual
graph exploration provides an effective and intuitive query interface
to navigate through the graph interactively.

We demonstrate GRAPHVISTA, a graph visualization and ex-
ploration tool that can seamlessly combine ad-hoc querying and
interactive graph exploration within the same query session. In our
demonstration, conference attendees will see GRAPHVISTA run-
ning against a large real-world graph data set. They will start by
identifying entry points of interest with the help of ad-hoc queries
and will then discover the graph interactively through visual graph
exploration.

1. INTRODUCTION

Traditional data exploration follows a direct, ad-hoc interaction with
the database by using a declarative query language, such as SQL,
through a console-oriented interface. Also, the current generation
of data interfaces—forms, reporting tools, and query workflows—is
built based on this Query— Result paradigm: an application extracts
all the necessary information to construct a query, sends the query
request to the database engine, and finally presents the received

*Both authors are also affiliated with SAP SE.

result to the user [6]. During query execution, however, no inter-
action with the database engine is possible. Being able to evaluate
the quality of the query results early on whenever a partial result
is encountered, improves the user experience due to the increased
interaction.

With the ever-growing prevalence of large volumes of graph-
structured data in enterprise applications, there is also an increas-
ing demand for analyzing and understanding the data to gain new
insights—that includes not only the mere structure of the graph
but also the role of attributes on vertices and edges. At this scale,
visualizing graph-structured data as-is does not only exceed human
information reception capacity but also the resolution of the majority
of computer displays. To reduce the information overload and aid the
user in navigating the data, some tools [1, 2] apply graph clustering
and summarization techniques (top-down) while others [4] employ
query-by-example and machine learning techniques (bottom-up).
However, these approaches focus more on visualization than on
graph querying and interactive exploration.

Application developers and data scientists leverage imperative
programming interfaces and declarative graph query languages—
such as GEM [8], SPARQL and Cypher!—to explore the graph topol-
ogy and vertex/edge attributes. Although these database interfaces
provide an intuitive graph abstraction and a rich set of functionality,
for many users in real-life domains (e.g., life sciences) they impose
a shallow learning curve, so that formulating or programming a
graph query requires a considerable cognitive effort. Also, they
follow the traditional database interaction paradigm and construct
the final result ad-hoc and in a single operation—interactive graph
exploration is not possible.

Many applications benefit from the schema flexibility that graph
data models offer. Unfortunately, querying and exploring a graph
with an unknown schema (e.g., vertex and edge types, available
attributes) is error-prone and often requires multiple iterations until
a meaningful result is returned. Whereas Why-Empty queries [9]
can help explain empty results, keyword searches [10], and query
transformations using abbreviations, synonyms, and ontologies [11]
can simplify schema-agnostic querying. However, these approaches
follow the traditional query paradigm and do not permit interactive
graph exploration. The querying system QUBLE interleaves visual
query formulation of subgraph queries with the actual query pro-
cessing to lower the system response time [3, 5], but it does not
allow interactive exploration or iterative query processing of large
graphs.

To address these challenges, the user should be offered a different
query paradigm that allows the seamless combination of ad-hoc
querying and interactive graph exploration within a single query
session. More specifically, we propose that a graph query intent

"http://neo4j.org

http://neo4j.org

GRAPHITE
Ad-hoc

querying E
T | Query Builder

m o

GRAPHVISTA
Session Handler

e
ané“’“ &

1
!
!
1
'
: Initial query
T
|
1
1
1

X
c& oS Query Processor
Interact l ~—0 (ot {0
c>/'O Graph Graph
Operators API

Graph Bookmark
Graph Storage

Repository

'
1
'
'
1
1
1
: l Bookmark
1
1
1
1
1
1
1

Figure 1: System architecture and integration of GRAPH-
VISTA.

should capture two aspects: (1) a general specification of the query
for the system with entry points where the query processing pauses,
and (2) an interactive graph exploration starting from those entry
points performed by the user at run-time. The first part of the
exploration is then an ad-hoc query, but instead of returning the
complete result set eventually, the query immediately pauses the
execution after a matching vertex/edge was found and presents it
to the user. The second phase of the interaction allows using each
partial result of the ad-hoc query as an entry point for the subsequent
interactive graph exploration.

In this demonstration, we propose GRAPHVISTA as a flexible tool
for the analysis and visual exploration of large graphs. It does not re-
quire a deep understanding of graph query languages or knowledge
about the schema of the graph. GRAPHVISTA offers an extended
query paradigm that seamlessly combines ad-hoc querying with in-
teractive graph exploration to enable investigating the graph starting
from so-called graph query breakpoints. In analogy to software
debugging, a graph query breakpoint is a single match of the initial
ad-hoc query and serves as the entry point for an interactive analysis
of the graph. GRAPHVISTA also allows collecting intermediate
results in the form of graph bookmarks, which can be accessed
and further explored later on. Once the user has finished exploring
the graph at the specific result, the execution of the ad-hoc query
continues and presents the next result to the user. This interleaved
execution of ad-hoc querying to retrieve the entry points and visual,
interactive graph exploration is a powerful paradigm and works
equally well for small and large graphs.

2. GRAPHVISTA

In this section we outline the architecture of GRAPHVISTA—a
browser-based graph visualization and exploration tool for large
graphs—and describe its main functionality in detail.

2.1 System Overview

GRAPHVISTA is a light-weight, visual query and exploration tool
for inspecting and analyzing large graphs in an interactive manner
and without the need to formulate textual graph queries. It aims
at seamlessly blending ad-hoc querying with fine-granular iterative
graph exploration manually performed by the user. GRAPHVISTA
does not only allow querying the graph, it also allows storing in-
termediate results—so-called graph bookmarks—in a repository
for later use. Our goal is to allow the user analyzing large graphs
at scale with the help of visual querying but without overloading
the application by pulling in large fractions of the data set. We
incorporate ad-hoc querying to skip those parts of the graph that
are irrelevant for the analysis and to pause the query execution at
user-defined breakpoints allowing the user to interactively inspect
the graph from there.

Driver Query
Terminated?

Yes

End GRAPHVISTA
Session

Build Evaluate Breakpoint

Driver Query Query reached?

Yes

Interactive Store Graph
Exploration Bookmark

Continue

Exploration?

Figure 2: Interaction workflow of GRAPHVISTA.

The overall architecture of GRAPHVISTA is depicted on the left-
hand side of Figure 1. It consists of three major components: a
query builder, a graph visualization panel, and a graph bookmark
repository. The query builder provides graphical control elements
for specifying the initial ad-hoc query and a set of graph query
breakpoints. Just like a program’s control flow steers a software
debugging session, the ad-hoc query drives the graph analysis—we
will therefore refer to it as driver query. A graph query breakpoint is
defined as a conjunctive predicate that is evaluated for each record
that the driver query processes. The interactive query panel contains
graphical control elements to start, continue, or stop the query ex-
ecution. It also displays an excerpt from the entire graph data set,
depending on the executed driver query and the performed interac-
tive exploration steps. The graph bookmark repository can be used
to store the displayed parts of the entire graph for later use. A graph
bookmark consists of a concise description of the displayed vertices,
edges, and accompanying attribute values.

Figure 2 illustrates the typical workflow with GRAPHVISTA. The
user specifies the initial driver query and a set of graph query break-
points using the query builder and starts the query execution. Once
a graph breakpoint is triggered, the driver query is paused and we
switch from automated exploration to interactive visual exploration.
GRAPHVISTA supports not only the display of subgraphs, but also
the interactive exploration based on the already retrieved parts of the
entire data graph. The user can explore the result that triggered the
breakpoint in a stepwise manner by fetching additional attribute val-
ues or by expanding the subgraph on the incoming/outgoing edges.
The retrieved data can be saved as a graph bookmark for further
exploration later on. Once finished with the interactive exploration,
the user can either continue the driver query—until the execution
reaches the next graph breakpoint—or stop its execution.

GRAPHVISTA runs on top of GRAPHITE [7], a fast in-memory
graph processing engine for interactive and analytic graph queries.
Its architecture is sketched on the right-hand side of Figure 1.
GRAPHITE combines a columnar storage layer with native graph
operators, light-weight secondary graph index structures, and a low-
level graph programming interface. We store a graph in GRAPHITE
in two column groups—one for vertices and one for edges—and
map each distinct attribute to a separate column. Additionally, the
graph topology can be either stored as an edge list represented by
two columns or more efficiently in a high-performance adjacency
list structure with logical pointers to the corresponding rows in the
vertex and edge column groups.

2.2 Automated Graph Exploration

A graph exploration in GRAPHVISTA is composed of a driver query

Graphvista

GraphVista

€ 9 © |Q htp/localhost:4747/graphvista/ — € 9 © [Q http://localhost:4747/graphvista/ =
ol .t
~sGraphVista “sGraphVista
Driver Query Driver Query Graph Exploration Tools
banse: -0 = W
[[oBC_SFLY] GetNeighbors GetSource GetTarget FetchAtinbutes Display Alibutes Store Bookima
Query Type: Graph Breakpoins: Graph Visualization Panel
4 Vertex lterator =5 [Maver @ as
O Edge Hterator [oR[[-) Selected Attributes of Vertex 928;
Aftribute Value
© 5 teratr e HPFE O o 2
frstName | Herbert
birthday |1982-12-12

height 182

Recent Graph Bookmarks

<

(a) Driver query panel.

(b) Interactive query panel.

Figure 3: GRAPHVISTA graphical user interface.

with an accompanying set of graph breakpoints and a series of graph
exploration operations performed by the user. To formulate a driver
query, we use a graphical query builder that is able to construct
queries of two different classes: (1) iterating over all vertices/edges—
possibly restricted by predicates on attribute values—and (2) iter-
ating over vertices and edges in BFS/DFS order. An active graph
breakpoint causes the driver query to pause the execution in GRAPH-
ITE and to return the vertex/edge that triggered the breakpoint to
GRAPHVISTA. For example, the breakpoint condition (age > 21) is
evaluated for each vertex/edge and returns a matching vertex/edge
to GRAPHVISTA for display on the graph visualization panel.

Initially, we submit the driver query and the graph breakpoint con-
ditions as additional filter predicates to the GRAPHITE query proces-
sor. As a result, we receive a unique session identifier—GRAPHITE
can handle multiple GRAPHVISTA sessions simultaneously. Con-
ceptually, a driver query is executed in the same way as an ordinary
query, but the predicate evaluation provides a callback mechanism
that returns the corresponding vertex/edge for each record satisfying
the breakpoint condition. If the user continues the driver query,
GRAPHITE fetches the intermediate result of the driver query and
continues the execution until the next graph breakpoint is reached.
The driver query terminates when either all vertices/edges have been
visited or the BFS/DFS traversal terminates.

2.3 Interactive Graph Exploration

One of the major advantages of GRAPHVISTA is the ability to in-
terleave the execution of the driver query with an interactive graph
exploration initiated by the user. This allows skipping irrelevant
parts of the graph during a traversal or vertex/edge iteration and
only return vertices/edges of interest to the user, from which the user
can start the interactive graph exploration. GRAPHVISTA switches
the execution mode from the driver query to interactive graph ex-
ploration whenever the graph breakpoint condition matches and
displays the respective vertex/edge on the graph visualization panel.
We support four kinds of operations to explore the graph in GRAPH-
VISTA through graphical control elements in the graph visualization
panel: (1) the retrieval of incoming/outgoing edges for a given ver-
tex, (2) the retrieval of preceding/succeeding vertices for a given
edge/vertex, (3) the retrieval of specific vertex/edge attributes, and
(4) the display of specific vertex/edge attributes.

For each exploration operation performed by the user, GRAPH-
VISTA constructs a query request and dispatches it to the query
processor of GRAPHITE. Each session in GRAPHVISTA is identified
by a unique session identifier that is used to tie the paused driver

query to all subsequent interactive exploration operations. We use
remote procedure calls to translate user exploration operations in
GRAPHVISTA to the corresponding operations in GRAPHITE. To
return the result, GRAPHITE constructs a response message contain-
ing the query result in the JSON serialization format and transfers
the response over an HTTP connection back to GRAPHVISTA. We
then construct a new subgraph by merging the already displayed
graph with the newly retrieved graph data and display it on the graph
visualization panel.

Interactive graph exploration in GRAPHVISTA is an iterative
process and for each intermediate result presented by the driver
query, the user can execute different exploration actions to focus
on the relevant parts of a potentially large graph on a single graph
visualization panel. The driver query either terminates once all
vertices/edges have been presented to the user or the user terminates
the driver query manually to start a different driver query. The
user can decide to proceed with the driver query execution to fetch
the next matching vertex/edge by issuing a continuation request
to GRAPHITE. To handle skewed neighborhood size distributions
efficiently and to not overload the graph visualization with too many
vertices/edges, we allow restricting the neighborhood expansion by
the following three criteria: (1) the direction of the edge, (2) an
edge attribute filter, and (3) a vertex attribute filter. To aid the user
in applying these filters, we display an estimated result size before
fetching the neighbor vertices.

2.4 Graph Bookmarks

GRAPHVISTA allows storing intermediate results during the interac-
tive exploration of the fetched and displayed excerpts of the graph
as bookmarks in a repository. A graph bookmark consists of the
timestamp of creation, the materialized graph data (i.e. the explored
topology and fetched vertex/edge attributes), and an optional textual
description provided by the user. Conceptually, graph bookmarks
are inspired by the Manylines project? but we extend their idea to
also operate on large graphs in conjunction with a graph process-
ing system. If the underlying graph changes between storing and
retrieving the graph bookmark, fetching attributes from a deleted
vertex/edge or retrieving the neighbors of a deleted vertex results in
a warning message that is displayed to the user.

Storage: We associate graph bookmarks with the session they were
taken in and store them in GRAPHVISTA in JSON format containing
all retrieved information (i.e. metadata and data), so that they can be

’http://tools.medialab.sciences-po.fr/manylines

http://tools.medialab.sciences-po.fr/manylines

loaded quickly and without having to issue a query to the underlying
graph engine for collecting the data again. Since graph bookmarks
only contain the results of the interactive exploration and not a
snapshot of the complete data set, storing them fully materialized at
the client-side is a feasible approach.

Retrieval: A graph bookmark can be retrieved in two ways: (1) dur-
ing the interactive exploration by selecting the graph bookmark of
interest from the panel at the bottom, or (2) in a separate session that
can be started from the initial dialog of GRAPHVISTA. Once the
user selects the graph bookmark, the contained vertices and edges
are displayed on the graph visualization panel and the user can con-
tinue the graph exploration from there. Retrieving a bookmark and
being able to use it as input or as initial starting point for another
exploration is a powerful mechanism, because it allows sifting the
graph in multiple iterations instead of limiting the graph exploration
to a single query session.

2.5 Graphical User Interface

We developed GRAPHVISTA with three major design goals in mind:
(1) it should be intuitive to use without requiring expert knowledge
of a graph query language, (2) it should be able to process large
graphs while being able to explore the graph interactively, and (3) it
should be possible to use GRAPHVISTA on gesture-based mobile
devices.

We graphically separate the construction of the driver query and
the interactive graph exploration into two window panels—a driver
query panel (cf. Figure 3a) and an interactive query panel (cf. Fig-
ure 3b). The driver query panel is composed of graphical control
elements to select the data set to consider, the type of the driver
query, and to specify the graph breakpoints. The interactive query
panel is composed of graphical control elements to steer the driver
query execution, a set of graph exploration operations visualized
through icons, the graph visualization panel, and a list of chronolog-
ically ordered thumbnails representing the stored graph bookmarks.
Next to the graph visualization panel, GRAPHVISTA allows dis-
playing previously fetched attributes of a selected vertex/edge in a
tabular fashion.

3. DEMONSTRATION

During the demonstration session, we will be running GRAPHVISTA
on top of GRAPHITE and showcase an end-to-end solution for fast
and intuitive interaction with and exploration of large graph data sets.
The graphical user interface of GRAPHVISTA is depicted in Figure 3.
We will use a social network data set generated from the LDBC social
network benchmark® consisting of about 3.7 million vertices and
21 million edges and load it into GRAPHITE. The data will be stored
in two relational tables, one for vertices and one for edges, and an
additional adjacency list data structure with logical pointers to the
corresponding vertex and edge entries in the tables. The LDBC data
set models a social media website and knowledge exchange platform,
where users can register, compose posts in forums, comment on
posts by other users, and become friends with other users. The
schema of the LDBC data set distinguishes 8 different vertex types,
13 edge types, and a variety of descriptive attributes on vertices and
edges.

Scenario: If only a fraction of the graph schema is known to the
user upfront and the query intent is not yet fully determined at the
time of query formulation, interactive graph exploration is a pow-
erful approach. In the demonstration, conference attendees will be
able to specify driver queries while only being aware of parts of
the graph schema, such as the available vertex types. For example,

3http://1dbcouncil.org/

the conference attendee can specify a driver query that iterates over
all female persons who live in the United States, are older than
21 years, and joined the social network after 2009. GRAPHVISTA
issues the query to GRAPHITE and presents the first result—the first
person that matches the selection criteria—on the graph visualiza-
tion panel. Then the conference attendee can either continue the
driver query to proceed to the next result or start the interactive
graph exploration. For example, the user might be interested in the
1-hop neighborhood and can restrict the neighborhood query further
to only traverse edges of type friendOf to connected persons that
are female. Based on the retrieved neighborhood, the user can fetch
additional attributes, such as firstname and lastname, of selected
vertices. At any time, the user can create graph bookmarks to view
and extend the graph exploration at a later point in time. In case
the specified driver query is not sufficiently selective, the user can
terminate its execution and start over again with a different driver
query configuration. GRAPHVISTA does not require the conference
attendee to know the entire graph schema, but provides intuitive
control elements and selection dialogs guiding the user through the
graph exploration process. Furthermore, by fetching vertex neigh-
borhood and vertex/edge attributes on demand, GRAPHVISTA can
operate on large graphs without having to load or display the entire
data set.

4. REFERENCES

[1] J. Abello, F. van Ham, and N. Krishnan. ASK-GraphView: A
Large Scale Graph Visualization System. IEEE Trans.
Visualization and Computer Graphics, 12(5):669-676, 2006.

[2] L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos.
OPAvion: Mining and Visualization in Large Graphs. In Proc.
SIGMOD, pages 717-720. ACM, 2012.

[3] S.S. Bhowmick, B. Choi, and S. Zhou. VOGUE: Towards A
Visual Interaction-aware Graph Query Processing Framework.
In Proc. CIDR, 2013.

[4] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos. Apolo:
interactive large graph sensemaking by combining machine
learning and visualization. In Proc. SIGKDD, pages 739-742.
ACM, 2011.

[5] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, and
S. Zhou. QUBLE: Towards Blending Interactive Visual
Subgraph Search Queries on Large Networks. VLDB J.,
23(3):401-426, 2014.

[6] A.Nandi. Querying Without Keyboards. In Proc. CIDR, 2013.

[7] M. Paradies, W. Lehner, and C. Bornh6vd. GRAPHITE: An

Extensible Graph Traversal Framework for Relational

Database Management Systems. In Proc. SSDBM ’15, pages

29:1-29:12, 2015.

M. Rudolf, M. Paradies, C. Bornhévd, and W. Lehner. The

Graph Story of the SAP HANA Database. In Proc. BTW,

volume 214 of LNI, pages 403—420. GI, 2013.

[9] E. Vasilyeva, M. Thiele, C. Bornhovd, and W. Lehner.
GraphMCS: Discover the Unknown in Large Data Graphs. In
Proc. EDBT/ICDT Workshops, volume 1133 of CEUR
Workshop Proceedings, pages 200-207. CEUR-WS.org, 2014.

[10] H. Wang and C. C. Aggarwal. A Survey of Algorithms for

Keyword Search on Graph Data. In Managing and Mining
Graph Data, volume 40 of Advances in Database Systems,
pages 249-273. Springer US, 2010.

[11] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and

Structureless Graph Querying. PVLDB, 7(7):565-576, 2014.

[8

—_—

http://ldbcouncil.org/

	1 Introduction
	2 GraphVista
	2.1 System Overview
	2.2 Automated Graph Exploration
	2.3 Interactive Graph Exploration
	2.4 Graph Bookmarks
	2.5 Graphical User Interface

	3 Demonstration
	4 References

